What’s new in 1.4.0 (January 22, 2022) — pandas 3.0.0rc0+33.g1fd184de2a documentation (original) (raw)
These are the changes in pandas 1.4.0. See Release notes for a full changelog including other versions of pandas.
Enhancements#
Improved warning messages#
Previously, warning messages may have pointed to lines within the pandas library. Running the script setting_with_copy_warning.py
import pandas as pd
df = pd.DataFrame({'a': [1, 2, 3]}) df[:2].loc[:, 'a'] = 5
with pandas 1.3 resulted in:
.../site-packages/pandas/core/indexing.py:1951: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame.
This made it difficult to determine where the warning was being generated from. Now pandas will inspect the call stack, reporting the first line outside of the pandas library that gave rise to the warning. The output of the above script is now:
setting_with_copy_warning.py:4: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame.
Index can hold arbitrary ExtensionArrays#
Until now, passing a custom ExtensionArray to pd.Index would cast the array to object dtype. Now Index can directly hold arbitrary ExtensionArrays (GH 43930).
Previous behavior:
In [1]: arr = pd.array([1, 2, pd.NA])
In [2]: idx = pd.Index(arr)
In the old behavior, idx would be object-dtype:
Previous behavior:
In [1]: idx Out[1]: Index([1, 2, ], dtype='object')
With the new behavior, we keep the original dtype:
New behavior:
In [3]: idx Out[3]: Index([1, 2, ], dtype='Int64')
One exception to this is SparseArray, which will continue to cast to numpy dtype until pandas 2.0. At that point it will retain its dtype like other ExtensionArrays.
Styler#
Styler has been further developed in 1.4.0. The following general enhancements have been made:
- Styling and formatting of indexes has been added, with Styler.apply_index(),
Styler.applymap_index()and Styler.format_index(). These mirror the signature of the methods already used to style and format data values, and work with both HTML, LaTeX and Excel format (GH 41893, GH 43101, GH 41993, GH 41995)- The new method Styler.hide() deprecates
Styler.hide_index()andStyler.hide_columns()(GH 43758)- The keyword arguments
levelandnameshave been added to Styler.hide() (and implicitly to the deprecated methodsStyler.hide_index()andStyler.hide_columns()) for additional control of visibility of MultiIndexes and of Index names (GH 25475, GH 43404, GH 43346)- The Styler.export() and Styler.use() have been updated to address all of the added functionality from v1.2.0 and v1.3.0 (GH 40675)
- Global options under the category
pd.options.stylerhave been extended to configure defaultStylerproperties which address formatting, encoding, and HTML and LaTeX rendering. Note that formerlyStylerrelied ondisplay.html.use_mathjax, which has now been replaced bystyler.html.mathjax(GH 41395)- Validation of certain keyword arguments, e.g.
caption(GH 43368)- Various bug fixes as recorded below
Additionally there are specific enhancements to the HTML specific rendering:
- Styler.bar() introduces additional arguments to control alignment and display (GH 26070, GH 36419), and it also validates the input arguments
widthandheight(GH 42511)- Styler.to_html() introduces keyword arguments
sparse_index,sparse_columns,bold_headers,caption,max_rowsandmax_columns(GH 41946, GH 43149, GH 42972)- Styler.to_html() omits CSSStyle rules for hidden table elements as a performance enhancement (GH 43619)
- Custom CSS classes can now be directly specified without string replacement (GH 43686)
- Ability to render hyperlinks automatically via a new
hyperlinksformatting keyword argument (GH 45058)
There are also some LaTeX specific enhancements:
- Styler.to_latex() introduces keyword argument
environment, which also allows a specific “longtable” entry through a separate jinja2 template (GH 41866)- Naive sparsification is now possible for LaTeX without the necessity of including the multirow package (GH 43369)
- cline support has been added for MultiIndex row sparsification through a keyword argument (GH 45138)
Multi-threaded CSV reading with a new CSV Engine based on pyarrow#
pandas.read_csv() now accepts engine="pyarrow" (requires at leastpyarrow 1.0.1) as an argument, allowing for faster csv parsing on multicore machines with pyarrow installed. See the I/O docs for more info. (GH 23697, GH 43706)
Rank function for rolling and expanding windows#
Added rank function to Rolling and Expanding. The new function supports the method, ascending, and pct flags ofDataFrame.rank(). The method argument supports min, max, andaverage ranking methods. Example:
In [4]: s = pd.Series([1, 4, 2, 3, 5, 3])
In [5]: s.rolling(3).rank() Out[5]: 0 NaN 1 NaN 2 2.0 3 2.0 4 3.0 5 1.5 dtype: float64
In [6]: s.rolling(3).rank(method="max") Out[6]: 0 NaN 1 NaN 2 2.0 3 2.0 4 3.0 5 2.0 dtype: float64
Groupby positional indexing#
It is now possible to specify positional ranges relative to the ends of each group.
Negative arguments for DataFrameGroupBy.head(), SeriesGroupBy.head(), DataFrameGroupBy.tail(), and SeriesGroupBy.tail() now work correctly and result in ranges relative to the end and start of each group, respectively. Previously, negative arguments returned empty frames.
In [7]: df = pd.DataFrame([["g", "g0"], ["g", "g1"], ["g", "g2"], ["g", "g3"], ...: ["h", "h0"], ["h", "h1"]], columns=["A", "B"]) ...:
In [8]: df.groupby("A").head(-1) Out[8]: A B 0 g g0 1 g g1 2 g g2 4 h h0
DataFrameGroupBy.nth() and SeriesGroupBy.nth() now accept a slice or list of integers and slices.
In [9]: df.groupby("A").nth(slice(1, -1)) Out[9]: A B 1 g g1 2 g g2
In [10]: df.groupby("A").nth([slice(None, 1), slice(-1, None)]) Out[10]: A B 0 g g0 3 g g3 4 h h0 5 h h1
DataFrameGroupBy.nth() and SeriesGroupBy.nth() now accept index notation.
In [11]: df.groupby("A").nth[1, -1] Out[11]: A B 1 g g1 3 g g3 5 h h1
In [12]: df.groupby("A").nth[1:-1] Out[12]: A B 1 g g1 2 g g2
In [13]: df.groupby("A").nth[:1, -1:] Out[13]: A B 0 g g0 3 g g3 4 h h0 5 h h1
DataFrame.from_dict and DataFrame.to_dict have new 'tight' option#
A new 'tight' dictionary format that preserves MultiIndex entries and names is now available with the DataFrame.from_dict() andDataFrame.to_dict() methods and can be used with the standard jsonlibrary to produce a tight representation of DataFrame objects (GH 4889).
