Adult neuron survival strategies — slamming on the brakes (original) (raw)
Oppenheim, R. W. Cell death during development of the nervous system. Annu. Rev. Neurosci.14, 453–501 (1991). ArticleCASPubMed Google Scholar
Calabrese, V., Scapagnini, G., Ravagna, A., Giuffrida Stella, A. M. & Butterfield, D. A. Molecular chaperones and their roles in neural cell differentiation. Dev. Neurosci.24, 1–13 (2002). ArticleCASPubMed Google Scholar
Korsmeyer, S. J. BCL-2 gene family and the regulation of programmed cell death. Cancer Res.59 (Suppl.), 1693s–1700s (1999). CASPubMed Google Scholar
Deckwerth, T. L. et al. BAX is required for neuronal death after trophic factor deprivation and during development. Neuron17, 401–411 (1996). Early evidence that trophic-factor-deprivation-induced death of sympathetic and motor neurons is dependent on BAX translocation to the mitochondria. ArticleCASPubMed Google Scholar
White, F. A., Keller-Peck, C. R., Knudson, C. M., Korsmeyer, S. J. & Snider, W. D. Widespread elimination of naturally occurring neuronal death in Bax-deficient mice. J. Neurosci.18, 1428–1439 (1998). ArticleCASPubMedPubMed Central Google Scholar
Lentz, S. I., Knudson, C. M., Korsmeyer, S. J. & Snider, W. D. Neurotrophins support the development of diverse sensory axon morphologies. J. Neurosci.19, 1038–1048 (1999). ArticleCASPubMedPubMed Central Google Scholar
Li, L., Oppenheim, R. W. & Milligan, C. E. Characterization of the execution pathway of developing motoneurons deprived of trophic support. J. Neurobiol.46, 249–264 (2001). ArticleCASPubMed Google Scholar
Whitfield, J., Neame, S. J., Paquet, L., Bernard, O. & Ham, J. Dominant-negative c-Jun promotes neuronal survival by reducing BIM expression and inhibiting mitochondrial cytochrome c release. Neuron29, 629–643 (2001). ArticleCASPubMed Google Scholar
Putcha, G. V. et al. Intrinsic and extrinsic pathway signaling during neuronal apoptosis: lessons from the analysis of mutant mice. J. Cell Biol.157, 441–453 (2002). Analysis of intrinsic apoptosis of trophic-factor-deprived neonatal sympathetic neurons, and potassium-deprived cerebellar granule neurons from BAX−/−, BAK−/−, BIM−/−, BID−/−and BAD−/−mice. The authors propose that BAX exists in an equilibrium between a cytosolic state in the presence of trophic factors, and a mitochondria-associated state that is mediated by BH3-only proteins in the absence of trophic factors, where BAX can interact and inactivate anti-apoptotic BCL2 proteins to trigger trophic-factor-withdrawal-induced neonatal neuronal death. ArticleCASPubMedPubMed Central Google Scholar
Putcha, G. V. & Johnson, E. M. Jr. Men are but worms: neuronal cell death in C. elegans and vertebrates. Cell Death Differ.11, 38–48 (2004). Excellent review article summarizing the model programmed cell death system of trophic-factor-deprivation-induced sympathetic neuronal death and BAX translocation. ArticleCASPubMed Google Scholar
Kaplan, D. R. & Miller, F. D. Neurotrophin signal transduction in the nervous system. Curr. Opin. Neurobiol.10, 381–391 (2000). Review of the interplay of survival pathways mediated by TRK receptors and apoptotic signalling through p75NTRreceptors during developmental neuronal PCD. ArticleCASPubMed Google Scholar
Datta, S. R., Brunet, A. & Greenberg, M. E. Cellular survival: a play in three Akts. Genes Dev.13, 2905–2927 (1999). ArticleCASPubMed Google Scholar
Harris, C. A. & Johnson, E. M. Jr. BH3-only Bcl-2 family members are coordinately regulated by the JNK pathway and require Bax to induce apoptosis in neurons. J. Biol. Chem.276, 37754–37760 (2001). CASPubMed Google Scholar
Lowrie, M. B. & Vrbova, G. Dependence of postnatal motoneurones on their targets: review and hypothesis. Trends Neurosci.15, 80–84 (1992). ArticleCASPubMed Google Scholar
Oliveira, A. L. et al. Neonatal sciatic nerve transection induces TUNEL labeling of neurons in the rat spinal cord and DRG. Neuroreport.8, 2837–2840 (1997). ArticleCASPubMed Google Scholar
Snider, W. D., Elliott, J. L. & Yan, Q. Axotomy-induced neuronal death during development. J. Neurobiol.23, 1231–1246 (1992). ArticleCASPubMed Google Scholar
Benn, S. C. et al. Hsp27 upregulation and phosphorylation is required for injured sensory and motor neuron survival. Neuron36, 45–56 (2002). ArticleCASPubMed Google Scholar
Kalmar, B. et al. Upregulation of heat shock proteins rescues motoneurones from axotomy-induced cell death in neonatal rats. Exp. Neurol.176, 87–97 (2002). ArticleCASPubMed Google Scholar
Perrelet, D. et al. IAP family proteins delay motoneuron cell death in vivo. Eur. J. Neurosci.12, 2059–2067 (2000). ArticleCASPubMed Google Scholar
Perrelet, D. et al. IAPs are essential for GDNF-mediated neuroprotective effects in injured motor neurons in vivo. Nature Cell Biol.4, 175–179 (2002). The first indication that neurotropic factor survival function might be mediated by regulating the expression of IAP proteins. This study shows that GDNF regulates endogenous XIAP and NIAP in motor neurons after sciatic nerve axotomy, and inhibition of XIAP prevents GDNF-mediated neuroprotective rescue of motor neurons from neonatal axotomy. ArticleCASPubMed Google Scholar
Deveraux, Q. L. & Reed, J. C. IAP family proteins — suppressors of apoptosis. Genes Dev.13, 239–252 (1999). ArticleCASPubMed Google Scholar
Dubois-Dauphin, M., Frankowski, H., Tsujimoto, Y., Huarte, J. & Martinou, J. C. Neonatal motoneurons overexpressing the bcl2 protooncogene in transgenic mice are protected from axotomy-induced cell death. Proc. Natl Acad. Sci. USA91, 3309–3313 (1994). ArticleCASPubMedPubMed Central Google Scholar
