Теория категорий | это... Что такое Теория категорий? (original) (raw)

Тео́рия катего́рий — раздел математики, изучающий свойства отношений между математическими объектами, не зависящие от внутренней структуры объектов.

Теория категорий занимает центральное место в современной математике[1], она также нашла применения в информатике[2], логике [3] и в теоретической физике[4][5][_уточнить_]. Современное изложение алгебраической геометрии и гомологической алгебры немыслимо без применения теории категорий. Общекатегорийные понятия также активно используются в языке функционального программирования Haskell[6].

Содержание

Определение

Категория \mathcal{C} — это:

причём выполняются две аксиомы:

Замечание: класс объектов обычно не является множеством в смысле аксиоматической теории множеств. Категория, в которой объекты составляют множество, называется малой. Кроме того, в принципе возможно (с небольшим исправлением определения) рассмотрение категорий, в которых морфизмы между любыми двумя объектами также образуют класс, или даже большую структуру[7].

Примеры категорий

Аналогично определяются категории для других алгебраических систем.

Коммутативные диаграммы

Стандартным способом описания утверждений теории категорий являются коммутативные диаграммы. Коммутативная диаграмма — это ориентированный граф, в вершинах которого находятся объекты, а стрелками являются морфизмы или функторы, причём результат композиции стрелок не зависит от выбранного пути. Например, аксиомы теории категорий можно записать с помощью диаграмм:

Диаграмма аксиом категорий

Двойственность

Для категории \mathcal{C} можно определить двойственную категорию \mathcal{C}^{op}, в которой:

Вообще, для любого утверждения теории категорий можно сформулировать двойственное утверждение с помощью обращения стрелок. Часто двойственное явление обозначается тем же термином с приставкой ко- (см. примеры дальше).

Основные определения и свойства

Изоморфизм, эндоморфизм, автоморфизм

Морфизм f\in \mathrm{Hom}(A,B) называется изоморфизмом, если существует такой морфизм g \in \mathrm{Hom}(B,A), что g\circ f = id_A и f\circ g = id_B. Два объекта, между которыми существует изоморфизм, называются изоморфными. В частности, тождественный морфизм является изоморфизмом, поэтому любой объект изоморфен сам себе.

Морфизмы, в которых начало и конец совпадают, называют эндоморфизмами. Множество эндоморфизмов \mathrm{End}(A) = \mathrm{Hom}(A,A) является моноидом относительно операции композиции с единичным элементом id_A.

Эндоморфизмы, которые одновременно являются изоморфизмами, называются автоморфизмами. Автоморфизмы любого объекта образуют группу автоморфизмов \mathrm{Aut}(A) по композиции.

Мономорфизм, эпиморфизм, биморфизм

Мономорфизм — это морфизм f\in \mathrm{Hom}(A,B) такой, что для любых g_1,g_2\in \mathrm{Hom}(X,A) из f\circ g_1 = f\circ g_2 следует, что g_1=g_2. Композиция мономорфизмов есть мономорфизм.

Эпиморфизм — это такой морфизм, что для любых g_1,g_2\in \mathrm{Hom}(B,X) из g_1\circ f = g_2\circ f следует g_1=g_2.

Биморфизм — это морфизм, являющийся одновременно мономорфизмом и эпиморфизмом. Любой изоморфизм есть биморфизм, но не любой биморфизм есть изоморфизм.

Мономорфизм, эпиморфизм и биморфизм являются обобщениями понятий инъективного, сюръективного и биективного отображения соответственно. Любой изоморфизм является мономорфизмом и эпиморфизмом, обратное, вообще говоря, верно не для всех категорий.

Инициальный и терминальный объекты

Инициальный (начальный, универсально отталкивающий) объект категории — это такой объект, из которого существует единственный морфизм в любой другой объект.

Если инициальные объекты в категории существуют, то все они изоморфны.

Двойственным образом определяется терминальный или универсально притягивающий объект — это такой объект, в который существует единственный морфизм из любого другого объекта.

Пример: В категории Set инициальным объектом является пустое множество \empty, терминальным — множество из одного элемента \{\cdot\}.

Пример: В категории Group инициальный и терминальный объект совпадают — это группа из одного элемента.

Произведение и сумма объектов

Прямое произведение

Произведение (пары) объектов A и B — это объект A\times B с морфизмами p_1: A\times B\to A и p_2: A\times B \to B такими, что для любого объекта C с морфизмами f_1: C\to A и f_2: C\to B существует единственный морфизм g: C \to A\times B такой, что диаграмма справа коммутативна. Морфизмы p_1: A\times B\to A и p_2: A\times B \to B называются проекциями.

Дуально определяется прямая сумма или копроизведение A+B объектов A и B. Соответствующие морфизмы \imath_A: A\to A+B и \imath_B: B \to A+B называются вложениями. Несмотря на своё название, в общем случае они могут и не быть мономорфизмами.

Если произведение и копроизведение существуют, то они определяются однозначно с точностью до изоморфизма.

Пример: В категории Set прямое произведение A и B — это произведение в смысле теории множеств A\times B, а прямая сумма — дизъюнктное объединение A \sqcup B.

Пример: В категории Ring прямая сумма — это тензорное произведение A\otimes B, а прямое произведение — сумма колец A\oplus B.

Пример: В категории _Vect_K (конечные) прямое произведение и прямая сумма изоморфны — это прямая сумма векторных пространств A\oplus B.

Несложно определить аналогичным образом произведение любого семейства объектов \prod_{i\in I} A_i. Бесконечные произведения устроены в общем случае гораздо сложнее, чем конечные. Например, в то время как конечные произведения и копроизведения в _Vect_K изоморфны прямым суммам, бесконечные произведения и копроизведения не являются изоморфными. Элементами бесконечного произведения \prod_{i\in I} V_i являются произвольные бесконечные последовательности элементов v_i \in V_i, в то время как элементами бесконечного копроизведения \coprod_{i\in I} V_i являются последовательности, в которых лишь конечное число членов — ненулевые.

Функторы

Функторы — это отображения категорий, сохраняющие структуру. Точнее,

(Ковариантный) функтор \mathcal{F}: \mathcal{C}\to \mathcal{D} ставит в соответствие каждому объекту категории \mathcal{C} объект категории \mathcal{D} и каждому морфизму f: A\to B морфизм F(f): F(A)\to F(B) так, что

Контравариантный функтор, или кофунктор — это функтор из \mathcal{C} в \mathcal{D}^{op} , то есть «функтор, переворачивающий стрелки».

Некоторые типы категорий

См. также

Ссылки

  1. Хелемский А. Я. Лекции по функциональному анализу. — М.:МЦНМО, 2004 ISBN 5-94057-065-8
  2. D.E. Rydeheard, R.M. Burstall Computational Category Theory, — New York: Prentice Hall. — 1988. — XIII, 257 p. — ISBN 0-13-162736-8.
  3. Р. Голдблатт Топосы. Категорный анализ логики = Topoi. The categorial analysis of logic. — М.: Мир, 1983. — 488 с.
  4. Нужна ли физикам теория категорий?. Оригинал http://arxiv.org/abs/0808.1032
  5. Топосы для физики. (англ.)
  6. Category theory in Haskell (англ.). Архивировано из первоисточника 24 августа 2011. Проверено 13 марта 2011.
  7. J. Adámek, H. Herrlich, G. E. Strecker Abstract and concrete categories: The joy of cats, — New York: John Wiley and Sons, — 1990.

Литература