LLVM: lib/Target/X86/MCTargetDesc/X86AsmBackend.cpp Source File (original) (raw)
1
2
3
4
5
6
7
8
35
36using namespace llvm;
37
38namespace {
39
40class X86AlignBranchKind {
41private:
42 uint8_t AlignBranchKind = 0;
43
44public:
45 void operator=(const std::string &Val) {
46 if (Val.empty())
47 return;
50 for (auto BranchType : BranchTypes) {
51 if (BranchType == "fused")
53 else if (BranchType == "jcc")
55 else if (BranchType == "jmp")
57 else if (BranchType == "call")
59 else if (BranchType == "ret")
61 else if (BranchType == "indirect")
63 else {
65 << " to -x86-align-branch=; each element must be one of: fused, "
66 "jcc, jmp, call, ret, indirect.(plus separated)\n";
67 }
68 }
69 }
70
71 operator uint8_t() const { return AlignBranchKind; }
73};
74
75X86AlignBranchKind X86AlignBranchKindLoc;
76
78 "x86-align-branch-boundary", cl::init(0),
80 "Control how the assembler should align branches with NOP. If the "
81 "boundary's size is not 0, it should be a power of 2 and no less "
82 "than 32. Branches will be aligned to prevent from being across or "
83 "against the boundary of specified size. The default value 0 does not "
84 "align branches."));
85
87 "x86-align-branch",
89 "Specify types of branches to align (plus separated list of types):"
90 "\njcc indicates conditional jumps"
91 "\nfused indicates fused conditional jumps"
92 "\njmp indicates direct unconditional jumps"
93 "\ncall indicates direct and indirect calls"
94 "\nret indicates rets"
95 "\nindirect indicates indirect unconditional jumps"),
97
99 "x86-branches-within-32B-boundaries", cl::init(false),
101 "Align selected instructions to mitigate negative performance impact "
102 "of Intel's micro code update for errata skx102. May break "
103 "assumptions about labels corresponding to particular instructions, "
104 "and should be used with caution."));
105
107 "x86-pad-max-prefix-size", cl::init(0),
108 cl::desc("Maximum number of prefixes to use for padding"));
109
112 cl::desc("Pad previous instructions to implement align directives"));
113
116 cl::desc("Pad previous instructions to implement branch alignment"));
117
120 std::unique_ptr MCII;
121 X86AlignBranchKind AlignBranchType;
122 Align AlignBoundary;
123 unsigned TargetPrefixMax = 0;
124
126 unsigned PrevInstOpcode = 0;
128 std::pair<MCFragment *, size_t> PrevInstPosition;
129 bool IsRightAfterData = false;
130
131 uint8_t determinePaddingPrefix(const MCInst &Inst) const;
133 bool needAlign(const MCInst &Inst) const;
136
137public:
141 if (X86AlignBranchWithin32BBoundaries) {
142
143
144
145
150 }
151
152 if (X86AlignBranchBoundary.getNumOccurrences())
153 AlignBoundary = assumeAligned(X86AlignBranchBoundary);
154 if (X86AlignBranch.getNumOccurrences())
155 AlignBranchType = X86AlignBranchKindLoc;
156 if (X86PadMaxPrefixSize.getNumOccurrences())
157 TargetPrefixMax = X86PadMaxPrefixSize;
158 }
159
165
168 }
169
171
173
177
182
185
188
191
194 unsigned &RemainingSize) const;
195
197 unsigned &RemainingSize) const;
198
200 unsigned &RemainingSize) const;
201
203
205
208};
209}
210
212 return Opcode == X86::JCC_1 || Opcode == X86::JMP_1;
213}
214
216 bool Is16BitMode = false) {
217 switch (Opcode) {
218 default:
220 case X86::JCC_1:
221 return (Is16BitMode) ? X86::JCC_2 : X86::JCC_4;
222 case X86::JMP_1:
223 return (Is16BitMode) ? X86::JMP_2 : X86::JMP_4;
224 }
225}
226
228 unsigned Opcode = MI.getOpcode();
231}
232
235 unsigned Opcode = MI.getOpcode();
236 switch (Opcode) {
237 default:
239 case X86::JCC_1: {
242 MI.getOperand(Desc.getNumOperands() - 1).getImm());
243 }
244 }
245}
246
250 return classifySecondCondCodeInMacroFusion(CC);
251}
252
253
255 unsigned Opcode = MI.getOpcode();
260 if (MemoryOperand < 0)
261 return false;
262 unsigned BaseRegNum = MemoryOperand + CurOp + X86::AddrBaseReg;
263 MCRegister BaseReg = MI.getOperand(BaseRegNum).getReg();
264 return (BaseReg == X86::RIP);
265}
266
267
270}
271
272
275
277 return false;
280 return FIK != X86::FirstMacroFusionInstKind::Invalid;
281}
282
283
284
285
286
287
288
289
290
291
292uint8_t X86AsmBackend::determinePaddingPrefix(const MCInst &Inst) const {
294 "Prefixes can be added only in 32-bit or 64-bit mode.");
297
298
300 if (MemoryOperand != -1)
302
304 if (MemoryOperand >= 0) {
305
307 }
308
310 default:
311 break;
313
316 break;
317 }
319
322 break;
323 }
325
327 break;
328 }
329 }
330
331 if (SegmentReg)
333
336
337 if (MemoryOperand >= 0) {
