Reelin, lipoprotein receptors and synaptic plasticity (original) (raw)
Schmechel, D. E. et al. Increased amyloid β-peptide deposition in cerebral cortex as a consequence of apolipoprotein E genotype in late-onset Alzheimer disease. Proc. Natl Acad. Sci. USA90, 9649–9653 (1993). ArticleCASPubMedPubMed Central Google Scholar
Strittmatter, W. J. et al. Apolipoprotein E: high-avidity binding to β-amyloid and increased frequency of type 4 allele in late-onset familial Alzheimer disease. Proc. Natl Acad. Sci. USA90, 1977–1981 (1993). References 1 and 2 are the seminal papers that revealed the isoform-selective role of APOE in the development of late-onset AD. ArticleCASPubMedPubMed Central Google Scholar
D'Arcangelo, G. et al. Reelin is a ligand for lipoprotein receptors. Neuron24, 471–479 (1999). ArticleCASPubMed Google Scholar
Hiesberger, T. et al. Direct binding of Reelin to VLDL receptor and ApoE receptor 2 induces tyrosine phosphorylation of disabled-1 and modulates τ phosphorylation. Neuron24, 481–489 (1999). ArticleCASPubMed Google Scholar
Trommsdorff, M. et al. Reeler/Disabled-like disruption of neuronal migration in knockout mice lacking the VLDL receptor and ApoE receptor 2. Cell97, 689–701 (1999). ArticleCASPubMed Google Scholar
Simons, M. et al. Cholesterol depletion inhibits the generation of β-amyloid in hippocampal neurons. Proc. Natl Acad. Sci. USA95, 6460–6464 (1998). The first report on the role of membrane cholesterol homeostasis in the regulation of Aβ peptide generation. ArticleCASPubMedPubMed Central Google Scholar
Mauch, D. H. et al. CNS synaptogenesis promoted by glia-derived cholesterol. Science294, 1354–1357 (2001). Reveals the role of cholesterol production and transport from glia to neurons for the generation of new synapses. ArticleCASPubMed Google Scholar
D'Arcangelo, G. et al. A protein related to extracellular matrix proteins deleted in the mouse mutant reeler. Nature374, 719–723 (1995). ArticleCASPubMed Google Scholar
Falconer, D. S. Two new mutants 'trembler' and 'reeler' with neurological actions in the house mouse. J. Genet.50, 192–201 (1951). ArticleCASPubMed Google Scholar
Takahara, T. et al. Dysfunction of the Orleans reeler gene arising from exon skipping due to transposition of a full-length copy of an active L1 sequence into the skipped exon. Hum. Mol. Genet.5, 989–993 (1996). ArticleCASPubMed Google Scholar
Bar, I. & Goffinet, A. M. Evolution of cortical lamination: the reelin/Dab1 pathway. Novartis Found. Symp.228, 114–125; discussion 125–128 (2000). CASPubMed Google Scholar
Rice, D. S. & Curran, T. Role of the reelin signaling pathway in central nervous system development. Annu. Rev. Neurosci.24, 1005–1039 (2001). ArticleCASPubMed Google Scholar
Tissir, F. & Goffinet, A. M. Reelin and brain development. Nature Rev. Neurosci.4, 496–505 (2003). A superb review of the importance of the reelin signalling pathway during brain development. ArticleCAS Google Scholar
Forster, E., Zhao, S. & Frotscher, M. Laminating the hippocampus. Nature Rev. Neurosci.7, 259–267 (2006). ArticleCAS Google Scholar
Caviness, V. S. Jr. Neocortical histogenesis in normal and reeler mice: a developmental study based upon [3H]thymidine autoradiography. Brain Res.256, 293–302 (1982). ArticlePubMed Google Scholar
Caviness, V. S. Jr. & Sidman, R. L. Time of origin or corresponding cell classes in the cerebral cortex of normal and reeler mutant mice: an autoradiographic analysis. J. Comp. Neurol.148, 141–151 (1973). ArticlePubMed Google Scholar