Yamada, M. et al. Herpes simplex virus vector-mediated expression of Bcl-2 protects spinal motor neurons from degeneration following root avulsion. Exp. Neurol.168, 225–230 (2001). ArticleCASPubMed Google Scholar
Henderson, C. E. Programmed cell death in the developing nervous system. Neuron17, 579–585 (1996). ArticleCASPubMed Google Scholar
Henderson, C. E. et al. Role of neurotrophic factors in motoneuron development. J. Physiol. (Paris)92, 279–281 (1998). ArticleCAS Google Scholar
Ma, J., Novikov, L. N., Wiberg, M. & Kellerth, J. O. Delayed loss of spinal motoneurons after peripheral nerve injury in adult rats: a quantitative morphological study. Exp. Brain Res.139, 216–223 (2001). ArticleCASPubMed Google Scholar
Noven, S. V., Wallace, N., Muccio, D., Turtz, A. & Pinter, M. J. Adult spinal motorneurons remain viable despite prolonged absence of funcitonal synaptic contact with the muscle. Exp. Neurol.123, 147–156 (1993). Article Google Scholar
Tandrup, T., Woolf, C. J. & Coggeshall, R. E. Delayed loss of small dorsal root ganglion cells after transection of the rat sciatic nerve. J. Comp. Neurol.422, 172–180 (2000). ArticleCASPubMed Google Scholar
Davies, A. M. Developmental changes in the neurotrophic factor survival requirements of peripheral nervous system neurons. Prog. Brain Res.117, 47–56 (1998). ArticleCASPubMed Google Scholar
Strasser, A., O'Connor, L. & Dixit, V. M. Apoptosis signaling. Annu. Rev. Biochem.69, 217–245 (2000). ArticleCASPubMed Google Scholar
Pettmann, B. & Henderson, C. E. Neuronal cell death. Neuron20, 633–647 (1998). Excellent review on the molecular mechanisms and types of neuronal cell death that occur under intrinsic and extrinsic influences during developmental PCD and after injuryin vivo. The review summarizes neuronal deficits from mice in which important players in apoptotic signalling pathways are knocked out. ArticleCASPubMed Google Scholar
Choi, C. & Benveniste, E. N. Fas ligand/Fas system in the brain: regulator of immune and apoptotic responses. Brain Res. Rev.44, 65–81 (2004). Summary reviewing the changes in expression of FASL and FAS in experimental models and patient samples of different neurodegenerative diseases. ArticleCASPubMed Google Scholar
Morishima, Y. et al. β-amyloid induces neuronal apoptosis via a mechanism that involves the c-Jun N-terminal kinase pathway and the induction of Fas ligand. J. Neurosci.21, 7551–7560 (2001). ArticleCASPubMedPubMed Central Google Scholar
Ferrer, I., Blanco, R., Cutillas, B. & Ambrosio, S. Fas and Fas-L expression in Huntington's disease and Parkinson's disease. Neuropathol. Appl. Neurobiol.26, 424–433 (2000). ArticleCASPubMed Google Scholar
Mogi, M. et al. The soluble form of Fas molecule is elevated in parkinsonian brain tissues. Neurosci. Lett.220, 195–198 (1996). ArticleCASPubMed Google Scholar
Raoul, C. et al. Motoneuron death triggered by a specific pathway downstream of Fas. potentiation by ALS-linked SOD1 mutations. Neuron35, 1067–1083 (2002). First demonstration of a neuron-specific apoptotic pathway, involving the dual activation of FAS–FASL and nitric oxide-triggered cell death in motor neurons. ArticleCASPubMed Google Scholar
Micheau, O. & Tschopp, J. Induction of TNF receptor I-mediated apoptosis via two sequential signaling complexes. Cell114, 181–190 (2003). ArticleCASPubMed Google Scholar
Ip, Y. T. & Davis, R. J. Signal transduction by the c-Jun N-terminal kinase (JNK) - from inflammation to development. Curr. Opin. Cell Biol.10, 205–219 (1998). ArticleCASPubMed Google Scholar
Deng, Y., Lin, Y. & Wu, X. TRAIL-induced apoptosis requires Bax-dependent mitochondrial release of Smac/DIABLO. Genes Dev.16, 33–45 (2002). ArticleCASPubMedPubMed Central Google Scholar
Deng, Y., Ren, X., Yang, L., Lin, Y. & Wu, X. A JNK-dependent pathway is required for TNFα-induced apoptosis. Cell115, 61–70 (2003). ArticleCASPubMed Google Scholar
Perry, S. W., Dewhurst, S., Bellizzi, M. J. & Gelbard, H. A. Tumor necrosis factor-α in normal and diseased brain: conflicting effects via intraneuronal receptor crosstalk? J. Neurovirol.8, 611–624 (2002). ArticleCASPubMedPubMed Central Google Scholar
Nagatsu, T., Mogi, M., Ichinose, H. & Togari, A. Cytokines in Parkinson's disease. J. Neural Transm.58 (Suppl.), 143–151 (2000). Google Scholar
Veerhuis, R. et al. Adult human microglia secrete cytokines when exposed to neurotoxic prion protein peptide: no intermediary role for prostaglandin E2. Brain Res.925, 195–203 (2002). ArticleCASPubMed Google Scholar
Saha, R. N. & Pahan, K. Tumor necrosis factor-α at the crossroads of neuronal life and death during HIV-associated dementia. J. Neurochem.86, 1057–1071 (2003). ArticleCASPubMedPubMed Central Google Scholar
Barone, F. C. & Parsons, A. A. Therapeutic potential of anti-inflammatory drugs in focal stroke. Expert Opin. Investig. Drugs9, 2281–2306 (2000). ArticleCASPubMed Google Scholar
Kischkel, F. C. et al. Death receptor recruitment of endogenous caspase-10 and apoptosis initiation in the absence of caspase-8. J. Biol. Chem.276, 46639–46646 (2001). ArticleCASPubMed Google Scholar
MacEwan, D. J. TNF receptor subtype signalling: differences and cellular consequences. Cell Signal.14, 477–492 (2002). ArticleCASPubMed Google Scholar
Wajant, H. & Scheurich, P. Tumor necrosis factor receptor-associated factor (TRAF) 2 and its role in TNF signaling. Int. J. Biochem. Cell Biol.33, 19–32 (2001). ArticleCASPubMed Google Scholar
Pastorino, J. G., Tafani, M. & Farber, J. L. Tumor necrosis factor induces phosphorylation and translocation of BAD through a phosphatidylinositide-3-OH kinase-dependent pathway. J. Biol. Chem.274, 19411–19416 (1999). ArticleCASPubMed Google Scholar