In [14]: df = pd.DataFrame.from_records( ....: [[1, 3], [2, 4]], ....: index=pd.MultiIndex.from_tuples([("a", "b"), ("a", "c")], ....: names=["n1", "n2"]), ....: columns=pd.MultiIndex.from_tuples([("x", 1), ("y", 2)], ....: names=["z1", "z2"]), ....: ) ....:
In [15]: df
Out[15]:
z1 x y
z2 1 2
n1 n2
a b 1 3
c 2 4
In [16]: df.to_dict(orient='tight') Out[16]: {'index': [('a', 'b'), ('a', 'c')], 'columns': [('x', 1), ('y', 2)], 'data': [[1, 3], [2, 4]], 'index_names': ['n1', 'n2'], 'column_names': ['z1', 'z2']}
Other enhancements#
- concat() will preserve the
attrswhen it is the same for all objects and discard theattrswhen they are different (GH 41828) DataFrameGroupByoperations withas_index=Falsenow correctly retainExtensionDtypedtypes for columns being grouped on (GH 41373)- Add support for assigning values to
byargument in DataFrame.plot.hist() and DataFrame.plot.box() (GH 15079) - Series.sample(), DataFrame.sample(), DataFrameGroupBy.sample(), and SeriesGroupBy.sample() now accept a
np.random.Generatoras input torandom_state. A generator will be more performant, especially withreplace=False(GH 38100) - Series.ewm() and DataFrame.ewm() now support a
methodargument with a'table'option that performs the windowing operation over an entire DataFrame. See Window Overview for performance and functional benefits (GH 42273) - DataFrameGroupBy.cummin(), SeriesGroupBy.cummin(), DataFrameGroupBy.cummax(), and SeriesGroupBy.cummax() now support the argument
skipna(GH 34047) - read_table() now supports the argument
storage_options(GH 39167) - DataFrame.to_stata() and
StataWriter()now accept the keyword only argumentvalue_labelsto save labels for non-categorical columns (GH 38454) - Methods that relied on hashmap based algos such as
DataFrameGroupBy.value_counts(),DataFrameGroupBy.count()and factorize() ignored imaginary component for complex numbers (GH 17927) - Add Series.str.removeprefix() and Series.str.removesuffix() introduced in Python 3.9 to remove pre-/suffixes from string-type Series (GH 36944)
- Attempting to write into a file in missing parent directory with DataFrame.to_csv(), DataFrame.to_html(), DataFrame.to_excel(), DataFrame.to_feather(), DataFrame.to_parquet(), DataFrame.to_stata(), DataFrame.to_json(), DataFrame.to_pickle(), and DataFrame.to_xml() now explicitly mentions missing parent directory, the same is true for Series counterparts (GH 24306)
- Indexing with
.locand.ilocnow supportsEllipsis(GH 37750) IntegerArray.all(),IntegerArray.any(),FloatingArray.any(), andFloatingArray.all()use Kleene logic (GH 41967)- Added support for nullable boolean and integer types in DataFrame.to_stata(),
StataWriter,StataWriter117, andStataWriterUTF8(GH 40855) DataFrame.__pos__()andDataFrame.__neg__()now retainExtensionDtypedtypes (GH 43883)- The error raised when an optional dependency can’t be imported now includes the original exception, for easier investigation (GH 43882)
- Added ExponentialMovingWindow.sum() (GH 13297)
- Series.str.split() now supports a
regexargument that explicitly specifies whether the pattern is a regular expression. Default isNone(GH 43563, GH 32835, GH 25549) - DataFrame.dropna() now accepts a single label as
subsetalong with array-like (GH 41021) - Added
DataFrameGroupBy.value_counts()(GH 43564) - read_csv() now accepts a
callablefunction inon_bad_lineswhenengine="python"for custom handling of bad lines (GH 5686) - ExcelWriter argument
if_sheet_exists="overlay"option added (GH 40231) - read_excel() now accepts a
decimalargument that allow the user to specify the decimal point when parsing string columns to numeric (GH 14403) - DataFrameGroupBy.mean(), SeriesGroupBy.mean(), DataFrameGroupBy.std(), SeriesGroupBy.std(), DataFrameGroupBy.var(), SeriesGroupBy.var(), DataFrameGroupBy.sum(), and SeriesGroupBy.sum() now support Numba execution with the
enginekeyword (GH 43731, GH 44862, GH 44939) - Timestamp.isoformat() now handles the
timespecargument from the basedatetimeclass (GH 26131) NaT.to_numpy()dtypeargument is now respected, sonp.timedelta64can be returned (GH 44460)- New option
display.max_dir_itemscustomizes the number of columns added toDataframe.__dir__()and suggested for tab completion (GH 37996) - Added “Juneteenth National Independence Day” to
USFederalHolidayCalendar(GH 44574) - Rolling.var(), Expanding.var(), Rolling.std(), and Expanding.std() now support Numba execution with the
enginekeyword (GH 44461) - Series.info() has been added, for compatibility with DataFrame.info() (GH 5167)
- Implemented
IntervalArray.min()andIntervalArray.max(), as a result of whichminandmaxnow work for IntervalIndex, Series and DataFrame withIntervalDtype(GH 44746) UInt64Index.map()now retainsdtypewhere possible (GH 44609)- read_json() can now parse unsigned long long integers (GH 26068)
- DataFrame.take() now raises a
TypeErrorwhen passed a scalar for the indexer (GH 42875) is_list_like()now identifies duck-arrays as list-like unless.ndim == 0(GH 35131)ExtensionDtypeandExtensionArrayare now (de)serialized when exporting a DataFrame with DataFrame.to_json() usingorient='table'(GH 20612, GH 44705)- Add support for Zstandard compression to DataFrame.to_pickle()/read_pickle() and friends (GH 43925)
- DataFrame.to_sql() now returns an
intof the number of written rows (GH 23998)
Notable bug fixes#
These are bug fixes that might have notable behavior changes.
Inconsistent date string parsing#
The dayfirst option of to_datetime() isn’t strict, and this can lead to surprising behavior:
In [17]: pd.to_datetime(["31-12-2021"], dayfirst=False) Out[17]: DatetimeIndex(['2021-12-31'], dtype='datetime64[us]', freq=None)
Now, a warning will be raised if a date string cannot be parsed accordance to the given dayfirst value when the value is a delimited date string (e.g.31-12-2012).
Ignoring dtypes in concat with empty or all-NA columns#
Note
This behaviour change has been reverted in pandas 1.4.3.
When using concat() to concatenate two or more DataFrame objects, if one of the DataFrames was empty or had all-NA values, its dtype was_sometimes_ ignored when finding the concatenated dtype. These are now consistently not ignored (GH 43507).
In [3]: df1 = pd.DataFrame({"bar": [pd.Timestamp("2013-01-01")]}, index=range(1)) In [4]: df2 = pd.DataFrame({"bar": np.nan}, index=range(1, 2)) In [5]: res = pd.concat([df1, df2])
Previously, the float-dtype in df2 would be ignored so the result dtype would be datetime64[ns]. As a result, the np.nan would be cast toNaT.
Previous behavior:
In [6]: res Out[6]: bar 0 2013-01-01 1 NaT
Now the float-dtype is respected. Since the common dtype for these DataFrames is object, the np.nan is retained.
New behavior:
In [6]: res Out[6]: bar 0 2013-01-01 00:00:00 1 NaN
Null-values are no longer coerced to NaN-value in value_counts and mode#
Series.value_counts() and Series.mode() no longer coerce None,NaT and other null-values to a NaN-value for np.object_-dtype. This behavior is now consistent with unique, isin and others (GH 42688).
In [18]: s = pd.Series([True, None, pd.NaT, None, pd.NaT, None])
In [19]: res = s.value_counts(dropna=False)
Previously, all null-values were replaced by a NaN-value.
Previous behavior:
In [3]: res Out[3]: NaN 5 True 1 dtype: int64
Now null-values are no longer mangled.
New behavior:
In [20]: res Out[20]: None 3 NaT 2 True 1 Name: count, dtype: int64
mangle_dupe_cols in read_csv no longer renames unique columns conflicting with target names#
read_csv() no longer renames unique column labels which conflict with the target names of duplicated columns. Already existing columns are skipped, i.e. the next available index is used for the target column name (GH 14704).