Mariani, J., Crepel, F., Mikoshiba, K., Changeux, J. P. & Sotelo, C. Anatomical, physiological and biochemical studies of the cerebellum from Reeler mutant mouse. Philos. Trans. R. Soc. Lond. B Biol. Sci.281, 1–28 (1977). ArticleCASPubMed Google Scholar
Wallace, V. A. Purkinje-cell-derived Sonic hedgehog regulates granule neuron precursor cell proliferation in the developing mouse cerebellum. Curr. Biol.9, 445–448 (1999). ArticleCASPubMed Google Scholar
Howell, B. W., Hawkes, R., Soriano, P. & Cooper, J. A. Neuronal position in the developing brain is regulated by mouse disabled-1. Nature389, 733–737 (1997). ArticleCASPubMed Google Scholar
Sheldon, M. et al. Scrambler and yotari disrupt the disabled gene and produce a _reeler_-like phenotype in mice. Nature389, 730–733 (1997). ArticleCASPubMed Google Scholar
Sweet, H. O., Bronson, R. T., Johnson, K. R., Cook, S. A. & Davisson, M. T. Scrambler, a new neurological mutation of the mouse with abnormalities of neuronal migration. Mamm. Genome7, 798–802 (1996). ArticleCASPubMed Google Scholar
Gotthardt, M. et al. Interactions of the low density lipoprotein receptor gene family with cytosolic adaptor and scaffold proteins suggest diverse biological functions in cellular communication and signal transduction. J. Biol. Chem.275, 25616–25624 (2000). ArticleCASPubMed Google Scholar
Hirotsune, S. et al. The reeler gene encodes a protein with an EGF-like motif expressed by pioneer neurons. Nature Genet.10, 77–83 (1995). Together with references 5, 10, 19, 20 and 21, this paper establishes the sequence of reelin, VLDLR and APOER2, and DAB1 in a linear pathway at the neuronal plasma membrane. ArticleCASPubMed Google Scholar
Howell, B. W., Herrick, T. M. & Cooper, J. A. Reelin-induced tryosine phosphorylation of disabled 1 during neuronal positioning. Genes Dev.13, 643–648 (1999). ArticleCASPubMedPubMed Central Google Scholar
Stolt, P. C. et al. Origins of peptide selectivity and phosphoinositide binding revealed by structures of disabled-1 PTB domain complexes. Structure11, 569–579 (2003). ArticleCASPubMed Google Scholar
Trommsdorff, M., Borg, J. P., Margolis, B. & Herz, J. Interaction of cytosolic adaptor proteins with neuronal apolipoprotein E receptors and the amyloid precursor protein. J. Biol. Chem.273, 33556–33560 (1998). ArticleCASPubMed Google Scholar
Yun, M. et al. Crystal structures of the Dab homology domains of mouse disabled 1 and 2. J. Biol. Chem.278, 36572–36581 (2003). ArticleCASPubMed Google Scholar
Riddell, D. R., Sun, X. M., Stannard, A. K., Soutar, A. K. & Owen, J. S. Localization of apolipoprotein E receptor 2 to caveolae in the plasma membrane. J. Lipid Res.42, 998–1002 (2001). CASPubMed Google Scholar
Mayer, H., Duit, S., Hauser, C., Schneider, W. J. & Nimpf, J. Reconstitution of the Reelin signaling pathway in fibroblasts demonstrates that Dab1 phosphorylation is independent of receptor localization in lipid rafts. Mol. Cell Biol.26, 19–27 (2006). ArticleCASPubMedPubMed Central Google Scholar
Utsunomiya-Tate, N. et al. Reelin molecules assemble together to form a large protein complex, which is inhibited by the function-blocking CR-50 antibody. Proc. Natl Acad. Sci. USA97, 9729–9734 (2000). ArticleCASPubMedPubMed Central Google Scholar
Bock, H. H. & Herz, J. Reelin activates SRC family tyrosine kinases in neurons. Curr. Biol.13, 18–26 (2003). ArticleCASPubMed Google Scholar
Arnaud, L., Ballif, B. A., Forster, E. & Cooper, J. A. Fyn tyrosine kinase is a critical regulator of disabled-1 during brain development. Curr. Biol.13, 9–17 (2003). ArticleCASPubMed Google Scholar