Chen, G. & Goeddel, D. V. TNF-R1 signaling: a beautiful pathway. Science296, 1634–1635 (2002). ArticleCASPubMed Google Scholar
Tamatani, M. et al. Tumor necrosis factor induces Bcl-2 and Bcl-x expression through NFκB activation in primary hippocampal neurons. J. Biol. Chem.274, 8531–8538 (1999). ArticleCASPubMed Google Scholar
Hsu, H., Xiong, J. & Goeddel, D. V. The TNF receptor 1-associated protein TRADD signals cell death and NFκB activation. Cell81, 495–504 (1995). ArticleCASPubMed Google Scholar
Yang, L., Lindholm, K., Konishi, Y., Li, R. & Shen, Y. Target depletion of distinct tumor necrosis factor receptor subtypes reveals hippocampal neuron death and survival through different signal transduction pathways. J. Neurosci.22, 3025–3032 (2002). ArticleCASPubMedPubMed Central Google Scholar
Aschner, M., Allen, J. W., Kimelberg, H. K., LoPachin, R. M. & Streit, W. J. Glial cells in neurotoxicity development. Annu. Rev. Pharmacol. Toxicol.39, 151–173 (1999). ArticleCASPubMed Google Scholar
Nishitoh, H. et al. ASK1 is essential for JNK/SAPK activation by TRAF2. Mol. Cell2, 389–395 (1998). ArticleCASPubMed Google Scholar
Gupta, S. A decision between life and death during TNF-α-induced signaling. J. Clin. Immunol.22, 185–194 (2002). Excellent review on TNFα-mediated pathways, and influences that determine whether signalling occurs along survival or death pathways. ArticleCASPubMed Google Scholar
Fotin-Mleczek, M. et al. Apoptotic crosstalk of TNF receptors: TNF-R2 induces depletion of TRAF2 and IAP proteins and accelerates TNF-R1-dependent activation of caspase-8. J. Cell Sci.115, 2757–2770 (2002). CASPubMed Google Scholar
Bruce, A. J. et al. Altered neuronal and microglial responses to excitotoxic and ischemic brain injury in mice lacking TNF receptors. Nature Med.2, 788–794 (1996). ArticleCASPubMed Google Scholar
Garden, G. A. Microglia in human immunodeficiency virus-associated neurodegeneration. Glia40, 240–251 (2002). ArticlePubMed Google Scholar
Shimizu, S., Matsuoka, Y., Shinohara, Y., Yoneda, Y. & Tsujimoto, Y. Essential role of voltage-dependent anion channel in various forms of apoptosis in mammalian cells. J. Cell Biol.152, 237–250 (2001). ArticleCASPubMedPubMed Central Google Scholar
Rostovtseva, T. K. et al. Bid, but not Bax, regulates VDAC channels. J. Biol. Chem.279, 13575–13583 (2004). ArticleCASPubMed Google Scholar
Sharpe, J. C., Arnoult, D. & Youle, R. J. Control of mitochondrial permeability by Bcl-2 family members. Biochim. Biophys. Acta1644, 107–113 (2004). Review of the literature on the current hypothesis of mechanisms that are believed to be involved in the release of apoptogenic factors from the mitochondria following apoptotic stimuli. ArticleCASPubMed Google Scholar
Viswanath, V. et al. Caspase-9 activation results in downstream caspase-8 activation and bid cleavage in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced Parkinson's disease. J. Neurosci.21, 9519–9528 (2001). Demonstration that activation of caspase 8 and BID in the extrinisic apoptotic pathway can occur downstream of the intrinsic apoptotic signalling pathway in Parkinson's disease. ArticleCASPubMedPubMed Central Google Scholar
Pastorino, J. G. et al. Functional consequences of the sustained or transient activation by Bax of the mitochondrial permeability transition pore. J. Biol. Chem.274, 31734–31739 (1999). ArticleCASPubMed Google Scholar
Sedlak, T. W. et al. Multiple Bcl-2 family members demonstrate selective dimerizations with Bax. Proc. Natl Acad. Sci. USA92, 7834–7838 (1995). ArticleCASPubMedPubMed Central Google Scholar
Daugas, E. et al. Mitochondrio-nuclear translocation of AIF in apoptosis and necrosis. FASEB J.14, 729–739 (2000). ArticleCASPubMed Google Scholar
Susin, S. A. et al. Molecular characterization of mitochondrial apoptosis-inducing factor. Nature397, 441–446 (1999). ArticleCASPubMed Google Scholar
Yu, S. W. et al. Mediation of poly(ADP-ribose) polymerase-1-dependent cell death by apoptosis-inducing factor. Science297, 259–263 (2002). ArticleCASPubMed Google Scholar
Endres, M., Wang, Z. Q., Namura, S., Waeber, C. & Moskowitz, M. A. Ischemic brain injury is mediated by the activation of poly(ADP-ribose)polymerase. J. Cereb. Blood Flow Metab.17, 1143–1151 (1997). ArticleCASPubMed Google Scholar
Arnoult, D. et al. Mitochondrial release of AIF and EndoG requires caspase activation downstream of Bax/Bak-mediated permeabilization. EMBO J.22, 4385–4399 (2003). ArticleCASPubMedPubMed Central Google Scholar
Li, L. Y., Luo, X. & Wang, X. Endonuclease G is an apoptotic DNase when released from mitochondria. Nature412, 95–99 (2001). ArticleCASPubMed Google Scholar
Putcha, G. V. et al. JNK-mediated BIM phosphorylation potentiates BAX-dependent apoptosis. Neuron38, 899–914 (2003). ArticleCASPubMed Google Scholar
Bonfoco, E., Krainc, D., Ankarcrona, M., Nicotera, P. & Lipton, S. A. Apoptosis and necrosis: two distinct events induced, respectively, by mild and intense insults with _N_-methyl-d-aspartate or nitric oxide/superoxide in cortical cell cultures. Proc. Natl Acad. Sci. USA92, 7162–7166 (1995). ArticleCASPubMedPubMed Central Google Scholar
Kemp, J. A. & McKernan, R. M. NMDA receptor pathways as drug targets. Nature Neurosci.5 (Suppl.), 1039–1042 (2002). ArticleCASPubMed Google Scholar
Bredt, D. S., Hwang, P. M. & Snyder, S. H. Localization of nitric oxide synthase indicating a neural role for nitric oxide. Nature347, 768–770 (1990). ArticleCASPubMed Google Scholar