In [21]: import io
In [22]: data = "a,a,a.1\n1,2,3"
In [23]: res = pd.read_csv(io.StringIO(data))
Previously, the second column was called a.1, while the third column was also renamed to a.1.1.
Previous behavior:
In [3]: res Out[3]: a a.1 a.1.1 0 1 2 3
Now the renaming checks if a.1 already exists when changing the name of the second column and jumps this index. The second column is instead renamed toa.2.
New behavior:
In [24]: res Out[24]: a a.2 a.1 0 1 2 3
unstack and pivot_table no longer raises ValueError for result that would exceed int32 limit#
Previously DataFrame.pivot_table() and DataFrame.unstack() would raise a ValueError if the operation could produce a result with more than2**31 - 1 elements. This operation now raises aerrors.PerformanceWarning instead (GH 26314).
Previous behavior:
In [3]: df = DataFrame({"ind1": np.arange(2 ** 16), "ind2": np.arange(2 ** 16), "count": 0}) In [4]: df.pivot_table(index="ind1", columns="ind2", values="count", aggfunc="count") ValueError: Unstacked DataFrame is too big, causing int32 overflow
New behavior:
In [4]: df.pivot_table(index="ind1", columns="ind2", values="count", aggfunc="count") PerformanceWarning: The following operation may generate 4294967296 cells in the resulting pandas object.
groupby.apply consistent transform detection#
DataFrameGroupBy.apply() and SeriesGroupBy.apply() are designed to be flexible, allowing users to perform aggregations, transformations, filters, and use it with user-defined functions that might not fall into any of these categories. As part of this, apply will attempt to detect when an operation is a transform, and in such a case, the result will have the same index as the input. In order to determine if the operation is a transform, pandas compares the input’s index to the result’s and determines if it has been mutated. Previously in pandas 1.3, different code paths used different definitions of “mutated”: some would use Python’s iswhereas others would test only up to equality.
This inconsistency has been removed, pandas now tests up to equality.
In [25]: def func(x): ....: return x.copy() ....:
In [26]: df = pd.DataFrame({'a': [1, 2], 'b': [3, 4], 'c': [5, 6]})
In [27]: df Out[27]: a b c 0 1 3 5 1 2 4 6
Previous behavior:
In [3]: df.groupby(['a']).apply(func) Out[3]: a b c a 1 0 1 3 5 2 1 2 4 6
In [4]: df.set_index(['a', 'b']).groupby(['a']).apply(func) Out[4]: c a b 1 3 5 2 4 6
In the examples above, the first uses a code path where pandas uses is and determines that func is not a transform whereas the second tests up to equality and determines that func is a transform. In the first case, the result’s index is not the same as the input’s.
New behavior:
In [5]: df.groupby(['a']).apply(func) Out[5]: a b c 0 1 3 5 1 2 4 6
In [6]: df.set_index(['a', 'b']).groupby(['a']).apply(func) Out[6]: c a b 1 3 5 2 4 6
Now in both cases it is determined that func is a transform. In each case, the result has the same index as the input.
Backwards incompatible API changes#
Increased minimum version for Python#
pandas 1.4.0 supports Python 3.8 and higher.
Increased minimum versions for dependencies#
Some minimum supported versions of dependencies were updated. If installed, we now require:
For optional libraries the general recommendation is to use the latest version. The following table lists the lowest version per library that is currently being tested throughout the development of pandas. Optional libraries below the lowest tested version may still work, but are not considered supported.
See Dependencies and Optional dependencies for more.
Other API changes#
- Index.get_indexer_for() no longer accepts keyword arguments (other than
target); in the past these would be silently ignored if the index was not unique (GH 42310) - Change in the position of the
min_rowsargument in DataFrame.to_string() due to change in the docstring (GH 44304) - Reduction operations for DataFrame or Series now raising a
ValueErrorwhenNoneis passed forskipna(GH 44178) - read_csv() and read_html() no longer raising an error when one of the header rows consists only of
Unnamed:columns (GH 13054) - Changed the
nameattribute of several holidays inUSFederalHolidayCalendarto match official federal holiday namesspecifically:- “New Year’s Day” gains the possessive apostrophe
- “Presidents Day” becomes “Washington’s Birthday”
- “Martin Luther King Jr. Day” is now “Birthday of Martin Luther King, Jr.”
- “July 4th” is now “Independence Day”
- “Thanksgiving” is now “Thanksgiving Day”
- “Christmas” is now “Christmas Day”
- Added “Juneteenth National Independence Day”
Deprecations#
Deprecated Int64Index, UInt64Index & Float64Index#
Int64Index, UInt64Index and Float64Index have been deprecated in favor of the base Index class and will be removed in pandas 2.0 (GH 43028).
For constructing a numeric index, you can use the base Index class instead specifying the data type (which will also work on older pandas releases):
replace
pd.Int64Index([1, 2, 3])
with
pd.Index([1, 2, 3], dtype="int64")
For checking the data type of an index object, you can replace isinstancechecks with checking the dtype:
replace
isinstance(idx, pd.Int64Index)
with
idx.dtype == "int64"
Currently, in order to maintain backward compatibility, calls to Indexwill continue to return Int64Index, UInt64Index andFloat64Index when given numeric data, but in the future, anIndex will be returned.
Current behavior:
In [1]: pd.Index([1, 2, 3], dtype="int32") Out [1]: Int64Index([1, 2, 3], dtype='int64') In [1]: pd.Index([1, 2, 3], dtype="uint64") Out [1]: UInt64Index([1, 2, 3], dtype='uint64')
Future behavior:
In [3]: pd.Index([1, 2, 3], dtype="int32") Out [3]: Index([1, 2, 3], dtype='int32') In [4]: pd.Index([1, 2, 3], dtype="uint64") Out [4]: Index([1, 2, 3], dtype='uint64')
Deprecated DataFrame.append and Series.append#
DataFrame.append() and Series.append() have been deprecated and will be removed in a future version. Use pandas.concat() instead (GH 35407).