340 if (BaseReg == X86::ESP || BaseReg == X86::EBP)
342 }
344}
345
346
347bool X86AsmBackend::isMacroFused(const MCInst &Cmp, const MCInst &Jcc) const {
350 return false;
352 return false;
358}
359
360
362 for (auto &Operand : MI) {
363 if (!Operand.isExpr())
364 continue;
365 const MCExpr &Expr = *Operand.getExpr();
368 return true;
369 }
370 return false;
371}
372
373bool X86AsmBackend::allowAutoPadding() const {
375}
376
377bool X86AsmBackend::allowEnhancedRelaxation() const {
378 return allowAutoPadding() && TargetPrefixMax != 0 && X86PadForBranchAlign;
379}
380
381
382
383
385 switch (InstOpcode) {
386 case X86::POPSS16:
387 case X86::POPSS32:
388 case X86::STI:
389 return true;
390
391 case X86::MOV16sr:
392 case X86::MOV32sr:
393 case X86::MOV64sr:
394 case X86::MOV16sm:
395
396
397 return true;
398 }
399 return false;
400}
401
402
403static bool
405 const std::pair<MCFragment *, size_t> &PrevInstPosition) {
407
408
409
410
411
412
413
414
415
416
417
418 if (auto *DF = dyn_cast_or_null(F))
419 return DF->getContents().size() &&
420 (DF != PrevInstPosition.first ||
421 DF->getContents().size() != PrevInstPosition.second);
422
423 return false;
424}
425
426
428 if ( ||
->hasInstructions())
429 return 0;
430
431 switch (F->getKind()) {
432 default:
435 return cast(*F).getContents().size();
437 return cast(*F).getContents().size();
438 }
439}
440
441
442
445
446
447 return false;
448
450
451
452 return false;
453
454 if (isPrefix(PrevInstOpcode, *MCII))
455
456
457 return false;
458
460
461
462 return false;
463
464 if (IsRightAfterData)
465
466
467 return false;
468
469 return true;
470}
471
473 if (.getAllowAutoPadding())
474 return false;
475 assert(allowAutoPadding() && "incorrect initialization!");
476
477
478 if (.getCurrentSectionOnly()->isText())
479 return false;
480
481
482 if (OS.getAssembler().isBundlingEnabled())
483 return false;
484
485
487 return false;
488
489 return true;
490}
491
492
493bool X86AsmBackend::needAlign(const MCInst &Inst) const {
495 return (Desc.isConditionalBranch() &&
497 (Desc.isUnconditionalBranch() &&
501 (Desc.isIndirectBranch() &&
503}
504
505
508
509
510 IsRightAfterData =
512
513 if (!canPadBranches(OS))
514 return;
515
516
518
519 PendingBA = nullptr;
520
521
522
523
524
525 if (!canPadInst(Inst, OS))
526 return;
527
528 if (PendingBA && PendingBA->getNext() == OS.getCurrentFragment()) {
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547 return;
548 }
549
552
553
555 AlignBoundary, STI);
556 OS.insert(PendingBA);
557 }
558}
559
560
562 const MCInst &Inst) {
564 if (auto *F = dyn_cast_or_null(CF))
565 F->setAllowAutoPadding(canPadInst(Inst, OS));
566
567
568 PrevInstOpcode = Inst.getOpcode();
570
571 if (!canPadBranches(OS))
572 return;
573
574
575 PrevInst = Inst;
576
577 if (!needAlign(Inst) || !PendingBA)
578 return;
579
580
582 PendingBA = nullptr;
583
584
585
586
587
588 if (isa_and_nonnull(CF))
590
591
592 MCSection *Sec = OS.getCurrentSectionOnly();
594}
595
596std::optional X86AsmBackend::getFixupKind(StringRef Name) const {
598 unsigned Type;
601#define ELF_RELOC(X, Y) .Case(#X, Y)
602#include "llvm/BinaryFormat/ELFRelocs/x86_64.def"
603#undef ELF_RELOC
604 .Case("BFD_RELOC_NONE", ELF::R_X86_64_NONE)
605 .Case("BFD_RELOC_8", ELF::R_X86_64_8)
606 .Case("BFD_RELOC_16", ELF::R_X86_64_16)
607 .Case("BFD_RELOC_32", ELF::R_X86_64_32)
608 .Case("BFD_RELOC_64", ELF::R_X86_64_64)
610 } else {
612#define ELF_RELOC(X, Y) .Case(#X, Y)
613#include "llvm/BinaryFormat/ELFRelocs/i386.def"
614#undef ELF_RELOC
615 .Case("BFD_RELOC_NONE", ELF::R_386_NONE)
616 .Case("BFD_RELOC_8", ELF::R_386_8)
617 .Case("BFD_RELOC_16", ELF::R_386_16)
618 .Case("BFD_RELOC_32", ELF::R_386_32)
620 }
621 if (Type == -1u)
622 return std::nullopt;
624 }
626}
627
630
638 {"reloc_signed_4byte", 0, 32, 0},
639 {"reloc_signed_4byte_relax", 0, 32, 0},
640 {"reloc_global_offset_table", 0, 32, 0},
641 {"reloc_global_offset_table8", 0, 64, 0},
643
644 };
645
646
647
650
653
655 "Invalid kind!");
658}
659
660bool X86AsmBackend::shouldForceRelocation(const MCAssembler &,
665}
666
668 switch (Kind) {
669 default:
672 return 0;
676 return 1;
680 return 2;
695 return 4;
700 return 8;
701 }
702}
703
711 return;
713
714 assert(Fixup.getOffset() + Size <= Data.size() && "Invalid fixup offset!");
715
716 int64_t SignedValue = static_cast<int64_t>(Value);
717 if ((Target.isAbsolute() || IsResolved) &&
