Coefficient of Determination Research Papers (original) (raw)
The sorption of three divalent metal ions — copper, nickel and lead — from aqueous solution onto peat in single component systems has been studied and the equilibrium isotherms determined. The experimental data have been analysed using... more
The sorption of three divalent metal ions — copper, nickel and lead — from aqueous solution onto peat in single component systems has been studied and the equilibrium isotherms determined. The experimental data have been analysed using the Langmuir, Freundlich, Redlich-Peterson, Toth, Temkin, Dubinin-Radushkevich and Sips isotherm models. In order to determine the best fit isotherm for each system, six
Home > International Journal of Bank Marketing > Volume 25 issue 2 > Adoption of internet banking: proposition and... ... Icon: Abstract. Icon: Backfiles. Icon: Print. Icon: Reprints & permissions. ... Purpose This study... more
Home > International Journal of Bank Marketing > Volume 25 issue 2 > Adoption of internet banking: proposition and... ... Icon: Abstract. Icon: Backfiles. Icon: Print. Icon: Reprints & permissions. ... Purpose This study proposes a new method to investigate adoption of ...
Research on more productive and sustainable sugarcane production systems would be aided by a comprehensive simulator of the sugarcane crop that is cognisant of a broader crop-soil-management system. A sugarcane crop model is described... more
Research on more productive and sustainable sugarcane production systems would be aided by a comprehensive simulator of the sugarcane crop that is cognisant of a broader crop-soil-management system. A sugarcane crop model is described that can be deployed in the APSIM framework for agricultural systems simulation. The model operates on a daily time step, grows a leaf canopy, uses intercepted radiation to produce assimilate, and partitions this assimilate into leaf, structural stalk and sugar. The crop physiological processes represented in the model respond to the radiation and temperature environment and are sensitive to water and nitrogen supply. The model simulates growth, water use, N accumulation, sugar dry weight and fresh cane yield for plant and ratoon crops in response to climate, soil, management and genotypic factors. The model was developed on 35 datasets from Australia, Hawaii, South Africa and Swaziland, covering a wide range of crop classes, latitudes, water regimes and nitrogen supply conditions. Coefficients of determination for model predictions compared to observed data included 0.79 for LAI, 0.93 for crop biomass, 0.83 for stalk sucrose and 0.86 for N accumulation in above ground tissues. The particular strengths of this model are discussed in the context of agricultural systems simulation.
This work investigates both batch and optimization studies of adsorption of Remazol Brilliant Blue Reactive (RBBR) dye onto activated carbon prepared from periwinkle shells (PSAC). The effects of three preparation variables: CO2... more
This work investigates both batch and optimization studies of adsorption of Remazol Brilliant Blue Reactive (RBBR) dye onto activated carbon prepared from periwinkle shells (PSAC). The effects of three preparation variables: CO2 activation temperature, CO2 activation time, and KOH: char impregnation ratio (IR) were studied using Response Surface Modeling (RSM). Based on the central composite design (CCD), a quadratic model and two-factor interaction models (2FI) were developed to correlate the three preparation variables to the two responses: RBBR dye removal and PSAC yield. The optimum conditions for preparing PSAC for adsorption of RBBR dye were found as follows: CO2 activation temperature of 811°C, CO2 activation time of 1.7 h and IR of 2.95, which resulted in 82.76% of RBBR dye removal and 35.83% of PSAC yield. Experimental results obtained agreed satisfactorily well with the model predictions. The activated carbon prepared under optimum conditions was mesoporous with BET surface area of 1894 m2/g, total pore volume of 1.107 cm3/g and average pore diameter of 2.32 nm. The surface morphology and functional groups of PSAC were respectively determined from the scanning electron microscopy (SEM) and Fourier transform infrared analysis (FTIR).
An attempt has been made to evaluate and predict the blast-induced ground vibration and frequency by incorporating rock properties, blast design and explosive parameters using the artificial neural network (ANN) technique. A three-layer,... more
An attempt has been made to evaluate and predict the blast-induced ground vibration and frequency by incorporating rock properties, blast design and explosive parameters using the artificial neural network (ANN) technique. A three-layer, feed-forward back-propagation neural network having 15 hidden neurons, 10 input parameters and two output parameters were trained using 154 experimental and monitored blast records from one of the major producing surface coal mines in India. Twenty new blast data sets were used for the validation and comparison of the peak particle velocity (PPV) and frequency by ANN and other predictors. To develop more confidence in the proposed method, same data sets have also been used for the prediction of PPV by commonly used vibration predictors as well as by multivariate regression analysis (MVRA). Results were compared based on correlation and mean absolute error (MAE) between monitored and predicted values of PPV and frequency.
- by Norm Finkelstein and +1
- •
- Forecasting, Environmental Monitoring, Air pollution, Cities
- by Harry Vereecken and +1
- •
- Materials Engineering, Civil Engineering, Soil Science, Carbon
Comparative transcriptomics are useful to determine the role of orthologous genes among Triticeae species. Thus they constitute an interesting tool to improve the use of wild relatives for crop breeding. Reverse transcription quantitative... more
Comparative transcriptomics are useful to determine the role of orthologous genes among Triticeae species. Thus they constitute an interesting tool to improve the use of wild relatives for crop breeding. Reverse transcription quantitative real-time PCR (qPCR) is the most accurate measure of gene expression but efficient normalization is required. The choice and optimal number of reference genes must be experimentally determined and the primers optimized for cross-species amplification. Our goal was to test the utility of wheat-reference genes for qPCR normalization when species carrying the following genomes (A, B, D, R, H v and H ch ) are compared either simultaneously or in smaller subsets of samples. Wheat/barley/rye consensus primers outperformed wheat-specific ones which indicate that consensus primers should be considered for data normalization in comparative transcriptomics. All genes tested were stable but their ranking in terms of stability differed among subsets of samples. CDC (cell division control protein, AAA-superfamily of ATPases, Ta54227) and RLI (68 kDa protein HP68 similar to Arabidopsis thaliana RNase L inhibitor protein, Ta2776) were always among the three most stable genes. The optimal number of reference genes varied between 2 and 3 depending on the subset of samples and the method used (geNorm vs. coefficient of determination between sequential normalization factors). In any case a maximum number of three reference genes would provide adequate normalization independent of the subset of samples considered. This work constitutes a substantial advance towards comparative transcriptomics using qPCR since it provides useful primers/reference genes.