Deprecated syntax
In [1]: pd.Series([1, 2]).append(pd.Series([3, 4])) Out [1]: :1: FutureWarning: The series.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead. 0 1 1 2 0 3 1 4 dtype: int64
In [2]: df1 = pd.DataFrame([[1, 2], [3, 4]], columns=list('AB')) In [3]: df2 = pd.DataFrame([[5, 6], [7, 8]], columns=list('AB')) In [4]: df1.append(df2) Out [4]: :1: FutureWarning: The series.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead. A B 0 1 2 1 3 4 0 5 6 1 7 8
Recommended syntax
In [28]: pd.concat([pd.Series([1, 2]), pd.Series([3, 4])]) Out[28]: 0 1 1 2 0 3 1 4 dtype: int64
In [29]: df1 = pd.DataFrame([[1, 2], [3, 4]], columns=list('AB'))
In [30]: df2 = pd.DataFrame([[5, 6], [7, 8]], columns=list('AB'))
In [31]: pd.concat([df1, df2]) Out[31]: A B 0 1 2 1 3 4 0 5 6 1 7 8
Other Deprecations#
- Deprecated
Index.is_type_compatible()(GH 42113) - Deprecated
methodargument in Index.get_loc(), useindex.get_indexer([label], method=...)instead (GH 42269) - Deprecated treating integer keys in
Series.__setitem__()as positional when the index is aFloat64Indexnot containing the key, a IntervalIndex with no entries containing the key, or a MultiIndex with leadingFloat64Indexlevel not containing the key (GH 33469) - Deprecated treating
numpy.datetime64objects as UTC times when passed to the Timestamp constructor along with a timezone. In a future version, these will be treated as wall-times. To retain the old behavior, useTimestamp(dt64).tz_localize("UTC").tz_convert(tz)(GH 24559) - Deprecated ignoring missing labels when indexing with a sequence of labels on a level of a MultiIndex (GH 42351)
- Creating an empty Series without a
dtypewill now raise a more visibleFutureWarninginstead of aDeprecationWarning(GH 30017) - Deprecated the
kindargument in Index.get_slice_bound(), Index.slice_indexer(), and Index.slice_locs(); in a future version passingkindwill raise (GH 42857) - Deprecated dropping of nuisance columns in
Rolling,Expanding, andEWMaggregations (GH 42738) - Deprecated Index.reindex() with a non-unique Index (GH 42568)
- Deprecated
Styler.render()in favor of Styler.to_html() (GH 42140) - Deprecated
Styler.hide_index()andStyler.hide_columns()in favor of Styler.hide() (GH 43758) - Deprecated passing in a string column label into
timesin DataFrame.ewm() (GH 43265) - Deprecated the
include_startandinclude_endarguments in DataFrame.between_time(); in a future version passinginclude_startorinclude_endwill raise (GH 40245) - Deprecated the
squeezeargument to read_csv(), read_table(), and read_excel(). Users should squeeze the DataFrame afterwards with.squeeze("columns")instead (GH 43242) - Deprecated the
indexargument toSparseArrayconstruction (GH 23089) - Deprecated the
closedargument in date_range() and bdate_range() in favor ofinclusiveargument; In a future version passingclosedwill raise (GH 40245) - Deprecated
Rolling.validate(),Expanding.validate(), andExponentialMovingWindow.validate()(GH 43665) - Deprecated silent dropping of columns that raised a
TypeErrorin Series.transform and DataFrame.transform when used with a dictionary (GH 43740) - Deprecated silent dropping of columns that raised a
TypeError,DataError, and some cases ofValueErrorin Series.aggregate(), DataFrame.aggregate(),Series.groupby.aggregate(), andDataFrame.groupby.aggregate()when used with a list (GH 43740) - Deprecated casting behavior when setting timezone-aware value(s) into a timezone-aware Series or DataFrame column when the timezones do not match. Previously this cast to object dtype. In a future version, the values being inserted will be converted to the series or column’s existing timezone (GH 37605)
- Deprecated casting behavior when passing an item with mismatched-timezone to
DatetimeIndex.insert(),DatetimeIndex.putmask(),DatetimeIndex.where()DatetimeIndex.fillna(), Series.mask(), Series.where(), Series.fillna(), Series.shift(), Series.replace(), Series.reindex() (and DataFrame column analogues). In the past this has cast to objectdtype. In a future version, these will cast the passed item to the index or series’s timezone (GH 37605, GH 44940) - Deprecated the
prefixkeyword argument in read_csv() and read_table(), in a future version the argument will be removed (GH 43396) - Deprecated passing non boolean argument to
sortin concat() (GH 41518) - Deprecated passing arguments as positional for read_fwf() other than
filepath_or_buffer(GH 41485) - Deprecated passing arguments as positional for read_xml() other than
path_or_buffer(GH 45133) - Deprecated passing
skipna=NoneforDataFrame.mad()andSeries.mad(), passskipna=Trueinstead (GH 44580) - Deprecated the behavior of to_datetime() with the string “now” with
utc=False; in a future version this will matchTimestamp("now"), which in turn matches Timestamp.now() returning the local time (GH 18705) - Deprecated
DateOffset.apply(), useoffset + otherinstead (GH 44522) - Deprecated parameter
namesin Index.copy() (GH 44916) - A deprecation warning is now shown for DataFrame.to_latex() indicating the arguments signature may change and emulate more the arguments to Styler.to_latex() in future versions (GH 44411)
- Deprecated behavior of concat() between objects with bool-dtype and numeric-dtypes; in a future version these will cast to object dtype instead of coercing bools to numeric values (GH 39817)
- Deprecated
Categorical.replace(), use Series.replace() instead (GH 44929) - Deprecated passing
setordictas indexer forDataFrame.loc.__setitem__(),DataFrame.loc.__getitem__(),Series.loc.__setitem__(),Series.loc.__getitem__(),DataFrame.__getitem__(),Series.__getitem__()andSeries.__setitem__()(GH 42825) - Deprecated
Index.__getitem__()with a bool key; useindex.values[key]to get the old behavior (GH 44051) - Deprecated downcasting column-by-column in DataFrame.where() with integer-dtypes (GH 44597)
- Deprecated
DatetimeIndex.union_many(), useDatetimeIndex.union()instead (GH 44091) - Deprecated
Groupby.pad()in favor ofGroupby.ffill()(GH 33396) - Deprecated
Groupby.backfill()in favor ofGroupby.bfill()(GH 33396) - Deprecated
Resample.pad()in favor ofResample.ffill()(GH 33396) - Deprecated
Resample.backfill()in favor ofResample.bfill()(GH 33396) - Deprecated
numeric_only=Nonein DataFrame.rank(); in a future versionnumeric_onlymust be eitherTrueorFalse(the default) (GH 45036) - Deprecated the behavior of Timestamp.utcfromtimestamp(), in the future it will return a timezone-aware UTC Timestamp (GH 22451)
- Deprecated
NaT.freq()(GH 45071) - Deprecated behavior of Series and DataFrame construction when passed float-dtype data containing
NaNand an integer dtype ignoring the dtype argument; in a future version this will raise (GH 40110) - Deprecated the behaviour of Series.to_frame() and Index.to_frame() to ignore the
nameargument whenname=None. Currently, this means to preserve the existing name, but in the future explicitly passingname=Nonewill setNoneas the name of the column in the resulting DataFrame (GH 44212)
Performance improvements#
- Performance improvement in DataFrameGroupBy.sample() and SeriesGroupBy.sample(), especially when
weightsargument provided (GH 34483) - Performance improvement when converting non-string arrays to string arrays (GH 34483)
- Performance improvement in DataFrameGroupBy.transform() and SeriesGroupBy.transform() for user-defined functions (GH 41598)