718 getFixupKindInfo(Fixup.getKind()).Flags &
720
722 Asm.getContext().reportError(
723 Fixup.getLoc(), "value of " + Twine(SignedValue) +
724 " is too large for field of " + Twine(Size) +
725 ((Size == 1) ? " byte." : " bytes."));
726 } else {
727
728
729
730
732 "Value does not fit in the Fixup field");
733 }
734
735 for (unsigned i = 0; i != Size; ++i)
737}
738
739bool X86AsmBackend::mayNeedRelaxation(const MCInst &MI,
741 unsigned Opcode = MI.getOpcode();
742 unsigned SkipOperands = X86::isCCMPCC(Opcode) ? 2 : 0;
745 MI.getOperand(MI.getNumOperands() - 1 - SkipOperands).isExpr());
746}
747
748bool X86AsmBackend::fixupNeedsRelaxation(const MCFixup &Fixup,
750
751 return !isInt<8>(Value);
752}
753
754
755
756void X86AsmBackend::relaxInstruction(MCInst &Inst,
758
759 bool Is16BitMode = STI.hasFeature(X86::Is16Bit);
761
762 if (RelaxedOp == Inst.getOpcode()) {
766 OS << "\n";
768 }
769
771}
772
775 unsigned &RemainingSize) const {
777 return false;
778
779
780
781
783 return false;
784
786 if (OldSize == 15)
787 return false;
788
789 const unsigned MaxPossiblePad = std::min(15 - OldSize, RemainingSize);
790 const unsigned RemainingPrefixSize = [&]() -> unsigned {
793 assert(Code.size() < 15 && "The number of prefixes must be less than 15.");
794
795
796
797
798
799
800 unsigned ExistingPrefixSize = Code.size();
801 if (TargetPrefixMax <= ExistingPrefixSize)
802 return 0;
803 return TargetPrefixMax - ExistingPrefixSize;
804 }();
805 const unsigned PrefixBytesToAdd =
806 std::min(MaxPossiblePad, RemainingPrefixSize);
807 if (PrefixBytesToAdd == 0)
808 return false;
809
811
813 Code.append(PrefixBytesToAdd, Prefix);
816
817
819 F.setOffset(F.getOffset() + PrefixBytesToAdd);
820 }
821
822 RemainingSize -= PrefixBytesToAdd;
823 return true;
824}
825
828 unsigned &RemainingSize) const {
830
831
832 return false;
833
836
841 const unsigned NewSize = Code.size();
842 assert(NewSize >= OldSize && "size decrease during relaxation?");
843 unsigned Delta = NewSize - OldSize;
844 if (Delta > RemainingSize)
845 return false;
849 RemainingSize -= Delta;
850 return true;
851}
852
855 unsigned &RemainingSize) const {
856 bool Changed = false;
857 if (RemainingSize != 0)
858 Changed |= padInstructionViaRelaxation(RF, Emitter, RemainingSize);
859 if (RemainingSize != 0)
860 Changed |= padInstructionViaPrefix(RF, Emitter, RemainingSize);
861 return Changed;
862}
863
864void X86AsmBackend::finishLayout(MCAssembler const &Asm) const {
865
866
867
868
869
870
871 if (!X86PadForAlign && !X86PadForBranchAlign)
872 return;
873
874
875
876
879 LabeledFragments.insert(S.getFragment(false));
880
883 continue;
884
888
889 if (LabeledFragments.count(&F))
890 Relaxable.clear();
891
893 continue;
894
896 auto &RF = cast(*I);
898 continue;
899 }
900
901 auto canHandle = [](MCFragment &F) -> bool {
902 switch (F.getKind()) {
903 default:
904 return false;
906 return X86PadForAlign;
908 return X86PadForBranchAlign;
909 }
910 };
911
912 if (!canHandle(F)) {
913 Relaxable.clear();
914 continue;
915 }
916
917#ifndef NDEBUG
918 const uint64_t OrigOffset = Asm.getFragmentOffset(F);
919#endif
920 const uint64_t OrigSize = Asm.computeFragmentSize(F);
921
922
923
924
925
926 unsigned RemainingSize = OrigSize;
927 while (!Relaxable.empty() && RemainingSize != 0) {
929
930
931
932 if (padInstructionEncoding(RF, Asm.getEmitter(), RemainingSize))
934
935
936
937
938
939
940
942 break;
943 }
944 Relaxable.clear();
945
946
948 cast(F).setSize(RemainingSize);
949
950#ifndef NDEBUG
951 const uint64_t FinalOffset = Asm.getFragmentOffset(F);
952 const uint64_t FinalSize = Asm.computeFragmentSize(F);
953 assert(OrigOffset + OrigSize == FinalOffset + FinalSize &&
954 "can't move start of next fragment!");
955 assert(FinalSize == RemainingSize && "inconsistent size computation?");
956#endif
957
958
959
960
961 if (auto *BF = dyn_cast(&F)) {
962 const MCFragment *LastFragment = BF->getLastFragment();
963 if (!LastFragment)
964 continue;
965 while (&*I != LastFragment)
966 ++I;
967 }
968 }
969 }
970
971
973 Asm.getFragmentOffset(*Section.curFragList()->Tail);
974 Asm.computeFragmentSize(*Section.curFragList()->Tail);
975 }
976}
977
978unsigned X86AsmBackend::getMaximumNopSize(const MCSubtargetInfo &STI) const {
980 return 4;
982 return 1;
983 if (STI.hasFeature(X86::TuningFast7ByteNOP))
984 return 7;
985 if (STI.hasFeature(X86::TuningFast15ByteNOP))
986 return 15;