Jordan, J., Galindo, M. F., Gonzalez-Garcia, C. & Cena, V. Role and regulation of p53 in depolarization-induced neuronal death. Neuroscience.122, 707–715 (2003). ArticleCASPubMed Google Scholar
Bossy-Wetzel, E. et al. Crosstalk between nitric oxide and zinc pathways to neuronal cell death involving mitochondrial dysfunction and p38-activated K+ channels. Neuron41, 351–365 (2004). ArticleCASPubMed Google Scholar
Rao, R. V., Ellerby, H. M. & Bredesen, D. E. Coupling endoplasmic reticulum stress to the cell death program. Cell Death Differ.11, 372–380 (2004). A review of the contribution of molecular components and pathways that are involved in apoptotic death mediated by ER-stress pathway. ArticleCASPubMed Google Scholar
Rutkowski, D. T. & Kaufman, R. J. A trip to the ER: coping with stress. Trends Cell Biol.14, 20–28 (2004). ArticleCASPubMed Google Scholar
Oyadomari, S. & Mori, M. Roles of CHOP/GADD153 in endoplasmic reticulum stress. Cell Death Differ.11, 381–389 (2003). ArticleCAS Google Scholar
Tajiri, S. et al. Ischemia-induced neuronal cell death is mediated by the endoplasmic reticulum stress pathway involving CHOP. Cell Death Differ.11, 403–415 (2004). In vivodemonstration, using CHOP−/−mice, of reduced ischaemia-induced neuronal cell death, indicating that injury-related neuronal death can occur through the ER-stress apoptotic pathway. ArticleCASPubMed Google Scholar
Jayanthi, S., Deng, X., Noailles, P. A., Ladenheim, B. & Cadet, J. L. Methamphetamine induces neuronal apoptosis via cross-talks between endoplasmic reticulum and mitochondria-dependent death cascades. FASEB J.18, 238–251 (2004). ArticleCASPubMed Google Scholar
Yoshida, H., Matsui, T., Yamamoto, A., Okada, T. & Mori, K. XBP1 mRNA is induced by ATF6 and spliced by IRE1 in response to ER stress to produce a highly active transcription factor. Cell107, 881–891 (2001). ArticleCASPubMed Google Scholar
Nishitoh, H. et al. ASK1 is essential for endoplasmic reticulum stress-induced neuronal cell death triggered by expanded polyglutamine repeats. Genes Dev.16, 1345–1355 (2002). ArticleCASPubMedPubMed Central Google Scholar
Breckenridge, D. G., Stojanovic, M., Marcellus, R. C. & Shore, G. C. Caspase cleavage product of BAP31 induces mitochondrial fission through endoplasmic reticulum calcium signals, enhancing cytochrome c release to the cytosol. J. Cell Biol.160, 1115–1127 (2003). ArticleCASPubMedPubMed Central Google Scholar
Reimertz, C., Kogel, D., Rami, A., Chittenden, T. & Prehn, J. H. Gene expression during ER stress-induced apoptosis in neurons: induction of the BH3-only protein Bbc3/PUMA and activation of the mitochondrial apoptosis pathway. J. Cell Biol.162, 587–597 (2003). ArticleCASPubMedPubMed Central Google Scholar
Scorrano, L. et al. BAX and BAK regulation of endoplasmic reticulum Ca2+: a control point for apoptosis. Science300, 135–139 (2003). ArticleCASPubMed Google Scholar
Miller, F. D. & Kaplan, D. R. Neurotrophin signalling pathways regulating neuronal apoptosis. Cell Mol. Life Sci.58, 1045–1053 (2001). ArticleCASPubMed Google Scholar
Carter, B. D. & Lewin, G. R. Neurotrophins live or let die: does p75NTR decide? Neuron18, 187–190 (1997). ArticleCASPubMed Google Scholar
Raoul, C., Henderson, C. E. & Pettmann, B. Programmed cell death of embryonic motoneurons triggered through the Fas death receptor. J. Cell Biol.147, 1049–1062 (1999). Shows actively triggered FAS–FASL-mediated cell death of motor neurons during PCD, and neurotrophin-mediated supression of FAS/FASL death by FLIP. ArticleCASPubMedPubMed Central Google Scholar
Raoul, C., Pettmann, B. & Henderson, C. E. Active killing of neurons during development and following stress: a role for p75NTR and Fas? Curr. Opin. Neurobiol.10, 111–117 (2000). ArticleCASPubMed Google Scholar
Deshmukh, M. & Johnson, E. M. Jr. Evidence of a novel event during neuronal death: development of competence-to-die in response to cytoplasmic cytochrome c. Neuron21, 695–705 (1998). ArticleCASPubMed Google Scholar
Sanchez, I. & Yuan, J. A convoluted way to die. Neuron29, 563–566 (2001). Excellent article reviewing expression of death-inducing BH3-only and pro-apoptotic BCL2 members in neuronal cell death and molecular mechanisms of trophic-factor-deprivation-induced sympathetic neuronal apoptotic deathin vitroandin vivo. ArticleCASPubMed Google Scholar
Pehar, M. et al. Astrocytic production of nerve growth factor in motor neuron apoptosis: implications for amyotrophic lateral sclerosis. J. Neurochem.89, 464–473 (2004). p75NTRexpression in spinal motor neurons of mice with ALS, and blocking antibodies to p75 NTR suppressed NGF-mediated motor neuron deathin vitro. ArticleCASPubMed Google Scholar
Yan, S. D. et al. RAGE and amyloid-β peptide neurotoxicity in Alzheimer's disease. Nature382, 685–691 (1996). ArticleCASPubMed Google Scholar
Yaar, M. et al. Binding of β-amyloid to the p75 neurotrophin receptor induces apoptosis. A possible mechanism for Alzheimer's disease. J. Clin. Invest.100, 2333–2340 (1997). ArticleCASPubMedPubMed Central Google Scholar
Tan, J. et al. Microglial activation resulting from CD40-CD40L interaction after β-amyloid stimulation. Science286, 2352–2355 (1999). ArticleCASPubMed Google Scholar
Ugolini, G. et al. Fas/tumor necrosis factor receptor death signaling is required for axotomy-induced death of motoneurons in vivo. J. Neurosci.23, 8526–8531 (2003). Elegant use of facial nerve axotomy on null mutantlpr/lprand FAS−/−mice to demonstrate that injury-induced motor neuron death can occur through the FAS–FASL extrinsic pathway. ArticleCASPubMedPubMed Central Google Scholar
Hartmann, A. & Hirsch, E. C. Parkinson's disease. The apoptosis hypothesis revisited. Adv. Neurol.86, 143–153 (2001). CASPubMed Google Scholar