- Performance improvement in constructing DataFrame objects (GH 42631, GH 43142, GH 43147, GH 43307, GH 43144, GH 44826)
- Performance improvement in DataFrameGroupBy.shift() and SeriesGroupBy.shift() when
fill_valueargument is provided (GH 26615) - Performance improvement in DataFrame.corr() for
method=pearsonon data without missing values (GH 40956) - Performance improvement in some DataFrameGroupBy.apply() and SeriesGroupBy.apply() operations (GH 42992, GH 43578)
- Performance improvement in read_stata() (GH 43059, GH 43227)
- Performance improvement in read_sas() (GH 43333)
- Performance improvement in to_datetime() with
uintdtypes (GH 42606) - Performance improvement in to_datetime() with
infer_datetime_formatset toTrue(GH 43901) - Performance improvement in Series.sparse.to_coo() (GH 42880)
- Performance improvement in indexing with a
UInt64Index(GH 43862) - Performance improvement in indexing with a
Float64Index(GH 43705) - Performance improvement in indexing with a non-unique Index (GH 43792)
- Performance improvement in indexing with a listlike indexer on a MultiIndex (GH 43370)
- Performance improvement in indexing with a MultiIndex indexer on another MultiIndex (GH 43370)
- Performance improvement in DataFrameGroupBy.quantile() and SeriesGroupBy.quantile() (GH 43469, GH 43725)
- Performance improvement in DataFrameGroupBy.count() and SeriesGroupBy.count() (GH 43730, GH 43694)
- Performance improvement in DataFrameGroupBy.any(), SeriesGroupBy.any(), DataFrameGroupBy.all(), and SeriesGroupBy.all() (GH 43675, GH 42841)
- Performance improvement in DataFrameGroupBy.std() and SeriesGroupBy.std() (GH 43115, GH 43576)
- Performance improvement in DataFrameGroupBy.cumsum() and SeriesGroupBy.cumsum() (GH 43309)
SparseArray.min()andSparseArray.max()no longer require converting to a dense array (GH 43526)- Indexing into a
SparseArraywith aslicewithstep=1no longer requires converting to a dense array (GH 43777) - Performance improvement in
SparseArray.take()withallow_fill=False(GH 43654) - Performance improvement in Rolling.mean(), Expanding.mean(), Rolling.sum(), Expanding.sum(), Rolling.max(), Expanding.max(), Rolling.min() and Expanding.min() with
engine="numba"(GH 43612, GH 44176, GH 45170) - Improved performance of pandas.read_csv() with
memory_map=Truewhen file encoding is UTF-8 (GH 43787) - Performance improvement in
RangeIndex.sort_values()overriding Index.sort_values() (GH 43666) - Performance improvement in
RangeIndex.insert()(GH 43988) - Performance improvement in Index.insert() (GH 43953)
- Performance improvement in
DatetimeIndex.tolist()(GH 43823) - Performance improvement in
DatetimeIndex.union()(GH 42353) - Performance improvement in Series.nsmallest() (GH 43696)
- Performance improvement in DataFrame.insert() (GH 42998)
- Performance improvement in DataFrame.dropna() (GH 43683)
- Performance improvement in DataFrame.fillna() (GH 43316)
- Performance improvement in DataFrame.values() (GH 43160)
- Performance improvement in DataFrame.select_dtypes() (GH 42611)
- Performance improvement in DataFrame reductions (GH 43185, GH 43243, GH 43311, GH 43609)
- Performance improvement in Series.unstack() and DataFrame.unstack() (GH 43335, GH 43352, GH 42704, GH 43025)
- Performance improvement in Series.to_frame() (GH 43558)
- Performance improvement in
Series.mad()(GH 43010) - Performance improvement in merge() (GH 43332)
- Performance improvement in
to_csv()when index column is a datetime and is formatted (GH 39413) - Performance improvement in
to_csv()when MultiIndex contains a lot of unused levels (GH 37484) - Performance improvement in read_csv() when
index_colwas set with a numeric column (GH 44158) - Performance improvement in concat() (GH 43354)
- Performance improvement in
SparseArray.__getitem__()(GH 23122) - Performance improvement in constructing a DataFrame from array-like objects like a
Pytorchtensor (GH 44616)
Bug fixes#
Categorical#
- Bug in setting dtype-incompatible values into a Categorical (or
SeriesorDataFramebacked byCategorical) raisingValueErrorinstead ofTypeError(GH 41919) - Bug in
Categorical.searchsorted()when passing a dtype-incompatible value raisingKeyErrorinstead ofTypeError(GH 41919) - Bug in
Categorical.astype()casting datetimes and Timestamp to int for dtypeobject(GH 44930) - Bug in Series.where() with
CategoricalDtypewhen passing a dtype-incompatible value raisingValueErrorinstead ofTypeError(GH 41919) - Bug in
Categorical.fillna()when passing a dtype-incompatible value raisingValueErrorinstead ofTypeError(GH 41919) - Bug in
Categorical.fillna()with a tuple-like category raisingValueErrorinstead ofTypeErrorwhen filling with a non-category tuple (GH 41919)
Datetimelike#
- Bug in DataFrame constructor unnecessarily copying non-datetimelike 2D object arrays (GH 39272)
- Bug in to_datetime() with
formatandpandas.NAwas raisingValueError(GH 42957) - to_datetime() would silently swap
MM/DD/YYYYandDD/MM/YYYYformats if the givendayfirstoption could not be respected - now, a warning is raised in the case of delimited date strings (e.g.31-12-2012) (GH 12585) - Bug in date_range() and bdate_range() do not return right bound when
start=endand set is closed on one side (GH 43394) - Bug in inplace addition and subtraction of DatetimeIndex or TimedeltaIndex with
DatetimeArrayorTimedeltaArray(GH 43904) - Bug in calling
np.isnan,np.isfinite, ornp.isinfon a timezone-aware DatetimeIndex incorrectly raisingTypeError(GH 43917) - Bug in constructing a Series from datetime-like strings with mixed timezones incorrectly partially-inferring datetime values (GH 40111)
- Bug in addition of a
Tickobject and anp.timedelta64object incorrectly raising instead of returning Timedelta (GH 44474) np.maximum.reduceandnp.minimum.reducenow correctly return Timestamp and Timedelta objects when operating on Series, DataFrame, or Index withdatetime64[ns]ortimedelta64[ns]dtype (GH 43923)- Bug in adding a
np.timedelta64object to aBusinessDayorCustomBusinessDayobject incorrectly raising (GH 44532) - Bug in Index.insert() for inserting
np.datetime64,np.timedelta64ortupleinto Index withdtype='object'with negative loc addingNoneand replacing existing value (GH 44509) - Bug in Timestamp.to_pydatetime() failing to retain the
foldattribute (GH 45087) - Bug in Series.mode() with
DatetimeTZDtypeincorrectly returning timezone-naive andPeriodDtypeincorrectly raising (GH 41927) - Fixed regression in reindex() raising an error when using an incompatible fill value with a datetime-like dtype (or not raising a deprecation warning for using a
datetime.dateas fill value) (GH 42921) - Bug in DateOffset addition with Timestamp where
offset.nanosecondswould not be included in the result (GH 43968, GH 36589) - Bug in Timestamp.fromtimestamp() not supporting the
tzargument (GH 45083) - Bug in DataFrame construction from dict of Series with mismatched index dtypes sometimes raising depending on the ordering of the passed dict (GH 44091)
- Bug in Timestamp hashing during some DST transitions caused a segmentation fault (GH 33931 and GH 40817)
Timedelta#
- Bug in division of all-
NaTTimeDeltaIndex, Series or DataFrame column with object-dtype array like of numbers failing to infer the result as timedelta64-dtype (GH 39750) - Bug in floor division of