Beffert, U. et al. Reelin-mediated signaling locally regulates protein kinase B/Akt and glycogen synthase kinase 3β. J. Biol. Chem.277, 49958–49964 (2002). ArticleCASPubMed Google Scholar
Assadi, A. H. et al. Interaction of reelin signaling and Lis1 in brain development. Nature Genet.35, 270–276 (2003). ArticleCASPubMed Google Scholar
Arnaud, L., Ballif, B. A. & Cooper, J. A. Regulation of protein tyrosine kinase signaling by substrate degradation during brain development. Mol. Cell Biol.23, 9293–9302 (2003). ArticleCASPubMedPubMed Central Google Scholar
Morimura, T., Hattori, M., Ogawa, M. & Mikoshiba, K. Disabled1 regulates the intracellular trafficking of reelin receptors. J. Biol. Chem.280, 16901–16908 (2005). ArticleCASPubMed Google Scholar
Bock, H. H., Jossin, Y., May, P., Bergner, O. & Herz, J. Apolipoprotein E receptors are required for reelin-induced proteasomal degradation of the neuronal adaptor protein Disabled-1. J. Biol. Chem.279, 33471–33479 (2004). ArticleCASPubMed Google Scholar
Herz, J. & Bock, H. H. Lipoprotein receptors in the nervous system. Annu. Rev. Biochem.71, 405–434 (2002). ArticleCASPubMed Google Scholar
Herz, J. & Beffert, U. Apolipoprotein E receptors: linking brain development and Alzheimer's disease. Nature Rev. Neurosci.1, 51–58 (2000). ArticleCAS Google Scholar
Ohkubo, N. et al. Apolipoprotein E and Reelin ligands modulate τ phosphorylation through an apolipoprotein E receptor/disabled-1/glycogen synthase kinase-3β cascade. FASEB J.17, 295–297 (2003). ArticleCASPubMed Google Scholar
Homayouni, R., Rice, D. S., Sheldon, M. & Curran, T. Disabled-1 binds to the cytoplasmic domain of amyloid precursor-like protein 1. J. Neurosci.19, 7507–7515 (1999). ArticleCASPubMedPubMed Central Google Scholar
Howell, B. W., Lanier, L. M., Frank, R., Gertler, F. B. & Cooper, J. A. The disabled 1 phosphotyrosine-binding domain binds to the internalization signals of transmembrane glycoproteins and to phospholipids. Mol. Cell Biol.19, 5179–5188 (1999). ArticleCASPubMedPubMed Central Google Scholar
Hoe, H. S., Tran, T. S., Matsuoka, Y., Howell, B. W. & Rebeck, G. W. Dab1 and Reelin effects on APP and ApoEr2 trafficking and processing. J. Biol. Chem. 1 Sept 2006 (doi: 10.1074/jbc.M602162200).
Bacskai, B. J., Xia, M. Q., Strickland, D. K., Rebeck, G. W. & Hyman, B. T. The endocytic receptor protein LRP also mediates neuronal calcium signaling via _N_-methyl-D-aspartate receptors. Proc. Natl Acad. Sci. USA97, 11551–11556 (2000). ArticleCASPubMedPubMed Central Google Scholar
Qiu, Z., Crutcher, K. A., Hyman, B. T. & Rebeck, G. W. ApoE isoforms affect neuronal _N_-methyl-D-aspartate calcium responses and toxicity via receptor-mediated processes. Neuroscience122, 291–303 (2003). ArticleCASPubMed Google Scholar
Qiu, Z., Strickland, D. K., Hyman, B. T. & Rebeck, G. W. α 2-Macroglobulin exposure reduces calcium responses to _N_-methyl-D-aspartate via low density lipoprotein receptor-related protein in cultured hippocampal neurons. J. Biol. Chem.277, 14458–14466 (2002). ArticleCASPubMed Google Scholar
May, P. et al. Neuronal LRP1 functionally associates with postsynaptic proteins and is required for normal motor function in mice. Mol. Cell. Biol.24, 8872–8883 (2004). ArticleCASPubMedPubMed Central Google Scholar
Simons, K. & Toomre, D. Lipid rafts and signal transduction. Nature Rev. Mol. Cell. Biol.1, 31–39 (2000). ArticleCAS Google Scholar
Fassbender, K. et al. Simvastatin strongly reduces levels of Alzheimer's disease β-amyloid peptides Aβ 42 and Aβ 40 in vitro and in vivo. Proc. Natl Acad. Sci. USA98, 5856–5861 (2001). ArticleCASPubMedPubMed Central Google Scholar