987 if (STI.hasFeature(X86::TuningFast11ByteNOP))
988 return 11;
989
990
991
992 return 10;
993}
994
995
996
997
1000 static const char Nops32Bit[10][11] = {
1001
1002 "\x90",
1003
1004 "\x66\x90",
1005
1006 "\x0f\x1f\x00",
1007
1008 "\x0f\x1f\x40\x00",
1009
1010 "\x0f\x1f\x44\x00\x00",
1011
1012 "\x66\x0f\x1f\x44\x00\x00",
1013
1014 "\x0f\x1f\x80\x00\x00\x00\x00",
1015
1016 "\x0f\x1f\x84\x00\x00\x00\x00\x00",
1017
1018 "\x66\x0f\x1f\x84\x00\x00\x00\x00\x00",
1019
1020 "\x66\x2e\x0f\x1f\x84\x00\x00\x00\x00\x00",
1021 };
1022
1023
1024 static const char Nops16Bit[4][11] = {
1025
1026 "\x90",
1027
1028 "\x66\x90",
1029
1030 "\x8d\x74\x00",
1031
1032 "\x8d\xb4\x00\x00",
1033 };
1034
1035 const char(*Nops)[11] =
1036 STI->hasFeature(X86::Is16Bit) ? Nops16Bit : Nops32Bit;
1037
1039
1040
1041
1042 do {
1043 const uint8_t ThisNopLength = (uint8_t) std::min(Count, MaxNopLength);
1044 const uint8_t Prefixes = ThisNopLength <= 10 ? 0 : ThisNopLength - 10;
1045 for (uint8_t i = 0; i < Prefixes; i++)
1046 OS << '\x66';
1047 const uint8_t Rest = ThisNopLength - Prefixes;
1048 if (Rest != 0)
1049 OS.write(Nops[Rest - 1], Rest);
1050 Count -= ThisNopLength;
1051 } while (Count != 0);
1052
1053 return true;
1054}
1055
1056
1057
1058namespace {
1059
1060class ELFX86AsmBackend : public X86AsmBackend {
1061public:
1064 : X86AsmBackend(T, STI), OSABI(OSABI) {}
1065};
1066
1067class ELFX86_32AsmBackend : public ELFX86AsmBackend {
1068public:
1071 : ELFX86AsmBackend(T, OSABI, STI) {}
1072
1073 std::unique_ptr
1074 createObjectTargetWriter() const override {
1076 }
1077};
1078
1079class ELFX86_X32AsmBackend : public ELFX86AsmBackend {
1080public:
1081 ELFX86_X32AsmBackend(const Target &T, uint8_t OSABI,
1083 : ELFX86AsmBackend(T, OSABI, STI) {}
1084
1085 std::unique_ptr
1086 createObjectTargetWriter() const override {
1089 }
1090};
1091
1092class ELFX86_IAMCUAsmBackend : public ELFX86AsmBackend {
1093public:
1094 ELFX86_IAMCUAsmBackend(const Target &T, uint8_t OSABI,
1096 : ELFX86AsmBackend(T, OSABI, STI) {}
1097
1098 std::unique_ptr
1099 createObjectTargetWriter() const override {
1102 }
1103};
1104
1105class ELFX86_64AsmBackend : public ELFX86AsmBackend {
1106public:
1109 : ELFX86AsmBackend(T, OSABI, STI) {}
1110
1111 std::unique_ptr
1112 createObjectTargetWriter() const override {
1114 }
1115};
1116
1117class WindowsX86AsmBackend : public X86AsmBackend {
1118 bool Is64Bit;
1119
1120public:
1123 : X86AsmBackend(T, STI)
1125 }
1126
1127 std::optional getFixupKind(StringRef Name) const override {
1133 }
1134
1135 std::unique_ptr
1136 createObjectTargetWriter() const override {
1138 }
1139};
1140
1141namespace CU {
1142
1143
1145
1146
1147 UNWIND_MODE_BP_FRAME = 0x01000000,
1148
1149
1150 UNWIND_MODE_STACK_IMMD = 0x02000000,
1151
1152
1153 UNWIND_MODE_STACK_IND = 0x03000000,
1154
1155
1156 UNWIND_MODE_DWARF = 0x04000000,
1157
1158
1159 UNWIND_BP_FRAME_REGISTERS = 0x00007FFF,
1160
1161
1162 UNWIND_FRAMELESS_STACK_REG_PERMUTATION = 0x000003FF
1163 };
1164
1165}
1166
1167class DarwinX86AsmBackend : public X86AsmBackend {
1169
1170
1171 enum { CU_NUM_SAVED_REGS = 6 };
1172
1173 mutable unsigned SavedRegs[CU_NUM_SAVED_REGS];
1175 bool Is64Bit;
1176
1177 unsigned OffsetSize;
1178 unsigned MoveInstrSize;
1179 unsigned StackDivide;
1180protected:
1181
1182 unsigned PushInstrSize(unsigned Reg) const {
1183 switch (Reg) {
1184 case X86::EBX:
1185 case X86::ECX:
1186 case X86::EDX:
1187 case X86::EDI:
1188 case X86::ESI:
1189 case X86::EBP:
1190 case X86::RBX:
1191 case X86::RBP:
1192 return 1;
1193 case X86::R12:
1194 case X86::R13:
1195 case X86::R14:
1196 case X86::R15:
1197 return 2;
1198 }
1199 return 1;
1200 }
1201
1202private:
1203
1204
1205 int getCompactUnwindRegNum(unsigned Reg) const {
1206 static const MCPhysReg CU32BitRegs[7] = {
1207 X86::EBX, X86::ECX, X86::EDX, X86::EDI, X86::ESI, X86::EBP, 0
1208 };
1209 static const MCPhysReg CU64BitRegs[] = {
1210 X86::RBX, X86::R12, X86::R13, X86::R14, X86::R15, X86::RBP, 0
1211 };
1212 const MCPhysReg *CURegs = Is64Bit ? CU64BitRegs : CU32BitRegs;
1213 for (int Idx = 1; *CURegs; ++CURegs, ++Idx)
1214 if (*CURegs == Reg)
1215 return Idx;
1216
1217 return -1;
1218 }
1219
1220
1221
1222 uint32_t encodeCompactUnwindRegistersWithFrame() const {
1223
1224
1225
1227 for (int i = 0, Idx = 0; i != CU_NUM_SAVED_REGS; ++i) {
1228 unsigned Reg = SavedRegs[i];
1229 if (Reg == 0) break;
1230
1231 int CURegNum = getCompactUnwindRegNum(Reg);