timedelta64[ns]data with a scalar returning garbage values (GH 44466) - Bug in Timedelta now properly taking into account any nanoseconds contribution of any kwarg (GH 43764, GH 45227)
Time Zones#
- Bug in to_datetime() with
infer_datetime_format=Truefailing to parse zero UTC offset (Z) correctly (GH 41047) - Bug in Series.dt.tz_convert() resetting index in a Series with CategoricalIndex (GH 43080)
- Bug in
TimestampandDatetimeIndexincorrectly raising aTypeErrorwhen subtracting two timezone-aware objects with mismatched timezones (GH 31793)
Numeric#
- Bug in floor-dividing a list or tuple of integers by a Series incorrectly raising (GH 44674)
- Bug in DataFrame.rank() raising
ValueErrorwithobjectcolumns andmethod="first"(GH 41931) - Bug in DataFrame.rank() treating missing values and extreme values as equal (for example
np.nanandnp.inf), causing incorrect results whenna_option="bottom"orna_option="topused (GH 41931) - Bug in
numexprengine still being used when the optioncompute.use_numexpris set toFalse(GH 32556) - Bug in DataFrame arithmetic ops with a subclass whose
_constructor()attribute is a callable other than the subclass itself (GH 43201) - Bug in arithmetic operations involving RangeIndex where the result would have the incorrect
name(GH 43962) - Bug in arithmetic operations involving Series where the result could have the incorrect
namewhen the operands having matching NA or matching tuple names (GH 44459) - Bug in division with
IntegerDtypeorBooleanDtypearray and NA scalar incorrectly raising (GH 44685) - Bug in multiplying a Series with
FloatingDtypewith a timedelta-like scalar incorrectly raising (GH 44772)
Conversion#
- Bug in
UInt64Indexconstructor when passing a list containing both positive integers small enough to cast to int64 and integers too large to hold in int64 (GH 42201) - Bug in Series constructor returning 0 for missing values with dtype
int64andFalsefor dtypebool(GH 43017, GH 43018) - Bug in constructing a DataFrame from a
PandasArraycontaining Series objects behaving differently than an equivalentnp.ndarray(GH 43986) - Bug in
IntegerDtypenot allowing coercion from string dtype (GH 25472) - Bug in to_datetime() with
arg:xr.DataArrayandunit="ns"specified raisesTypeError(GH 44053) - Bug in DataFrame.convert_dtypes() not returning the correct type when a subclass does not overload
_constructor_sliced()(GH 43201) - Bug in DataFrame.astype() not propagating
attrsfrom the original DataFrame (GH 44414) - Bug in DataFrame.convert_dtypes() result losing
columns.names(GH 41435) - Bug in constructing a
IntegerArrayfrom pyarrow data failing to validate dtypes (GH 44891) - Bug in Series.astype() not allowing converting from a
PeriodDtypetodatetime64dtype, inconsistent with the PeriodIndex behavior (GH 45038)
Strings#
- Bug in checking for
string[pyarrow]dtype incorrectly raising anImportErrorwhen pyarrow is not installed (GH 44276)
Interval#
- Bug in Series.where() with
IntervalDtypeincorrectly raising when thewherecall should not replace anything (GH 44181)
Indexing#
- Bug in Series.rename() with MultiIndex and
levelis provided (GH 43659) - Bug in DataFrame.truncate() and Series.truncate() when the object’s Index has a length greater than one but only one unique value (GH 42365)
- Bug in Series.loc() and DataFrame.loc() with a MultiIndex when indexing with a tuple in which one of the levels is also a tuple (GH 27591)
- Bug in Series.loc() with a MultiIndex whose first level contains only
np.nanvalues (GH 42055) - Bug in indexing on a Series or DataFrame with a DatetimeIndex when passing a string, the return type depended on whether the index was monotonic (GH 24892)
- Bug in indexing on a MultiIndex failing to drop scalar levels when the indexer is a tuple containing a datetime-like string (GH 42476)
- Bug in DataFrame.sort_values() and Series.sort_values() when passing an ascending value, failed to raise or incorrectly raising
ValueError(GH 41634) - Bug in updating values of pandas.Series using boolean index, created by using pandas.DataFrame.pop() (GH 42530)
- Bug in Index.get_indexer_non_unique() when index contains multiple
np.nan(GH 35392) - Bug in DataFrame.query() did not handle the degree sign in a backticked column name, such as `Temp(°C)`, used in an expression to query a DataFrame (GH 42826)
- Bug in DataFrame.drop() where the error message did not show missing labels with commas when raising
KeyError(GH 42881) - Bug in DataFrame.query() where method calls in query strings led to errors when the
numexprpackage was installed (GH 22435) - Bug in DataFrame.nlargest() and Series.nlargest() where sorted result did not count indexes containing
np.nan(GH 28984) - Bug in indexing on a non-unique object-dtype Index with an NA scalar (e.g.
np.nan) (GH 43711) - Bug in
DataFrame.__setitem__()incorrectly writing into an existing column’s array rather than setting a new array when the new dtype and the old dtype match (GH 43406) - Bug in setting floating-dtype values into a Series with integer dtype failing to set inplace when those values can be losslessly converted to integers (GH 44316)
- Bug in
Series.__setitem__()with object dtype when setting an array with matching size and dtype=’datetime64[ns]’ or dtype=’timedelta64[ns]’ incorrectly converting the datetime/timedeltas to integers (GH 43868) - Bug in DataFrame.sort_index() where
ignore_index=Truewas not being respected when the index was already sorted (GH 43591) - Bug in Index.get_indexer_non_unique() when index contains multiple
np.datetime64("NaT")andnp.timedelta64("NaT")(GH 43869) - Bug in setting a scalar Interval value into a Series with
IntervalDtypewhen the scalar’s sides are floats and the values’ sides are integers (GH 44201) - Bug when setting string-backed Categorical values that can be parsed to datetimes into a
DatetimeArrayor Series or DataFrame column backed byDatetimeArrayfailing to parse these strings (GH 44236) - Bug in
Series.__setitem__()with an integer dtype other thanint64setting with arangeobject unnecessarily upcasting toint64(GH 44261) - Bug in
Series.__setitem__()with a boolean mask indexer setting a listlike value of length 1 incorrectly broadcasting that value (GH 44265) - Bug in Series.reset_index() not ignoring
nameargument whendropandinplaceare set toTrue(GH 44575) - Bug in
DataFrame.loc.__setitem__()andDataFrame.iloc.__setitem__()with mixed dtypes sometimes failing to operate in-place (GH 44345) - Bug in
DataFrame.loc.__getitem__()incorrectly raisingKeyErrorwhen selecting a single column with a boolean key (GH 44322). - Bug in setting DataFrame.iloc() with a single
ExtensionDtypecolumn and setting 2D values e.g.df.iloc[:] = df.valuesincorrectly raising (GH 44514) - Bug in setting values with DataFrame.iloc() with a single
ExtensionDtypecolumn and a tuple of arrays as the indexer (GH 44703) - Bug in indexing on columns with
locorilocusing a slice with a negative step withExtensionDtypecolumns incorrectly raising (GH 44551) - Bug in
DataFrame.loc.__setitem__()changing dtype when indexer was completelyFalse(GH 37550) - Bug in
IntervalIndex.get_indexer_non_unique()returning boolean mask instead of array of integers for a non unique and non monotonic index (GH 44084) - Bug in
IntervalIndex.get_indexer_non_unique()not handling targets ofdtype‘object’ with NaNs correctly (GH 44482) - Fixed regression where a single column
np.matrixwas no longer coerced to a 1dnp.ndarraywhen added to a DataFrame (GH 42376) - Bug in