Boyles, J. K. et al. A role for apolipoprotein E, apolipoprotein A-I, and low density lipoprotein receptors in cholesterol transport during regeneration and remyelination of the rat sciatic nerve. J. Clin. Invest.83, 1015–1031 (1989). ArticleCASPubMedPubMed Central Google Scholar
Boyles, J. K., Pitas, R. E., Wilson, E., Mahley, R. W. & Taylor, J. M. Apolipoprotein E associated with astrocytic glia of the central nervous system and with nonmyelinating glia of the peripheral nervous system. J. Clin. Invest.76, 1501–1513 (1985). ArticleCASPubMedPubMed Central Google Scholar
Pitas, R. E., Boyles, J. K., Lee, S. H., Hui, D. & Weisgraber, K. H. Lipoproteins and their receptors in the central nervous system. Characterization of the lipoproteins in cerebrospinal fluid and identification of apolipoprotein B, E(LDL) receptors in the brain. J. Biol. Chem.262, 14352–14360 (1987). CASPubMed Google Scholar
Pfrieger, F. W. & Barres, B. A. Synaptic efficacy enhanced by glial cells in vitro. Science277, 1684–1687 (1997). ArticleCASPubMed Google Scholar
Masliah, E. et al. Neurodegeneration in the central nervous system of apoE-deficient mice. Exp. Neurol.136, 107–122 (1995). ArticleCASPubMed Google Scholar
Buttini, M. et al. Expression of human apolipoprotein E3 or E4 in the brains of Apoe−/− mice: isoform-specific effects on neurodegeneration. J. Neurosci.19, 4867–4880 (1999). ArticleCASPubMedPubMed Central Google Scholar
Raber, J. et al. Isoform-specific effects of human apolipoprotein E on brain function revealed in ApoE knockout mice: increased susceptibility of females. Proc. Natl Acad. Sci. USA95, 10914–10919 (1998). ArticleCASPubMedPubMed Central Google Scholar
Kotti, T. J., Ramirez, D. M., Pfeiffer, B. E., Huber, K. M. & Russell, D. W. Brain cholesterol turnover required for geranylgeraniol production and learning in mice. Proc. Natl Acad. Sci. USA103, 3869–3874 (2006). An original study that reveals the role ofde novocholesterol biosynthesis, pathway intermediates and turnover for synaptic neurotransmission in mouse brains. ArticleCASPubMedPubMed Central Google Scholar
Lund, E. G. et al. Knockout of the cholesterol 24-hydroxylase gene in mice reveals a brain-specific mechanism of cholesterol turnover. J. Biol. Chem.278, 22980–22988 (2003). ArticleCASPubMed Google Scholar
Gordon, I., Grauer, E., Genis, I., Sehayek, E. & Michaelson, D. M. Memory deficits and cholinergic impairments in apolipoprotein E-deficient mice. Neurosci. Lett.199, 1–4 (1995). ArticleCASPubMed Google Scholar
Valastro, B., Ghribi, O., Poirier, J., Krzywkowski, P. & Massicotte, G. AMPA receptor regulation and LTP in the hippocampus of young and aged apolipoprotein E-deficient mice. Neurobiol. Aging22, 9–15 (2001). ArticleCASPubMed Google Scholar
Kelly, A. & Lynch, M. A. LTP occludes the interaction between arachidonic acid and ACPD and NGF and ACPD. Neuroreport9, 4087–4091 (1998). ArticleCASPubMed Google Scholar
Anderson, R. et al. Behavioural, physiological and morphological analysis of a line of apolipoprotein E knockout mouse. Neuroscience85, 93–110 (1998). ArticleCASPubMed Google Scholar
Trommer, B. L. et al. ApoE isoform affects LTP in human targeted replacement mice. Neuroreport15, 2655–2658 (2004). ArticleCASPubMed Google Scholar
Kitamura, H. W. et al. Age-dependent enhancement of hippocampal long-term potentiation in knock-in mice expressing human apolipoprotein E4 instead of mouse apolipoprotein E. Neurosci. Lett.369, 173–178 (2004). ArticleCASPubMed Google Scholar