Hartmann, A., Mouatt-Prigent, A., Faucheux, B. A., Agid, Y. & Hirsch, E. C. FADD: a link between TNF family receptors and caspases in Parkinson's disease. Neurology58, 308–310 (2002). ArticleCASPubMed Google Scholar
Boka, G. et al. Immunocytochemical analysis of tumor necrosis factor and its receptors in Parkinson's disease. Neurosci. Lett.172, 151–154 (1994). ArticleCASPubMed Google Scholar
Martin-Villalba, A. et al. CD95 ligand (Fas-L/APO-1L) and tumor necrosis factor-related apoptosis-inducing ligand mediate ischemia-induced apoptosis in neurons. J. Neurosci.19, 3809–3817 (1999). ArticleCASPubMedPubMed Central Google Scholar
Nakahara, S. et al. Induction of apoptosis signal regulating kinase 1 (ASK1) after spinal cord injury in rats: possible involvement of ASK1-JNK and -p38 pathways in neuronal apoptosis. J. Neuropathol. Exp. Neurol.58, 442–450 (1999). ArticleCASPubMed Google Scholar
Casha, S., Yu, W. R. & Fehlings, M. G. Oligodendroglial apoptosis occurs along degenerating axons and is associated with FAS and p75 expression following spinal cord injury in the rat. Neuroscience103, 203–218 (2001). ArticleCASPubMed Google Scholar
Beattie, M. S. et al. ProNGF induces p75-mediated death of oligodendrocytes following spinal cord injury. Neuron36, 375–386 (2002). In vivoevidence demonstrating that an extrinsic mechanism of spinal cord injury induced neuronal death might occur along the p75NTR-mediated pathway, probably triggered by release of proNGF from surrounding oligodendrocytes. ArticleCASPubMedPubMed Central Google Scholar
Walker, N. I., Harmon, B. V., Gobe, G. C. & Kerr, J. F. Patterns of cell death. Methods Achiev. Exp. Pathol.13, 18–54 (1988). CASPubMed Google Scholar
Dietrich, P. Y., Walker, P. R. & Saas, P. Death receptors on reactive astrocytes: a key role in the fine tuning of brain inflammation? Neurology60, 548–554 (2003). ArticlePubMed Google Scholar
Yamashima, T. Implication of cysteine proteases calpain, cathepsin and caspase in ischemic neuronal death of primates. Prog. Neurobiol.62, 273–295 (2000). ArticleCASPubMed Google Scholar
Moskowitz, M. A. & Lo, E. H. Neurogenesis and apoptotic cell death. Stroke34, 324–326 (2003). ArticlePubMed Google Scholar
Horvath, T. L., Diano, S. & Barnstable, C. Mitochondrial uncoupling protein 2 in the central nervous system: neuromodulator and neuroprotector. Biochem. Pharmacol.65, 1917–1921 (2003). ArticleCASPubMed Google Scholar
Mao, W. et al. UCP4, a novel brain-specific mitochondrial protein that reduces membrane potential in mammalian cells. FEBS Lett.443, 326–330 (1999). ArticleCASPubMed Google Scholar
Irmler, M. et al. Inhibition of death receptor signals by cellular FLIP. Nature388, 190–195 (1997). ArticleCASPubMed Google Scholar
Kataoka, T. et al. The caspase-8 inhibitor FLIP promotes activation of NFκB and Erk signaling pathways. Curr. Biol.10, 640–648 (2000). ArticleCASPubMed Google Scholar
Pettmann, B. & Henderson, C. E. Killer wiles: growing interest in Fas. Nature Cell Biol.5, 91–92 (2003). ArticleCASPubMed Google Scholar
Holmstrom, T. H. et al. MAPK/ERK signaling in activated T cells inhibits CD95/Fas-mediated apoptosis downstream of DISC assembly. EMBO J.19, 5418–5428 (2000). ArticleCASPubMedPubMed Central Google Scholar
Schneider, T. J., Fischer, G. M., Donohoe, T. J., Colarusso, T. P. & Rothstein, T. L. A novel gene coding for a Fas apoptosis inhibitory molecule (FAIM) isolated from inducibly Fas-resistant B lymphocytes. J. Exp. Med.189, 949–956 (1999). ArticleCASPubMedPubMed Central Google Scholar
Zhong, X., Schneider, T. J., Cabral, D. S., Donohoe, T. J. & Rothstein, T. L. An alternatively spliced long form of Fas apoptosis inhibitory molecule (FAIM) with tissue-specific expression in the brain. Mol. Immunol.38, 65–72 (2001). ArticleCASPubMed Google Scholar
Pitti, R. M. et al. Genomic amplification of a decoy receptor for Fas ligand in lung and colon cancer. Nature396, 699–703 (1998). ArticleCASPubMed Google Scholar
Desbarats, J. et al. Fas engagement induces neurite growth through ERK activation and p35 upregulation. Nature Cell Biol.5, 118–125 (2003). ArticleCASPubMed Google Scholar
Sato, T., Irie, S., Kitada, S. & Reed, J. C. FAP-1: a protein tyrosine phosphatase that associates with Fas. Science268, 411–415 (1995). ArticleCASPubMed Google Scholar
Jiang, Y., Woronicz, J. D., Liu, W. & Goeddel, D. V. Prevention of constitutive TNF receptor 1 signaling by silencer of death domains. Science283, 543–546 (1999). ArticleCASPubMed Google Scholar
Miki, K. & Eddy, E. M. Tumor necrosis factor receptor 1 is an ATPase regulated by silencer of death domain. Mol. Cell Biol.22, 2536–2543 (2002). ArticleCASPubMedPubMed Central Google Scholar
Rudner, J., Jendrossek, V. & Belka, C. New insights in the role of Bcl-2 Bcl-2 and the endoplasmic reticulum. Apoptosis7, 441–447 (2002). ArticleCASPubMed Google Scholar
Breckenridge, D. G., Nguyen, M., Kuppig, S., Reth, M. & Shore, G. C. The procaspase-8 isoform, procaspase-8L, recruited to the BAP31 complex at the endoplasmic reticulum. Proc. Natl Acad. Sci. USA99, 4331–4336 (2002). ArticleCASPubMedPubMed Central Google Scholar
Manley, H. A. & Lennon, V. A. Endoplasmic reticulum membrane-sorting protein of lymphocytes (BAP31) is highly expressed in neurons and discrete endocrine cells. J. Histochem. Cytochem.49, 1235–1243 (2001). ArticleCASPubMed Google Scholar
Li, X., Yang, Y. & Ashwell, J. D. TNF-RII and c-IAP1 mediate ubiquitination and degradation of TRAF2. Nature416, 345–347 (2002). In vitroevidence indicating that IAP specifically targets TRAF2 for ubiquitination, thereby indicating that IAP attenuates extrinsic apoptosis at the level of TNFα signalling. ArticlePubMed Google Scholar