Series.__getitem__()with a CategoricalIndex of integers treating lists of integers as positional indexers, inconsistent with the behavior with a single scalar integer (GH 15470, GH 14865) - Bug in
Series.__setitem__()when setting floats or integers into integer-dtype Series failing to upcast when necessary to retain precision (GH 45121) - Bug in
DataFrame.iloc.__setitem__()ignores axis argument (GH 45032)
Missing#
- Bug in DataFrame.fillna() with
limitand nomethodignoresaxis='columns'oraxis = 1(GH 40989, GH 17399) - Bug in DataFrame.fillna() not replacing missing values when using a dict-like
valueand duplicate column names (GH 43476) - Bug in constructing a DataFrame with a dictionary
np.datetime64as a value anddtype='timedelta64[ns]', or vice-versa, incorrectly casting instead of raising (GH 44428) - Bug in Series.interpolate() and DataFrame.interpolate() with
inplace=Truenot writing to the underlying array(s) in-place (GH 44749) - Bug in Index.fillna() incorrectly returning an unfilled Index when NA values are present and
downcastargument is specified. This now raisesNotImplementedErrorinstead; do not passdowncastargument (GH 44873) - Bug in DataFrame.dropna() changing Index even if no entries were dropped (GH 41965)
- Bug in Series.fillna() with an object-dtype incorrectly ignoring
downcast="infer"(GH 44241)
MultiIndex#
- Bug in MultiIndex.get_loc() where the first level is a DatetimeIndex and a string key is passed (GH 42465)
- Bug in
MultiIndex.reindex()when passing alevelthat corresponds to anExtensionDtypelevel (GH 42043) - Bug in MultiIndex.get_loc() raising
TypeErrorinstead ofKeyErroron nested tuple (GH 42440) - Bug in
MultiIndex.union()setting wrongsortordercausing errors in subsequent indexing operations with slices (GH 44752) - Bug in
MultiIndex.putmask()where the other value was also a MultiIndex (GH 43212) - Bug in MultiIndex.dtypes() duplicate level names returned only one dtype per name (GH 45174)
I/O#
- Bug in read_excel() attempting to read chart sheets from .xlsx files (GH 41448)
- Bug in json_normalize() where
errors=ignorecould fail to ignore missing values ofmetawhenrecord_pathhas a length greater than one (GH 41876) - Bug in read_csv() with multi-header input and arguments referencing column names as tuples (GH 42446)
- Bug in read_fwf(), where difference in lengths of
colspecsandnameswas not raisingValueError(GH 40830) - Bug in Series.to_json() and DataFrame.to_json() where some attributes were skipped when serializing plain Python objects to JSON (GH 42768, GH 33043)
- Column headers are dropped when constructing a DataFrame from a sqlalchemy’s
Rowobject (GH 40682) - Bug in unpickling an Index with object dtype incorrectly inferring numeric dtypes (GH 43188)
- Bug in read_csv() where reading multi-header input with unequal lengths incorrectly raised
IndexError(GH 43102) - Bug in read_csv() raising
ParserErrorwhen reading file in chunks and some chunk blocks have fewer columns than header forengine="c"(GH 21211) - Bug in read_csv(), changed exception class when expecting a file path name or file-like object from
OSErrortoTypeError(GH 43366) - Bug in read_csv() and read_fwf() ignoring all
skiprowsexcept first whennrowsis specified forengine='python'(GH 44021, GH 10261) - Bug in read_csv() keeping the original column in object format when
keep_date_col=Trueis set (GH 13378) - Bug in read_json() not handling non-numpy dtypes correctly (especially
category) (GH 21892, GH 33205) - Bug in json_normalize() where multi-character
sepparameter is incorrectly prefixed to every key (GH 43831) - Bug in json_normalize() where reading data with missing multi-level metadata would not respect
errors="ignore"(GH 44312) - Bug in read_csv() used second row to guess implicit index if
headerwas set toNoneforengine="python"(GH 22144) - Bug in read_csv() not recognizing bad lines when
nameswere given forengine="c"(GH 22144) - Bug in read_csv() with
float_precision="round_trip"which did not skip initial/trailing whitespace (GH 43713) - Bug when Python is built without the lzma module: a warning was raised at the pandas import time, even if the lzma capability isn’t used (GH 43495)
- Bug in read_csv() not applying dtype for
index_col(GH 9435) - Bug in dumping/loading a DataFrame with
yaml.dump(frame)(GH 42748) - Bug in read_csv() raising
ValueErrorwhennameswas longer thanheaderbut equal to data rows forengine="python"(GH 38453) - Bug in ExcelWriter, where
engine_kwargswere not passed through to all engines (GH 43442) - Bug in read_csv() raising
ValueErrorwhenparse_dateswas used with MultiIndex columns (GH 8991) - Bug in read_csv() not raising an
ValueErrorwhen\nwas specified asdelimiterorsepwhich conflicts withlineterminator(GH 43528) - Bug in
to_csv()converting datetimes in categorical Series to integers (GH 40754) - Bug in read_csv() converting columns to numeric after date parsing failed (GH 11019)
- Bug in read_csv() not replacing
NaNvalues withnp.nanbefore attempting date conversion (GH 26203) - Bug in read_csv() raising
AttributeErrorwhen attempting to read a .csv file and infer index column dtype from an nullable integer type (GH 44079) - Bug in
to_csv()always coercing datetime columns with different formats to the same format (GH 21734) - DataFrame.to_csv() and Series.to_csv() with
compressionset to'zip'no longer create a zip file containing a file ending with “.zip”. Instead, they try to infer the inner file name more smartly (GH 39465) - Bug in read_csv() where reading a mixed column of booleans and missing values to a float type results in the missing values becoming 1.0 rather than NaN (GH 42808, GH 34120)
- Bug in
to_xml()raising error forpd.NAwith extension array dtype (GH 43903) - Bug in read_csv() when passing simultaneously a parser in
date_parserandparse_dates=False, the parsing was still called (GH 44366) - Bug in read_csv() not setting name of MultiIndex columns correctly when
index_colis not the first column (GH 38549) - Bug in read_csv() silently ignoring errors when failing to create a memory-mapped file (GH 44766)
- Bug in read_csv() when passing a
tempfile.SpooledTemporaryFileopened in binary mode (GH 44748) - Bug in read_json() raising
ValueErrorwhen attempting to parse json strings containing “://” (GH 36271) - Bug in read_csv() when
engine="c"andencoding_errors=Nonewhich caused a segfault (GH 45180) - Bug in read_csv() an invalid value of
usecolsleading to an unclosed file handle (GH 45384) - Bug in DataFrame.to_json() fix memory leak (GH 43877)
Period#
- Bug in adding a Period object to a
np.timedelta64object incorrectly raisingTypeError(GH 44182) - Bug in PeriodIndex.to_timestamp() when the index has
freq="B"inferringfreq="D"for its result instead offreq="B"(GH 44105) - Bug in Period constructor incorrectly allowing
np.timedelta64("NaT")(GH 44507) - Bug in PeriodIndex.to_timestamp() giving incorrect values for indexes with non-contiguous data (GH 44100)
- Bug in Series.where() with
PeriodDtypeincorrectly raising when thewherecall should not replace anything (GH 45135)
Plotting#
- When given non-numeric data, DataFrame.boxplot() now raises a
ValueErrorrather than a crypticKeyErrororZeroDivisionError, in line with other plotting functions like DataFrame.hist() (GH 43480)
Groupby/resample/rolling#
- Bug in