Nathan, B. P. et al. Differential effects of apolipoproteins E3 and E4 on neuronal growth in vitro. Science264, 850–852 (1994). ArticleCASPubMed Google Scholar
Chang, S. et al. Lipid- and receptor-binding regions of apolipoprotein E4 fragments act in concert to cause mitochondrial dysfunction and neurotoxicity. Proc. Natl Acad. Sci. USA102, 18694–18699 (2005). ArticleCASPubMedPubMed Central Google Scholar
Huang, Y. et al. Apolipoprotein E fragments present in Alzheimer's disease brains induce neurofibrillary tangle-like intracellular inclusions in neurons. Proc. Natl Acad. Sci. USA98, 8838–8843 (2001). ArticleCASPubMedPubMed Central Google Scholar
Mahley, R. W., Weisgraber, K. H. & Huang, Y. Apolipoprotein E4: a causative factor and therapeutic target in neuropathology, including Alzheimer's disease. Proc. Natl Acad. Sci. USA103, 5644–5651 (2006). An excellent review of potential mechanisms through which APOE* ε4 might cause neuropathology and AD. ArticleCASPubMedPubMed Central Google Scholar
Allen, J. S., Bruss, J. & Damasio, H. The aging brain: the cognitive reserve hypothesis and hominid evolution. Am. J. Hum. Biol.17, 673–689 (2005). ArticlePubMed Google Scholar
Zhuo, M. et al. Role of tissue plasminogen activator receptor LRP in hippocampal long-term potentiation. J. Neurosci.20, 542–549 (2000). ArticleCASPubMedPubMed Central Google Scholar
Moestrup, S. K., Gliemann, J. & Pallesen, G. Distribution of the α 2-macroglobulin receptor/low density lipoprotein receptor-related protein in human tissues. Cell Tissue Res.269, 375–382 (1992). ArticleCASPubMed Google Scholar
Melchor, J. P. & Strickland, S. Tissue plasminogen activator in central nervous system physiology and pathology. Thromb. Haemost.93, 655–660 (2005). ArticleCASPubMedPubMed Central Google Scholar
Pawlak, R., Magarinos, A. M., Melchor, J., McEwen, B. & Strickland, S. Tissue plasminogen activator in the amygdala is critical for stress-induced anxiety-like behavior. Nature Neurosci.6, 168–174 (2003). ArticleCASPubMed Google Scholar
Tsirka, S. E., Rogove, A. D., Bugge, T. H., Degen, J. L. & Strickland, S. An extracellular proteolytic cascade promotes neuronal degeneration in the mouse hippocampus. J. Neurosci.17, 543–552 (1997). ArticleCASPubMedPubMed Central Google Scholar
Harris-White, M. E. & Frautschy, S. A. Low density lipoprotein receptor-related proteins (LRPs), Alzheimer's and cognition. Curr. Drug Targets CNS Neurol. Disord.4, 469–480 (2005). ArticleCASPubMed Google Scholar
Pang, P. T. & Lu, B. Regulation of late-phase LTP and long-term memory in normal and aging hippocampus: role of secreted proteins tPA and BDNF. Ageing Res. Rev.3, 407–430 (2004). ArticleCASPubMed Google Scholar
Baranes, D. et al. Tissue plasminogen activator contributes to the late phase of LTP and to synaptic growth in the hippocampal mossy fiber pathway. Neuron21, 813–825 (1998). ArticleCASPubMed Google Scholar
Lavdas, A. A., Grigoriou, M., Pachnis, V. & Parnavelas, J. G. The medial ganglionic eminence gives rise to a population of early neurons in the developing cerebral cortex. J. Neurosci.19, 7881–7888 (1999). ArticleCASPubMedPubMed Central Google Scholar
Weeber, E. J. et al. Reelin and ApoE receptors cooperate to enhance hippocampal synaptic plasticity and learning. J. Biol. Chem.277, 39944–39952 (2002). ArticleCASPubMed Google Scholar