1232 if (CURegNum == -1) return ~0U;
1233
1234
1235
1236 RegEnc |= (CURegNum & 0x7) << (Idx++ * 3);
1237 }
1238
1239 assert((RegEnc & 0x3FFFF) == RegEnc &&
1240 "Invalid compact register encoding!");
1241 return RegEnc;
1242 }
1243
1244
1245
1246
1247 uint32_t encodeCompactUnwindRegistersWithoutFrame(unsigned RegCount) const {
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261 for (unsigned i = 0; i < RegCount; ++i) {
1262 int CUReg = getCompactUnwindRegNum(SavedRegs[i]);
1263 if (CUReg == -1) return ~0U;
1264 SavedRegs[i] = CUReg;
1265 }
1266
1267
1268 std::reverse(&SavedRegs[0], &SavedRegs[CU_NUM_SAVED_REGS]);
1269
1270 uint32_t RenumRegs[CU_NUM_SAVED_REGS];
1271 for (unsigned i = CU_NUM_SAVED_REGS - RegCount; i < CU_NUM_SAVED_REGS; ++i){
1272 unsigned Countless = 0;
1273 for (unsigned j = CU_NUM_SAVED_REGS - RegCount; j < i; ++j)
1274 if (SavedRegs[j] < SavedRegs[i])
1275 ++Countless;
1276
1277 RenumRegs[i] = SavedRegs[i] - Countless - 1;
1278 }
1279
1280
1281 uint32_t permutationEncoding = 0;
1282 switch (RegCount) {
1283 case 6:
1284 permutationEncoding |= 120 * RenumRegs[0] + 24 * RenumRegs[1]
1285 + 6 * RenumRegs[2] + 2 * RenumRegs[3]
1286 + RenumRegs[4];
1287 break;
1288 case 5:
1289 permutationEncoding |= 120 * RenumRegs[1] + 24 * RenumRegs[2]
1290 + 6 * RenumRegs[3] + 2 * RenumRegs[4]
1291 + RenumRegs[5];
1292 break;
1293 case 4:
1294 permutationEncoding |= 60 * RenumRegs[2] + 12 * RenumRegs[3]
1295 + 3 * RenumRegs[4] + RenumRegs[5];
1296 break;
1297 case 3:
1298 permutationEncoding |= 20 * RenumRegs[3] + 4 * RenumRegs[4]
1299 + RenumRegs[5];
1300 break;
1301 case 2:
1302 permutationEncoding |= 5 * RenumRegs[4] + RenumRegs[5];
1303 break;
1304 case 1:
1305 permutationEncoding |= RenumRegs[5];
1306 break;
1307 }
1308
1309 assert((permutationEncoding & 0x3FF) == permutationEncoding &&
1310 "Invalid compact register encoding!");
1311 return permutationEncoding;
1312 }
1313
1314public:
1317 : X86AsmBackend(T, STI), MRI(MRI), TT(STI.getTargetTriple()),
1318 Is64Bit(TT.isArch64Bit()) {
1319 memset(SavedRegs, 0, sizeof(SavedRegs));
1320 OffsetSize = Is64Bit ? 8 : 4;
1321 MoveInstrSize = Is64Bit ? 3 : 2;
1322 StackDivide = Is64Bit ? 8 : 4;
1323 }
1324
1325 std::unique_ptr
1326 createObjectTargetWriter() const override {
1330 }
1331
1332
1333
1335 const MCContext *Ctxt) const override {
1337 if (Instrs.empty()) return 0;
1338 if (!isDarwinCanonicalPersonality(FI->Personality) &&
1340 return CU::UNWIND_MODE_DWARF;
1341
1342
1343 unsigned SavedRegIdx = 0;
1344 memset(SavedRegs, 0, sizeof(SavedRegs));
1345
1346 bool HasFP = false;
1347
1348
1349 uint64_t CompactUnwindEncoding = 0;
1350
1351 unsigned SubtractInstrIdx = Is64Bit ? 3 : 2;
1352 unsigned InstrOffset = 0;
1353 unsigned StackAdjust = 0;
1355 int64_t MinAbsOffset = std::numeric_limits<int64_t>::max();
1356
1358 switch (Inst.getOperation()) {
1359 default:
1360
1361
1362 return CU::UNWIND_MODE_DWARF;
1364
1365
1366
1367
1368
1369
1371
1372
1373
1374 if (*MRI.getLLVMRegNum(Inst.getRegister(), true) !=
1375 (Is64Bit ? X86::RBP : X86::EBP))
1376 return CU::UNWIND_MODE_DWARF;
1377
1378
1379 memset(SavedRegs, 0, sizeof(SavedRegs));
1380 StackAdjust = 0;
1381 SavedRegIdx = 0;
1382 MinAbsOffset = std::numeric_limits<int64_t>::max();
1383 InstrOffset += MoveInstrSize;
1384 break;
1385 }
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401 StackSize = Inst.getOffset() / StackDivide;
1402 break;
1403 }
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417 if (SavedRegIdx == CU_NUM_SAVED_REGS)
1418
1419
1420 return CU::UNWIND_MODE_DWARF;
1421
1422 MCRegister Reg = *MRI.getLLVMRegNum(Inst.getRegister(), true);
1423 SavedRegs[SavedRegIdx++] = Reg;
1424 StackAdjust += OffsetSize;
1425 MinAbsOffset = std::min(MinAbsOffset, std::abs(Inst.getOffset()));
1426 InstrOffset += PushInstrSize(Reg);
1427 break;
1428 }
1429 }
1430 }
1431
1432 StackAdjust /= StackDivide;
1433
1434 if (HasFP) {
1435 if ((StackAdjust & 0xFF) != StackAdjust)
1436
1437 return CU::UNWIND_MODE_DWARF;
1438
1439
1440
1441 if (SavedRegIdx != 0 && MinAbsOffset != 3 * (int)OffsetSize)
1442 return CU::UNWIND_MODE_DWARF;
1443
1444
1445 uint32_t RegEnc = encodeCompactUnwindRegistersWithFrame();
1446 if (RegEnc == ~0U) return CU::UNWIND_MODE_DWARF;
1447
1448 CompactUnwindEncoding |= CU::UNWIND_MODE_BP_FRAME;
1449 CompactUnwindEncoding |= (StackAdjust & 0xFF) << 16;