Modeling water flow and solute transport in vadose zone requires knowledge of soil hydraulic properties, which are water retention and hydraulic conductivity curves. As an alternative to direct measurement, indirect determination of these... more
Modeling water flow and solute transport in vadose zone requires knowledge of soil hydraulic properties, which are water retention and hydraulic conductivity curves. As an alternative to direct measurement, indirect determination of these functions from basic soil properties using pedotransfer functions (PTFs) has attracted the attention of researchers in a variety of fields such as soil scientists, hydrologists, and agricultural and environmental engineers. In this study, PTFs for point and parametric (van Genuchten's parameters) estimation of soil hydraulic parameters from basic soil properties such as particle-size distribution, bulk density, and three different pore sizes were developed and validated using artificial neural network (ANN) and multiple-linear regression methods and the predictive capabilities of the two methods was compared using some evaluation criteria. Total of 195 soil samples was divided into two groups as 130 for the development and 65 for the validation of PTFs. Although the differences between the two methods were not statistically significant (p > 0.05), regression predicted point and parametric variables of soil hydraulic parameters better than ANN. Both methods had lower accuracy in parametric predictions than in point predictions. Accuracy of the predictions was evaluated by the coefficient of determination (R2) and the root mean square error (RMSE) between the measured and predicted parameter values. The R2 and RMSE varied from 0.637 to 0.979 and from 0.013 to 0.938 for regression, and varied from 0.444 to 0.952 and from 0.020 to 3.511 for ANN, respectively. Even though regression performs insignificantly better than ANN in this case, ANN produces promising results and its advantages can be utilized by developing or using new algorithms in future studies.
Sun, oven (50 and 70 °C) and microwave oven (210 and 700 W) drying of onion slices were carried out to monitor the drying kinetics and quality degradation of the product. Page, “Modified Page” and “Midilli and Küçük” models exhibited high... more
Sun, oven (50 and 70 °C) and microwave oven (210 and 700 W) drying of onion slices were carried out to monitor the drying kinetics and quality degradation of the product. Page, “Modified Page” and “Midilli and Küçük” models exhibited high coefficient of determination (R2) values, ranging between 0.994 and 0.999. The calculated effective diffusivity (Deff) values (m2/s) of onion slices for the sun, oven 50 °C and oven 70 °C, microwave 210 W and microwave 700 W drying process were 8.339 × 10−10, 7.468 × 10−10, 1.554 × 10−9, 4.009 × 10−8 and 4.869 × 10−8, respectively. Fresh and dried onion slices had high amounts of K (696.82–16357.55 mg/kg), Ca (69.64–340.03 mg/kg), Na (37.72–1895.43 mg/kg), Mg (3.31–964.77 mg/kg) and P (46.47–3384.07 mg/kg) minerals. The highest mineral values were determined in oven dried samples. Sun (L∗ 58.00 ± 4.83, a∗ 0.27 ± 0.10, b∗ 14.36 ± 2.40) and microwave oven drying (210 W) (L∗ 54.78 ± 7.54, a∗ −0.71 ± 0.09, b∗ 13.17 ± 1.05) revealed better colour values in the dried products. The phenolic contents of microwave oven dried samples (1664.39 ± 134.12 and 1623.59 ± 140.02 for 210 W and 700 W, respectively) were higher than those of the other dried onion slices.
- by Derya Arslan
- •
- Animal Production, Colour, Drying, Onion
The need for an accurate, fast and reliable analysis of carbohydrate test is crucial for numerous biological processes. In that sense, anthrone–sulfuric acid assay is one of the most efficient quantification techniques successfully... more
The need for an accurate, fast and reliable analysis of carbohydrate test is crucial for numerous biological processes. In that sense, anthrone–sulfuric acid assay is one of the most efficient quantification techniques successfully applied to carbohydrate determination. In this paper, a sensitive and accurate anthrone–sulfuric acid microplate assay was developed and validated for the quantitative estimation of yeast carbohydrates in the production of hepatitis B virus surface antigen, and the main component of the recombinant vaccine HEBERBIOVAC HB. A response surface methodology was applied to design and optimize the assay in order to maximize the differences on the expected effect and to minimize the number of experiments. The proposed method was linear over the concentration range from 10 to 120 μg/mL for glucose, with values for the coefficient of determination >0.99. Intra- and inter-assay variation coefficient ranged between 0.45–4.79% and 2.48–8.94%, respectively. The Student t-test used in the interference study, revealed good parallelism among curves (Tobs ≤ T0.05), which indicates the lack of interference in the working range. Yields obtained in accuracy test for two concentration levels varied between 90 and 105%, confirming the assay's reliability. In conclusion, the validated method, which has successfully been used for the process control monitoring of several samples generated from the production of hepatitis B vaccine, allows the quality and purity of the final product.