Beffert, U. et al. Functional dissection of Reelin signaling by site-directed disruption of Disabled-1 adaptor binding to apolipoprotein E receptor 2: distinct roles in development and synaptic plasticity. J. Neurosci.26, 2041–2052 (2006). References 82 and 83 are the original articles that first reported on the role of reelin as an enhancer of LTP, memory and learning, and on the regulationin vivoof the cytoplasmic domain of APOER2 through regulated splicing. ArticleCASPubMedPubMed Central Google Scholar
Beffert, U. et al. Modulation of synaptic plasticity and memory by Reelin involves differential splicing of the lipoprotein receptor Apoer2. Neuron47, 567–579 (2005). ArticleCASPubMed Google Scholar
Stockinger, W. et al. The reelin receptor ApoER2 recruits JNK-interacting proteins-1 and-2. J. Biol. Chem.275, 25625–25632 (2000). ArticleCASPubMed Google Scholar
Hoe, H. S. et al. Apolipoprotein E receptor 2 interactions with the _N_-methyl-D-aspartate receptor. J. Biol. Chem.281, 3425–3431 (2006). ArticleCASPubMed Google Scholar
Brandes, C. et al. Alternative splicing in the ligand binding domain of mouse ApoE receptor-2 produces receptor variants binding reelin but not α 2-macroglobulin. J. Biol. Chem.276, 22160–22169 (2001). ArticleCASPubMed Google Scholar
Qiu, S. et al. Cognitive disruption and altered hippocampus synaptic function in Reelin haploinsufficient mice. Neurobiol. Learn. Mem.85, 228–242 (2006). A detailed electrophysiological study on the heterozygous reeler mouse reveals profound defects in cognition, hippocampal functions and the regulation of GABA-mediated inhibitory circuitry. ArticleCASPubMed Google Scholar
Sinagra, M. et al. Reelin, very-low-density lipoprotein receptor, and apolipoprotein E receptor 2 control somatic NMDA receptor composition during hippocampal maturation in vitro. J. Neurosci.25, 6127–6136 (2005). ArticleCASPubMedPubMed Central Google Scholar
Niu, S., Renfro, A., Quattrocchi, C. C., Sheldon, M. & D'Arcangelo, G. Reelin promotes hippocampal dendrite development through the VLDLR/ApoER2-Dab1 pathway. Neuron41, 71–84 (2004). ArticleCASPubMed Google Scholar
Borrell, V. et al. Reelin regulates the development and synaptogenesis of the layer-specific entorhino-hippocampal connections. J. Neurosci.19, 1345–1358 (1999). ArticleCASPubMedPubMed Central Google Scholar
Del Rio, J. A. et al. A role for Cajal–Retzius cells and reelin in the development of hippocampal connections. Nature385, 70–74 (1997). ArticleCASPubMed Google Scholar
Guidotti, A. et al. Decrease in reelin and glutamic acid decarboxylase67 (GAD67) expression in schizophrenia and bipolar disorder: a postmortem brain study. Arch. Gen. Psychiatry57, 1061–1069 (2000). ArticleCASPubMed Google Scholar
Impagnatiello, F. et al. A decrease of reelin expression as a putative vulnerability factor in schizophrenia. Proc. Natl Acad. Sci. USA95, 15718–15723 (1998). ArticleCASPubMedPubMed Central Google Scholar
Fatemi, S. H., Kroll, J. L. & Stary, J. M. Altered levels of Reelin and its isoforms in schizophrenia and mood disorders. Neuroreport12, 3209–3215 (2001). ArticleCASPubMed Google Scholar
Fatemi, S. H., Earle, J. A. & McMenomy, T. Reduction in Reelin immunoreactivity in hippocampus of subjects with schizophrenia, bipolar disorder and major depression. Mol. Psychiatry5, 654–663, 571 (2000). ArticleCASPubMed Google Scholar
Fatemi, S. H. et al. Reelin signaling is impaired in autism. Biol. Psychiatry57, 777–787 (2005). ArticleCASPubMed Google Scholar
Kamiya, A. et al. A schizophrenia-associated mutation of DISC1 perturbs cerebral cortex development. Nature Cell Biol.7, 1167–1178 (2005). ArticleCASPubMed Google Scholar
Coyle, J. T. Glutamate and schizophrenia: beyond the dopamine hypothesis. Cell. Mol. Neurobiol. 14 Jun 2006 (doi: 10.007.s10571-006-9062-8).