1450 CompactUnwindEncoding |= RegEnc & CU::UNWIND_BP_FRAME_REGISTERS;
1451 } else {
1452 SubtractInstrIdx += InstrOffset;
1453 ++StackAdjust;
1454
1455 if ((StackSize & 0xFF) == StackSize) {
1456
1457 CompactUnwindEncoding |= CU::UNWIND_MODE_STACK_IMMD;
1458
1459
1460 CompactUnwindEncoding |= (StackSize & 0xFF) << 16;
1461 } else {
1462 if ((StackAdjust & 0x7) != StackAdjust)
1463
1464 return CU::UNWIND_MODE_DWARF;
1465
1466
1467 CompactUnwindEncoding |= CU::UNWIND_MODE_STACK_IND;
1468
1469
1470
1471 CompactUnwindEncoding |= (SubtractInstrIdx & 0xFF) << 16;
1472
1473
1474 CompactUnwindEncoding |= (StackAdjust & 0x7) << 13;
1475 }
1476
1477
1478 std::reverse(&SavedRegs[0], &SavedRegs[SavedRegIdx]);
1479 CompactUnwindEncoding |= (SavedRegIdx & 0x7) << 10;
1480
1481
1482
1483 uint32_t RegEnc = encodeCompactUnwindRegistersWithoutFrame(SavedRegIdx);
1484 if (RegEnc == ~0U) return CU::UNWIND_MODE_DWARF;
1485
1486
1487 CompactUnwindEncoding |=
1488 RegEnc & CU::UNWIND_FRAMELESS_STACK_REG_PERMUTATION;
1489 }
1490
1491 return CompactUnwindEncoding;
1492 }
1493};
1494
1495}
1496
1503 return new DarwinX86AsmBackend(T, MRI, STI);
1504
1506 return new WindowsX86AsmBackend(T, false, STI);
1507
1509
1511 return new ELFX86_IAMCUAsmBackend(T, OSABI, STI);
1512
1513 return new ELFX86_32AsmBackend(T, OSABI, STI);
1514}
1515
1522 return new DarwinX86AsmBackend(T, MRI, STI);
1523
1525 return new WindowsX86AsmBackend(T, true, STI);
1526
1527 if (TheTriple.isUEFI()) {
1529 "Only COFF format is supported in UEFI environment.");
1530 return new WindowsX86AsmBackend(T, true, STI);
1531 }
1532
1534
1535 if (TheTriple.isX32())
1536 return new ELFX86_X32AsmBackend(T, OSABI, STI);
1537 return new ELFX86_64AsmBackend(T, OSABI, STI);
1538}
1539
1540namespace {
1542public:
1543 X86ELFStreamer(MCContext &Context, std::unique_ptr TAB,
1544 std::unique_ptr OW,
1545 std::unique_ptr Emitter)
1548
1550};
1551}
1552
1556 Backend.emitInstructionBegin(S, Inst, STI);
1557 S.MCObjectStreamer::emitInstruction(Inst, STI);
1558 Backend.emitInstructionEnd(S, Inst);
1559}
1560
1561void X86ELFStreamer::emitInstruction(const MCInst &Inst,
1564}
1565
1567 std::unique_ptr &&MAB,
1568 std::unique_ptr &&MOW,
1569 std::unique_ptr &&MCE) {
1570 return new X86ELFStreamer(Context, std::move(MAB), std::move(MOW),
1571 std::move(MCE));
1572}
unsigned const MachineRegisterInfo * MRI
dxil DXContainer Global Emitter
Returns the sub type a function will return at a given Idx Should correspond to the result type of an ExtractValue instruction executed with just that one unsigned Idx
static RegisterPass< DebugifyFunctionPass > DF("debugify-function", "Attach debug info to a function")
PowerPC TLS Dynamic Call Fixup
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
This file implements the StringSwitch template, which mimics a switch() statement whose cases are str...
static MCInstrInfo * createMCInstrInfo()
static unsigned getRelaxedOpcodeBranch(unsigned Opcode, bool Is16BitMode=false)
static X86::SecondMacroFusionInstKind classifySecondInstInMacroFusion(const MCInst &MI, const MCInstrInfo &MCII)
static size_t getSizeForInstFragment(const MCFragment *F)
static bool isRIPRelative(const MCInst &MI, const MCInstrInfo &MCII)
Check if the instruction uses RIP relative addressing.
static bool isRightAfterData(MCFragment *CurrentFragment, const std::pair< MCFragment *, size_t > &PrevInstPosition)
Check if the instruction to be emitted is right after any data.
static bool mayHaveInterruptDelaySlot(unsigned InstOpcode)
X86 has certain instructions which enable interrupts exactly one instruction after the instruction wh...
static bool isFirstMacroFusibleInst(const MCInst &Inst, const MCInstrInfo &MCII)
Check if the instruction is valid as the first instruction in macro fusion.
static X86::CondCode getCondFromBranch(const MCInst &MI, const MCInstrInfo &MCII)
static unsigned getRelaxedOpcode(const MCInst &MI, bool Is16BitMode)
static unsigned getFixupKindSize(unsigned Kind)
static bool isRelaxableBranch(unsigned Opcode)
static bool isPrefix(unsigned Opcode, const MCInstrInfo &MCII)
Check if the instruction is a prefix.
static bool hasVariantSymbol(const MCInst &MI)
Check if the instruction has a variant symbol operand.
static bool is64Bit(const char *name)
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
bool empty() const
empty - Check if the array is empty.
Implements a dense probed hash-table based set.