Jordan, B. W. et al. Neurotrophin receptor-interacting mage homologue is an inducible inhibitor of apoptosis protein-interacting protein that augments cell death. J. Biol. Chem.276, 39985–39989 (2001). ArticleCASPubMed Google Scholar
Salehi, A. H. et al. NRAGE, a novel MAGE protein, interacts with the p75 neurotrophin receptor and facilitates nerve growth factor-dependent apoptosis. Neuron27, 279–288 (2000). ArticleCASPubMed Google Scholar
Frade, J. M. & Barde, Y. A. Genetic evidence for cell death mediated by nerve growth factor and the neurotrophin receptor p75 in the developing mouse retina and spinal cord. Development126, 683–690 (1999). CASPubMed Google Scholar
Yamaguchi, K. et al. XIAP, a cellular member of the inhibitor of apoptosis protein family, links the receptors to TAB1-TAK1 in the BMP signaling pathway. EMBO J.18, 179–187 (1999). ArticleCASPubMedPubMed Central Google Scholar
Sanna, M. G. et al. IAP suppression of apoptosis involves distinct mechanisms: the TAK1/JNK1 signaling cascade and caspase inhibition. Mol. Cell Biol.22, 1754–1766 (2002). ArticleCASPubMedPubMed Central Google Scholar
Asselin, E., Wang, Y. & Tsang, B. K. X-linked inhibitor of apoptosis protein activates the phosphatidylinositol 3-kinase/Akt pathway in rat granulosa cells during follicular development. Endocrinology142, 2451–2457 (2001). ArticleCASPubMed Google Scholar
Hofer-Warbinek, R. et al. Activation of NFκB by XIAP, the X chromosome-linked inhibitor of apoptosis, in endothelial cells involves TAK1. J. Biol. Chem.275, 22064–22068 (2000). ArticleCASPubMed Google Scholar
Jadrich, J. L., O'Connor, M. B. & Coucouvanis, E. Expression of TAK1, a mediator of TGF-β and BMP signaling, during mouse embryonic development. Gene Expr. Patterns.3, 131–134 (2003). ArticleCASPubMed Google Scholar
Charette, S. J., Lavoie, J. N., Lambert, H. & Landry, J. Inhibition of Daxx-mediated apoptosis by heat shock protein 27. Mol. Cell Biol.20, 7602–7612 (2000). In vitrodemonstration of HSP27-mediated inhibition of FAS-induced extrinsic apoptosis by direct interaction of phosphorylated HSP27 with DAXX preventing activation of ASK- and JNK-dependent apoptosis. ArticleCASPubMedPubMed Central Google Scholar
Ko, Y. G. et al. Apoptosis signal-regulating kinase 1 controls the proapoptotic function of death-associated protein (Daxx) in the cytoplasm. J. Biol. Chem.276, 39103–39106 (2001). ArticleCASPubMed Google Scholar
Gabai, V. L. et al. Hsp72-mediated suppression of c-Jun N-terminal kinase is implicated in development of tolerance to caspase-independent cell death. Mol. Cell Biol.20, 6826–6836 (2000). ArticleCASPubMedPubMed Central Google Scholar
Gabai, V. L., Mabuchi, K., Mosser, D. D. & Sherman, M. Y. Hsp72 and stress kinase c-jun N-terminal kinase regulate the bid-dependent pathway in tumor necrosis factor-induced apoptosis. Mol. Cell Biol.22, 3415–3424 (2002). Suppression of TNFα-mediated JNK-dependent apoptotic deathin vitroby HSP72, preventing activation of BID and downstream events including cytochromec, activation of caspase 3 and cleavage of PARP. ArticleCASPubMedPubMed Central Google Scholar
Park, H. S., Lee, J. S., Huh, S. H., Seo, J. S. & Choi, E. J. Hsp72 functions as a natural inhibitory protein of c-Jun N-terminal kinase. EMBO J.20, 446–456 (2001). Evidence fromin vitrostudies indicating inhibition of intrinsic apoptosis by the direct association of HSP27 with cytochromecafter its release from the mitochondria, preventing the formation of the apoptosome complex and activation of downstream caspases. ArticleCASPubMedPubMed Central Google Scholar
Paul, C. et al. Hsp27 as a negative regulator of cytochrome C release. Mol. Cell Biol.22, 816–834 (2002). In vitroevidence indicates that HSP27 prevents the release of cytochromecby preserving the integrity of the cytoskeleton by stabilizing F-actin networks, preventing downstream translocation of BID to the mitochondria. ArticleCASPubMedPubMed Central Google Scholar
Lewis, J. et al. Disruption of hsp90 function results in degradation of the death domain kinase, receptor-interacting protein (RIP), and blockage of tumor necrosis factor-induced nuclear factor-κB activation. J. Biol. Chem.275, 10519–10526 (2000). ArticleCASPubMed Google Scholar
Sato, S., Fujita, N. & Tsuruo, T. Modulation of Akt kinase activity by binding to Hsp90. Proc. Natl Acad. Sci. USA97, 10832–10837 (2000). ArticleCASPubMedPubMed Central Google Scholar
Konishi, H. et al. Activation of protein kinase B (Akt/RAC-protein kinase) by cellular stress and its association with heat shock protein Hsp27. FEBS Lett.410, 493–498 (1997). ArticleCASPubMed Google Scholar
Murashov, A. K. et al. Crosstalk between p38, Hsp25 and Akt in spinal motor neurons after sciatic nerve injury. Brain Res. Mol. Brain Res.93, 199–208 (2001). ArticleCASPubMed Google Scholar
Parcellier, A., Gurbuxani, S., Schmitt, E., Solary, E. & Garrido, C. Heat shock proteins, cellular chaperones that modulate mitochondrial cell death pathways. Biochem. Biophys. Res. Commun.304, 505–512 (2003). ArticleCASPubMed Google Scholar
Tamatani, M. et al. ORP150 protects against hypoxia/ischemia-induced neuronal death. Nature Med.7, 317–323 (2001). ArticleCASPubMed Google Scholar
Kitao, Y. et al. ORP150/HSP12A regulates Purkinje cell survival: a role for endoplasmic reticulum stress in cerebellar development. J. Neurosci.24, 1486–1496 (2004). ArticleCASPubMedPubMed Central Google Scholar
Roth, W. et al. Bifunctional apoptosis inhibitor (BAR) protects neurons from diverse cell death pathways. Cell Death Differ.10, 1178–1187 (2003). ArticleCASPubMed Google Scholar