Salinger, W. L., Ladrow, P. & Wheeler, C. Behavioral phenotype of the reeler mutant mouse: effects of RELN gene dosage and social isolation. Behav. Neurosci.117, 1257–1275 (2003). ArticlePubMed Google Scholar
Heinrich, C. et al. Reelin deficiency and displacement of mature neurons, but not neurogenesis, underlie the formation of granule cell dispersion in the epileptic hippocampus. J. Neurosci.26, 4701–4713 (2006). ArticleCASPubMedPubMed Central Google Scholar
Haas, C. A. et al. Role for reelin in the development of granule cell dispersion in temporal lobe epilepsy. J. Neurosci.22, 5797–5802 (2002). ArticleCASPubMedPubMed Central Google Scholar
Yip, Y. P. et al. Components of the reelin signaling pathway are expressed in the spinal cord. J. Comp. Neurol.470, 210–219 (2004). ArticleCASPubMed Google Scholar
Yip, J. W., Yip, Y. P., Nakajima, K. & Capriotti, C. Reelin controls position of autonomic neurons in the spinal cord. Proc. Natl Acad. Sci. USA97, 8612–8616 (2000). ArticleCASPubMedPubMed Central Google Scholar
Villeda, S. A., Akopians, A. L., Babayan, A. H., Basbaum, A. I. & Phelps, P. E. Absence of Reelin results in altered nociception and aberrant neuronal positioning in the dorsal spinal cord. Neuroscience139, 1385–1396 (2006). ArticleCASPubMed Google Scholar
Hong, S. E. et al. Autosomal recessive lissencephaly with cerebellar hypoplasia is associated with human RELN mutations. Nature Genet.26, 93–96 (2000). ArticleCASPubMed Google Scholar
Boycott, K. M. et al. Homozygous deletion of the very low density lipoprotein receptor gene causes autosomal recessive cerebellar hypoplasia with cerebral gyral simplification. Am. J. Hum. Genet.77, 477–483 (2005). ArticleCASPubMedPubMed Central Google Scholar
Heckenlively, J. R. et al. Mouse model of subretinal neovascularization with choroidal anastomosis. Retina23, 518–522 (2003). ArticlePubMed Google Scholar
Bruckner, K. & Klein, R. Signaling by Eph receptors and their ephrin ligands. Curr. Opin. Neurobiol8, 375–382 (1998). Neuronal activity modulates the formation and secretion of Aβ peptides, which in turn feed back to the synapse and suppress synaptic activity through NMDA receptors. ArticleCASPubMed Google Scholar
Zisch, A. H. & Pasquale, E. B. The Eph family: a multitude of receptors that mediate cell recognition signals. Cell Tissue Res.290, 217–226 (1997). ArticleCASPubMed Google Scholar
Grunwald, I. C. et al. Hippocampal plasticity requires postsynaptic ephrinBs. Nature Neurosci.7, 33–40 (2004). ArticleCASPubMed Google Scholar
Grunwald, I. C. et al. Kinase-independent requirement of EphB2 receptors in hippocampal synaptic plasticity. Neuron32, 1027–1040 (2001). ArticleCASPubMed Google Scholar
Henderson, J. T. et al. The receptor tyrosine kinase EphB2 regulates NMDA-dependent synaptic function. Neuron32, 1041–1056 (2001). ArticleCASPubMed Google Scholar
Dalva, M. B. et al. EphB receptors interact with NMDA receptors and regulate excitatory synapse formation. Cell103, 945–956 (2000). CASPubMed Google Scholar
Takasu, M. A., Dalva, M. B., Zigmond, R. E. & Greenberg, M. E. Modulation of NMDA receptor-dependent calcium influx and gene expression through EphB receptors. Science295, 491–495 (2002). Together with reference 116, this paper reports that Ephs and ephrins control NMDA receptor functions through mechanisms that resemble those involving reelin and APOE receptors. ArticleCASPubMed Google Scholar