Generic interface to target specific assembler backends.
virtual bool allowEnhancedRelaxation() const
Return true if this target allows an unrelaxable instruction to be emitted into RelaxableFragment and...
virtual unsigned getMaximumNopSize(const MCSubtargetInfo &STI) const
Returns the maximum size of a nop in bytes on this target.
virtual bool writeNopData(raw_ostream &OS, uint64_t Count, const MCSubtargetInfo *STI) const =0
Write an (optimal) nop sequence of Count bytes to the given output.
virtual void relaxInstruction(MCInst &Inst, const MCSubtargetInfo &STI) const
Relax the instruction in the given fragment to the next wider instruction.
virtual bool mayNeedRelaxation(const MCInst &Inst, const MCSubtargetInfo &STI) const
Check whether the given instruction may need relaxation.
virtual bool shouldForceRelocation(const MCAssembler &Asm, const MCFixup &Fixup, const MCValue &Target, const uint64_t Value, const MCSubtargetInfo *STI)
Hook to check if a relocation is needed for some target specific reason.
virtual bool fixupNeedsRelaxation(const MCFixup &Fixup, uint64_t Value) const
Simple predicate for targets where !Resolved implies requiring relaxation.
virtual void finishLayout(MCAssembler const &Asm) const
Give backend an opportunity to finish layout after relaxation.
virtual unsigned getNumFixupKinds() const =0
Get the number of target specific fixup kinds.
virtual const MCFixupKindInfo & getFixupKindInfo(MCFixupKind Kind) const
Get information on a fixup kind.
virtual std::optional< MCFixupKind > getFixupKind(StringRef Name) const
Map a relocation name used in .reloc to a fixup kind.
virtual void applyFixup(const MCAssembler &Asm, const MCFixup &Fixup, const MCValue &Target, MutableArrayRef< char > Data, uint64_t Value, bool IsResolved, const MCSubtargetInfo *STI) const =0
Apply the Value for given Fixup into the provided data fragment, at the offset specified by the fixup...
virtual bool allowAutoPadding() const
Return true if this target might automatically pad instructions and thus need to emit padding enable/...
MCAsmBackend & getBackend() const
Represents required padding such that a particular other set of fragments does not cross a particular...
void setLastFragment(const MCFragment *F)
MCCodeEmitter - Generic instruction encoding interface.
Context object for machine code objects.
bool emitCompactUnwindNonCanonical() const
Fragment for data and encoded instructions.
void setContents(ArrayRef< char > C)
SmallVectorImpl< MCFixup > & getFixups()
SmallVectorImpl< char > & getContents()
const MCSubtargetInfo * getSubtargetInfo() const
Retrieve the MCSubTargetInfo in effect when the instruction was encoded.
Base class for the full range of assembler expressions which are needed for parsing.
@ SymbolRef
References to labels and assigned expressions.
Encode information on a single operation to perform on a byte sequence (e.g., an encoded instruction)...
MCFragment * getNext() const
Instances of this class represent a single low-level machine instruction.
void dump_pretty(raw_ostream &OS, const MCInstPrinter *Printer=nullptr, StringRef Separator=" ", const MCRegisterInfo *RegInfo=nullptr) const
Dump the MCInst as prettily as possible using the additional MC structures, if given.
unsigned getOpcode() const
void setOpcode(unsigned Op)
const MCOperand & getOperand(unsigned i) const
Describe properties that are true of each instruction in the target description file.
bool isConditionalBranch() const
Return true if this is a branch which may fall through to the next instruction or may transfer contro...
Interface to description of machine instruction set.
const MCInstrDesc & get(unsigned Opcode) const
Return the machine instruction descriptor that corresponds to the specified instruction opcode.
Streaming object file generation interface.
MCAssembler & getAssembler()
void emitInstruction(const MCInst &Inst, const MCSubtargetInfo &STI) override
Emit the given Instruction into the current section.
MCRegister getReg() const
Returns the register number.
MCRegisterInfo base class - We assume that the target defines a static array of MCRegisterDesc object...
Wrapper class representing physical registers. Should be passed by value.
A relaxable fragment holds on to its MCInst, since it may need to be relaxed during the assembler lay...
bool getAllowAutoPadding() const
const MCInst & getInst() const
void setInst(const MCInst &Value)
Instances of this class represent a uniqued identifier for a section in the current translation unit.
void ensureMinAlignment(Align MinAlignment)
Makes sure that Alignment is at least MinAlignment.
void setHasLayout(bool Value)
Streaming machine code generation interface.
Generic base class for all target subtargets.
bool hasFeature(unsigned Feature) const
const Triple & getTargetTriple() const
MCSymbol - Instances of this class represent a symbol name in the MC file, and MCSymbols are created ...
This represents an "assembler immediate".
MutableArrayRef - Represent a mutable reference to an array (0 or more elements consecutively in memo...
SmallString - A SmallString is just a SmallVector with methods and accessors that make it work better...
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
StringRef - Represent a constant reference to a string, i.e.
std::pair< StringRef, StringRef > split(char Separator) const
Split into two substrings around the first occurrence of a separator character.
A switch()-like statement whose cases are string literals.
StringSwitch & Case(StringLiteral S, T Value)
Target - Wrapper for Target specific information.
Triple - Helper class for working with autoconf configuration names.
bool isX32() const
Tests whether the target is X32.
bool isOSBinFormatMachO() const
Tests whether the environment is MachO.
OSType getOS() const
Get the parsed operating system type of this triple.
ArchType getArch() const
Get the parsed architecture type of this triple.
bool isOSBinFormatCOFF() const
Tests whether the OS uses the COFF binary format.
bool isUEFI() const
Tests whether the OS is UEFI.
bool isOSWindows() const
Tests whether the OS is Windows.
bool isOSBinFormatELF() const
Tests whether the OS uses the ELF binary format.
Twine - A lightweight data structure for efficiently representing the concatenation of temporary valu...
The instances of the Type class are immutable: once they are created, they are never changed.