Gervais, F. G. et al. Recruitment and activation of caspase-8 by the Huntingtin-interacting protein Hip-1 and a novel partner Hippi. Nature Cell Biol.4, 95–105 (2002). ArticleCASPubMed Google Scholar
Cheng, E. H. et al. BCL-2, BCL-XL sequester BH3 domain-only molecules preventing BAX- and BAK-mediated mitochondrial apoptosis. Mol. Cell8, 705–711 (2001). ArticleCASPubMed Google Scholar
Sawada, M. et al. Ku70 suppresses the apoptotic translocation of Bax to mitochondria. Nature Cell Biol.5, 320–329 (2003). ArticleCASPubMed Google Scholar
Gotoh, T., Terada, K., Oyadomari, S. & Mori, M. Hsp70-DnaJ chaperone pair prevents nitric oxide- and CHOP-induced apoptosis by inhibiting translocation of Bax to mitochondria. Cell Death Differ.11, 390–402 (2004). In vitroevidence indicating that CHOP-induced apoptosis is mediated by translocation of Bax from the cytosol to the mitochondria, and anti-apoptotic action of HSP70 and co-chaperone partner DNAJ supress apoptosis by interacting with BAX and preventing translocation to the mitochondria. ArticleCASPubMed Google Scholar
Mao, Y. W., Liu, J. P., Xiang, H. & Li, D. W. Human αA- and αB-crystallins bind to Bax and Bcl-XS to sequester their translocation during staurosporine-induced apoptosis. Cell Death Differ.11, 512–526 (2004). Firstin vitroevidence to indicate that an anti-apoptotic mechanism of chaperone proteins can function at the level of the mitochondria to sequester and inhibit pro-apoptotic BAX and BCL-Xs, to prevent their translocation to mitochondria. ArticleCASPubMed Google Scholar
Chauhan, D. et al. Hsp27 inhibits release of mitochondrial protein Smac in multiple myeloma cells and confers dexamethasone resistance. Blood102, 3379–3386 (2003). ArticleCASPubMed Google Scholar
Echtay, K. S. et al. Superoxide activates mitochondrial uncoupling proteins. Nature415, 96–99 (2002). ArticleCASPubMed Google Scholar
Krieger, C. & Duchen, M. R. Mitochondria, Ca2+ and neurodegenerative disease. Eur. J. Pharmacol.447, 177–188 (2002). ArticleCASPubMed Google Scholar
Nicholls, D. G. & Ward, M. W. Mitochondrial membrane potential and neuronal glutamate excitotoxicity: mortality and millivolts. Trends Neurosci.23, 166–174 (2000). ArticleCASPubMed Google Scholar
Mattiasson, G. et al. Uncoupling protein-2 prevents neuronal death and diminishes brain dysfunction after stroke and brain trauma. Nature Med.9, 1062–1068 (2003). ArticleCASPubMed Google Scholar
Mattson, M. P. & Kroemer, G. Mitochondria in cell death: novel targets for neuroprotection and cardioprotection. Trends Mol. Med.9, 196–205 (2003). ArticleCASPubMed Google Scholar
Bechmann, I. et al. Brain mitochondrial uncoupling protein 2 (UCP2): a protective stress signal in neuronal injury. Biochem. Pharmacol.64, 363–367 (2002). ArticleCASPubMed Google Scholar
Kim-Han, J. S., Reichert, S. A., Quick, K. L. & Dugan, L. L. BMCP1: a mitochondrial uncoupling protein in neurons which regulates mitochondrial function and oxidant production. J. Neurochem.79, 658–668 (2001). ArticleCASPubMed Google Scholar
Cheng, T. et al. Activated protein C blocks p53-mediated apoptosis in ischemic human brain endothelium and is neuroprotective. Nature Med.9, 338–342 (2003). ArticleCASPubMed Google Scholar
Guo, H. et al. Activated protein C prevents neuronal apoptosis via protease activated receptors 1 and 3. Neuron41, 563–572 (2004). Evidence of APC acting as a novel anti-apoptotic brake by preventing neuronal apoptosis induced by NMDA excitotoxicity that functions upstream of AIF nuclear translocation and caspase-3 activation, and APC prevents staurosporine-induced death by blocking caspase-8 activation. ArticleCASPubMed Google Scholar
Penninger, J. M. & Kroemer, G. Mitochondria, AIF and caspases — rivaling for cell death execution. Nature Cell Biol.5, 97–99 (2003). ArticleCASPubMed Google Scholar
Droin, N., Beauchemin, M., Solary, E. & Bertrand, R. Identification of a caspase-2 isoform that behaves as an endogenous inhibitor of the caspase cascade. Cancer Res.60, 7039–7047 (2000). CASPubMed Google Scholar
Seol, D. W. & Billiar, T. R. A caspase-9 variant missing the catalytic site is an endogenous inhibitor of apoptosis. J. Biol. Chem.274, 2072–2076 (1999). ArticleCASPubMed Google Scholar
Wang, K. K. Calpain and caspase: can you tell the difference? Trends Neurosci.23, 20–26 (2000). ArticlePubMed Google Scholar
Srinivasula, S. M. et al. Identification of an endogenous dominant-negative short isoform of caspase-9 that can regulate apoptosis. Cancer Res.59, 999–1002 (1999). CASPubMed Google Scholar
Dubois-Dauphin, M., Pfister, Y., Vallet, P. G. & Savioz, A. Prevention of apoptotic neuronal death by controlling procaspases? A point of view. Brain Res. Brain Res. Rev.36, 196–203 (2001). ArticleCASPubMed Google Scholar
Hu, Y., Benedict, M. A., Wu, D., Inohara, N. & Nunez, G. Bcl-XL interacts with Apaf-1 and inhibits Apaf-1-dependent caspase-9 activation. Proc. Natl Acad. Sci. USA95, 4386–4391 (1998). ArticleCASPubMedPubMed Central Google Scholar
Song, Q., Kuang, Y., Dixit, V. M. & Vincenz, C. Boo, a novel negative regulator of cell death, interacts with Apaf-1. EMBO J.18, 167–178 (1999). ArticleCASPubMedPubMed Central Google Scholar
Chau, B. N., Cheng, E. H., Kerr, D. A. & Hardwick, J. M. Aven, a novel inhibitor of caspase activation, binds Bcl-xL and Apaf-1. Mol. Cell6, 31–40 (2000). ArticleCASPubMed Google Scholar
Pfister, Y., Savioz, A., Vallet, P. G. & Dubois-Dauphin, M. Permanent cerebral ischemia induces sustained procaspase 9L increase not controlled by Bcl-2. Brain Res.966, 26–39 (2003). ArticleCASPubMed Google Scholar