Townsend, M., Shankar, G. M., Mehta, T., Walsh, D. M. & Selkoe, D. J. Effects of secreted oligomers of amyloid β-protein on hippocampal synaptic plasticity: a potent role for trimers. J. Physiol.572, 477–492 (2006). ArticleCASPubMedPubMed Central Google Scholar
Walsh, D. M. et al. Naturally secreted oligomers of amyloid β protein potently inhibit hippocampal long-term potentiation in vivo. Nature416, 535–539 (2002). ArticleCASPubMed Google Scholar
Snyder, E. M. et al. Regulation of NMDA receptor trafficking by amyloid-β. Nature Neurosci.8, 1051–1058 (2005). ArticleCASPubMed Google Scholar
Bock, H. H. et al. Phosphatidylinositol 3-kinase interacts with the adaptor protein Dab1 in response to Reelin signaling and is required for normal cortical lamination. J. Biol. Chem.278, 38772–38779 (2003). ArticleCASPubMed Google Scholar
Ballif, B. A. et al. Activation of a Dab1/CrkL/C3G/Rap1 pathway in Reelin-stimulated neurons. Curr. Biol.14, 606–610 (2004). ArticleCASPubMed Google Scholar
Shu, T. et al. Ndel1 operates in a common pathway with LIS1 and cytoplasmic dynein to regulate cortical neuronal positioning. Neuron44, 263–277 (2004). ArticleCASPubMed Google Scholar
Niethammer, M. et al. NUDEL is a novel Cdk5 substrate that associates with LIS1 and cytoplasmic dynein. Neuron28, 697–711 (2000). ArticleCASPubMed Google Scholar
Smith, D. S. et al. Regulation of cytoplasmic dynein behaviour and microtubule organization by mammalian Lis1. Nature Cell Biol.2, 767–775 (2000). ArticleCASPubMed Google Scholar
Tanaka, T. et al. Lis1 and doublecortin function with dynein to mediate coupling of the nucleus to the centrosome in neuronal migration. J. Cell Biol.165, 709–721 (2004). ArticleCASPubMedPubMed Central Google Scholar
Sasaki, S. et al. A LIS1/NUDEL/cytoplasmic dynein heavy chain complex in the developing and adult nervous system. Neuron28, 681–696 (2000). ArticleCASPubMed Google Scholar
Ramos-Moreno, T., Galazo, M. J., Porrero, C., Martinez-Cerdeno, V. & Clasca, F. Extracellular matrix molecules and synaptic plasticity: immunomapping of intracellular and secreted Reelin in the adult rat brain. Eur. J. Neurosci.23, 401–422 (2006). ArticlePubMed Google Scholar
Lan, J. Y. et al. Protein kinase C modulates NMDA receptor trafficking and gating. Nature Neurosci.4, 382–390 (2001). ArticleCASPubMed Google Scholar
Dunah, A. W. & Standaert, D. G. Dopamine D1 receptor-dependent trafficking of striatal NMDA glutamate receptors to the postsynaptic membrane. J. Neurosci.21, 5546–5558 (2001). ArticleCASPubMedPubMed Central Google Scholar
Heeren, J. et al. Impaired recycling of apolipoprotein E4 is associated with intracellular cholesterol accumulation. J. Biol. Chem.279, 55483–55492 (2004). ArticleCASPubMed Google Scholar
Heeren, J. et al. Recycling of apoprotein E is associated with cholesterol efflux and high density lipoprotein internalization. J. Biol. Chem.278, 14370–14378 (2003). ArticleCASPubMed Google Scholar
Ehehalt, R., Keller, P., Haass, C., Thiele, C. & Simons, K. Amyloidogenic processing of the Alzheimer β-amyloid precursor protein depends on lipid rafts. J. Cell. Biol.160, 113–123 (2003). ArticleCASPubMedPubMed Central Google Scholar