LLVM Value Representation.
std::pair< iterator, bool > insert(const ValueT &V)
size_type count(const_arg_type_t< ValueT > V) const
Return 1 if the specified key is in the set, 0 otherwise.
This class implements an extremely fast bulk output stream that can only output to a stream.
raw_ostream & write(unsigned char C)
A raw_ostream that writes to an SmallVector or SmallString.
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
CompactUnwindEncodings
Compact unwind encoding values.
Expected< uint32_t > getCPUSubType(const Triple &T)
Expected< uint32_t > getCPUType(const Triple &T)
Reg
All possible values of the reg field in the ModR/M byte.
@ RawFrmDstSrc
RawFrmDstSrc - This form is for instructions that use the source index register SI/ESI/RSI with a pos...
@ RawFrmSrc
RawFrmSrc - This form is for instructions that use the source index register SI/ESI/RSI with a possib...
@ RawFrmMemOffs
RawFrmMemOffs - This form is for instructions that store an absolute memory offset as an immediate wi...
bool isPrefix(uint64_t TSFlags)
int getMemoryOperandNo(uint64_t TSFlags)
unsigned getOperandBias(const MCInstrDesc &Desc)
Compute whether all of the def operands are repeated in the uses and therefore should be skipped.
void emitPrefix(MCCodeEmitter &MCE, const MCInst &MI, SmallVectorImpl< char > &CB, const MCSubtargetInfo &STI)
void emitInstruction(MCObjectStreamer &, const MCInst &Inst, const MCSubtargetInfo &STI)
FirstMacroFusionInstKind classifyFirstOpcodeInMacroFusion(unsigned Opcode)
AlignBranchBoundaryKind
Defines the possible values of the branch boundary alignment mask.
SecondMacroFusionInstKind
EncodingOfSegmentOverridePrefix getSegmentOverridePrefixForReg(MCRegister Reg)
Given a segment register, return the encoding of the segment override prefix for it.
unsigned getOpcodeForLongImmediateForm(unsigned Opcode)
bool isMacroFused(FirstMacroFusionInstKind FirstKind, SecondMacroFusionInstKind SecondKind)
@ reloc_global_offset_table8
@ reloc_riprel_4byte_movq_load_rex2
@ reloc_signed_4byte_relax
@ reloc_branch_4byte_pcrel
@ reloc_riprel_4byte_relax
@ reloc_riprel_4byte_relax_evex
@ reloc_riprel_4byte_relax_rex
@ reloc_global_offset_table
@ reloc_riprel_4byte_movq_load
@ reloc_riprel_4byte_relax_rex2
initializer< Ty > init(const Ty &Val)
LocationClass< Ty > location(Ty &L)
NodeAddr< CodeNode * > Code
This is an optimization pass for GlobalISel generic memory operations.
MCAsmBackend * createX86_64AsmBackend(const Target &T, const MCSubtargetInfo &STI, const MCRegisterInfo &MRI, const MCTargetOptions &Options)
std::unique_ptr< MCObjectTargetWriter > createX86WinCOFFObjectWriter(bool Is64Bit)
Construct an X86 Win COFF object writer.
void report_fatal_error(Error Err, bool gen_crash_diag=true)
Report a serious error, calling any installed error handler.
MCStreamer * createX86ELFStreamer(const Triple &T, MCContext &Context, std::unique_ptr< MCAsmBackend > &&MAB, std::unique_ptr< MCObjectWriter > &&MOW, std::unique_ptr< MCCodeEmitter > &&MCE)
MCFixupKind
Extensible enumeration to represent the type of a fixup.
@ FK_PCRel_4
A four-byte pc relative fixup.
@ FK_PCRel_2
A two-byte pc relative fixup.
@ FK_SecRel_2
A two-byte section relative fixup.
@ FirstLiteralRelocationKind
The range [FirstLiteralRelocationKind, MaxTargetFixupKind) is used for relocations coming from ....
@ FK_Data_8
A eight-byte fixup.
@ FK_Data_1
A one-byte fixup.
@ FK_Data_4
A four-byte fixup.
@ FK_SecRel_8
A eight-byte section relative fixup.
@ FK_PCRel_8
A eight-byte pc relative fixup.
@ FK_SecRel_4
A four-byte section relative fixup.
@ FK_PCRel_1
A one-byte pc relative fixup.
@ FK_SecRel_1
A one-byte section relative fixup.
@ FK_Data_2
A two-byte fixup.
raw_fd_ostream & errs()
This returns a reference to a raw_ostream for standard error.
void cantFail(Error Err, const char *Msg=nullptr)
Report a fatal error if Err is a failure value.
std::unique_ptr< MCObjectTargetWriter > createX86MachObjectWriter(bool Is64Bit, uint32_t CPUType, uint32_t CPUSubtype)
Construct an X86 Mach-O object writer.
bool isIntN(unsigned N, int64_t x)
Checks if an signed integer fits into the given (dynamic) bit width.
OutputIt move(R &&Range, OutputIt Out)
Provide wrappers to std::move which take ranges instead of having to pass begin/end explicitly.
std::unique_ptr< MCObjectTargetWriter > createX86ELFObjectWriter(bool IsELF64, uint8_t OSABI, uint16_t EMachine)
Construct an X86 ELF object writer.
Align assumeAligned(uint64_t Value)
Treats the value 0 as a 1, so Align is always at least 1.
MCAsmBackend * createX86_32AsmBackend(const Target &T, const MCSubtargetInfo &STI, const MCRegisterInfo &MRI, const MCTargetOptions &Options)
Implement std::hash so that hash_code can be used in STL containers.
This struct is a compact representation of a valid (non-zero power of two) alignment.
Description of the encoding of one expression Op.
const MCSymbol * Personality
std::vector< MCCFIInstruction > Instructions
Target independent information on a fixup kind.
@ FKF_IsPCRel
Is this fixup kind PCrelative? This is used by the assembler backend to evaluate fixup values in a ta...