Wang, H. W., Sharp, T. V., Koumi, A., Koentges, G. & Boshoff, C. Characterization of an anti-apoptotic glycoprotein encoded by Kaposi's sarcoma-associated herpesvirus which resembles a spliced variant of human survivin. EMBO J.21, 2602–2615 (2002). ArticleCASPubMedPubMed Central Google Scholar
Bruey, J. M. et al. Hsp27 negatively regulates cell death by interacting with cytochrome c. Nature Cell Biol.2, 645–652 (2000). ArticleCASPubMed Google Scholar
Hu, Y., Benedict, M. A., Ding, L. & Nunez, G. Role of cytochrome c and dATP/ATP hydrolysis in Apaf-1-mediated caspase-9 activation and apoptosis. EMBO J.18, 3586–3595 (1999). ArticleCASPubMedPubMed Central Google Scholar
Pandey, P. et al. Negative regulation of cytochrome _c_-mediated oligomerization of Apaf-1 and activation of procaspase-9 by heat shock protein 90. EMBO J.19, 4310–4322 (2000). ArticleCASPubMedPubMed Central Google Scholar
Beere, H. M. et al. Heat-shock protein 70 inhibits apoptosis by preventing recruitment of procaspase-9 to the Apaf-1 apoptosome. Nature Cell Biol.2, 469–475 (2000). ArticleCASPubMed Google Scholar
Ravagnan, L. et al. Heat-shock protein 70 antagonizes apoptosis-inducing factor. Nature Cell Biol.3, 839–843 (2001). ArticleCASPubMed Google Scholar
Concannon, C. G., Orrenius, S. & Samali, A. Hsp27 inhibits cytochrome _c_-mediated caspase activation by sequestering both pro-caspase-3 and cytochrome c. Gene Expr.9, 195–201 (2001). HSP27 acts as a negative inhibitor of apoptosis by directly interacting with caspase 3 and cytochromecin anin vitrosystem. ArticleCASPubMed Google Scholar
Kamradt, M. C., Chen, F. & Cryns, V. L. The small heat shock protein αB-crystallin negatively regulates cytochrome _c_- and caspase-8-dependent activation of caspase-3 by inhibiting its autoproteolytic maturation. J. Biol. Chem.276, 16059–16063 (2001). ArticleCASPubMed Google Scholar
Potts, P. R., Singh, S., Knezek, M., Thompson, C. B. & Deshmukh, M. Critical function of endogenous XIAP in regulating caspase activation during sympathetic neuronal apoptosis. J. Cell Biol.163, 789–799 (2003). This paper demonstrates that XIAP functions as a 'safety brake' in sympathetic neurons and is a key player in the resistance (or competence pathway) of sympathetic neurons to apoptotic death. Neuronal cell death fails to occur on endogenous mitochondrial SMAC and cytochromecrelease, unless XIAP levels are reduced, indicating that XIAP normally functions to protect against any accidental caspase activation if cytochromecis unexpectedly released into the neuron's cytoplasm. ArticleCASPubMedPubMed Central Google Scholar
LeBlanc, A. C. Natural cellular inhibitors of caspases. Prog. Neuropsychopharmacol. Biol. Psychiatry27, 215–229 (2003). ArticleCASPubMed Google Scholar
Liu, T., Brouha, B. & Grossman, D. Rapid induction of mitochondrial events and caspase-independent apoptosis in Survivin-targeted melanoma cells. Oncogene23, 39–48 (2004). ArticleCASPubMedPubMed Central Google Scholar
Liu, Z. et al. Structural basis for binding of Smac/DIABLO to the XIAP BIR3 domain. Nature408, 1004–1008 (2000). ArticleCASPubMed Google Scholar
Hu, S. & Yang, X. Cellular inhibitor of apoptosis 1 and 2 are ubiquitin ligases for the apoptosis inducer Smac/DIABLO. J. Biol. Chem.278, 10055–10060 (2003). ArticleCASPubMed Google Scholar
Liston, P. et al. Identification of XAF1 as an antagonist of XIAP anti-caspase activity. Nature Cell Biol.3, 128–133 (2001). ArticleCASPubMed Google Scholar
Perrelet, D. et al. Motoneuron resistance to apoptotic cell death in vivo correlates with the ratio between X-linked inhibitor of apoptosis proteins (XIAPs) and its inhibitor, XIAP-associated factor 1. J. Neurosci.24, 3777–3785 (2004). ArticleCASPubMedPubMed Central Google Scholar
Joazeiro, C. A. & Weissman, A. M. RING finger proteins: mediators of ubiquitin ligase activity. Cell102, 549–552 (2000). ArticleCASPubMed Google Scholar
Huang, H. et al. The inhibitor of apoptosis, cIAP2, functions as a ubiquitin-protein ligase and promotes in vitro monoubiquitination of caspases 3 and 7. J. Biol. Chem.275, 26661–26664 (2000). CASPubMed Google Scholar
Suzuki, Y., Nakabayashi, Y. & Takahashi, R. Ubiquitin-protein ligase activity of X-linked inhibitor of apoptosis protein promotes proteasomal degradation of caspase-3 and enhances its anti-apoptotic effect in Fas-induced cell death. Proc. Natl Acad. Sci. USA98, 8662–8667 (2001). ArticleCASPubMedPubMed Central Google Scholar
van Loo, G. et al. The serine protease Omi/HtrA2 is released from mitochondria during apoptosis. Omi interacts with caspase-inhibitor XIAP and induces enhanced caspase activity. Cell Death Differ.9, 20–26 (2002). In vitroevidence demonstrating that the N-terminal of XIAP interacts and is inhibited by the N-terminal of endogenous HTRA after its release from the mitochondria, thereby promoting caspase activation. ArticleCASPubMed Google Scholar
Hegde, R. et al. Identification of Omi/HtrA2 as a mitochondrial apoptotic serine protease that disrupts inhibitor of apoptosis protein-caspase interaction. J. Biol. Chem.277, 432–438 (2002). ArticleCASPubMed Google Scholar
Hidalgo, J., Aschner, M., Zatta, P. & Vasak, M. Roles of the metallothionein family of proteins in the central nervous system. Brain Res. Bull.55, 133–145 (2001). ArticleCASPubMed Google Scholar
Uchida, Y., Gomi, F., Masumizu, T. & Miura, Y. Growth inhibitory factor prevents neurite extension and the death of cortical neurons caused by high oxygen exposure through hydroxyl radical scavenging. J. Biol. Chem.277, 32353–32359 (2002). ArticleCASPubMed Google Scholar