SeriesGroupBy.apply()where passing an unrecognized string argument failed to raiseTypeErrorwhen the underlyingSeriesis empty (GH 42021) - Bug in
Series.rolling.apply(),DataFrame.rolling.apply(),Series.expanding.apply()andDataFrame.expanding.apply()withengine="numba"where*argswere being cached with the user passed function (GH 42287) - Bug in DataFrameGroupBy.max(), SeriesGroupBy.max(), DataFrameGroupBy.min(), and SeriesGroupBy.min() with nullable integer dtypes losing precision (GH 41743)
- Bug in
DataFrame.groupby.rolling.var()would calculate the rolling variance only on the first group (GH 42442) - Bug in DataFrameGroupBy.shift() and SeriesGroupBy.shift() that would return the grouping columns if
fill_valuewas notNone(GH 41556) - Bug in
SeriesGroupBy.nlargest()andSeriesGroupBy.nsmallest()would have an inconsistent index when the input Series was sorted andnwas greater than or equal to all group sizes (GH 15272, GH 16345, GH 29129) - Bug in pandas.DataFrame.ewm(), where non-float64 dtypes were silently failing (GH 42452)
- Bug in pandas.DataFrame.rolling() operation along rows (
axis=1) incorrectly omits columns containingfloat16andfloat32(GH 41779) - Bug in
Resampler.aggregate()did not allow the use of Named Aggregation (GH 32803) - Bug in Series.rolling() when the Series
dtypewasInt64(GH 43016) - Bug in
DataFrame.rolling.corr()when the DataFrame columns was a MultiIndex (GH 21157) - Bug in
DataFrame.groupby.rolling()when specifyingonand calling__getitem__would subsequently return incorrect results (GH 43355) - Bug in DataFrameGroupBy.apply() and SeriesGroupBy.apply() with time-based Grouper objects incorrectly raising
ValueErrorin corner cases where the grouping vector contains aNaT(GH 43500, GH 43515) - Bug in DataFrameGroupBy.mean() and SeriesGroupBy.mean() failing with
complexdtype (GH 43701) - Bug in Series.rolling() and DataFrame.rolling() not calculating window bounds correctly for the first row when
center=Trueand index is decreasing (GH 43927) - Bug in Series.rolling() and DataFrame.rolling() for centered datetimelike windows with uneven nanosecond (GH 43997)
- Bug in DataFrameGroupBy.mean() and SeriesGroupBy.mean() raising
KeyErrorwhen column was selected at least twice (GH 44924) - Bug in DataFrameGroupBy.nth() and SeriesGroupBy.nth() failing on
axis=1(GH 43926) - Bug in Series.rolling() and DataFrame.rolling() not respecting right bound on centered datetime-like windows, if the index contain duplicates (GH 3944)
- Bug in Series.rolling() and DataFrame.rolling() when using a pandas.api.indexers.BaseIndexer subclass that returned unequal start and end arrays would segfault instead of raising a
ValueError(GH 44470) - Bug in
Groupby.nunique()not respectingobserved=Trueforcategoricalgrouping columns (GH 45128) - Bug in DataFrameGroupBy.head(), SeriesGroupBy.head(), DataFrameGroupBy.tail(), and SeriesGroupBy.tail() not dropping groups with
NaNwhendropna=True(GH 45089) - Bug in
GroupBy.__iter__()after selecting a subset of columns in aGroupByobject, which returned all columns instead of the chosen subset (GH 44821) - Bug in
Groupby.rolling()when non-monotonic data passed, fails to correctly raiseValueError(GH 43909) - Bug where grouping by a Series that has a
categoricaldata type and length unequal to the axis of grouping raisedValueError(GH 44179)
Reshaping#
- Improved error message when creating a DataFrame column from a multi-dimensional numpy.ndarray (GH 42463)
- Bug in concat() creating MultiIndex with duplicate level entries when concatenating a DataFrame with duplicates in Index and multiple keys (GH 42651)
- Bug in pandas.cut() on Series with duplicate indices and non-exact pandas.CategoricalIndex() (GH 42185, GH 42425)
- Bug in
DataFrame.append()failing to retain dtypes when appended columns do not match (GH 43392) - Bug in concat() of
boolandbooleandtypes resulting inobjectdtype instead ofbooleandtype (GH 42800) - Bug in crosstab() when inputs are categorical Series, there are categories that are not present in one or both of the Series, and
margins=True. Previously the margin value for missing categories wasNaN. It is now correctly reported as 0 (GH 43505) - Bug in concat() would fail when the
objsargument all had the same index and thekeysargument contained duplicates (GH 43595) - Bug in concat() which ignored the
sortparameter (GH 43375) - Bug in merge() with MultiIndex as column index for the
onargument returning an error when assigning a column internally (GH 43734) - Bug in crosstab() would fail when inputs are lists or tuples (GH 44076)
- Bug in
DataFrame.append()failing to retainindex.namewhen appending a list of Series objects (GH 44109) - Fixed metadata propagation in
Dataframe.apply()method, consequently fixing the same issue forDataframe.transform(),Dataframe.nunique()andDataframe.mode()(GH 28283) - Bug in concat() casting levels of MultiIndex to float if all levels only consist of missing values (GH 44900)
- Bug in DataFrame.stack() with
ExtensionDtypecolumns incorrectly raising (GH 43561) - Bug in merge() raising
KeyErrorwhen joining over differently named indexes with on keywords (GH 45094) - Bug in Series.unstack() with object doing unwanted type inference on resulting columns (GH 44595)
- Bug in
MultiIndex.join()with overlappingIntervalIndexlevels (GH 44096) - Bug in DataFrame.replace() and Series.replace() results is different
dtypebased onregexparameter (GH 44864) - Bug in DataFrame.pivot() with
index=Nonewhen the DataFrame index was a MultiIndex (GH 23955)
Sparse#
- Bug in DataFrame.sparse.to_coo() raising
AttributeErrorwhen column names are not unique (GH 29564) - Bug in
SparseArray.max()andSparseArray.min()raisingValueErrorfor arrays with 0 non-null elements (GH 43527) - Bug in DataFrame.sparse.to_coo() silently converting non-zero fill values to zero (GH 24817)
- Bug in
SparseArraycomparison methods with an array-like operand of mismatched length raisingAssertionErroror unclearValueErrordepending on the input (GH 43863) - Bug in
SparseArrayarithmetic methodsfloordivandmodbehaviors when dividing by zero not matching the non-sparse Series behavior (GH 38172) - Bug in
SparseArrayunary methods as well asSparseArray.isna()doesn’t recalculate indexes (GH 44955)
ExtensionArray#
- Bug in array() failing to preserve
PandasArray(GH 43887) - NumPy ufuncs
np.abs,np.positive,np.negativenow correctly preserve dtype when called on ExtensionArrays that implement__abs__, __pos__, __neg__, respectively. In particular this is fixed forTimedeltaArray(GH 43899, GH 23316) - NumPy ufuncs
np.minimum.reducenp.maximum.reduce,np.add.reduce, andnp.prod.reducenow work correctly instead of raisingNotImplementedErroron Series withIntegerDtypeorFloatDtype(GH 43923, GH 44793) - NumPy ufuncs with
outkeyword are now supported by arrays withIntegerDtypeandFloatingDtype(GH 45122) - Avoid raising
PerformanceWarningabout fragmented DataFrame when using many columns with an extension dtype (GH 44098) - Bug in
IntegerArrayandFloatingArrayconstruction incorrectly coercing mismatched NA values (e.g.np.timedelta64("NaT")) to numeric NA (GH 44514) - Bug in
BooleanArray.__eq__()andBooleanArray.__ne__()raisingTypeErroron comparison with an incompatible type (like a string). This caused DataFrame.replace() to sometimes raise aTypeErrorif a nullable boolean column was included (GH 44499) - Bug in array() incorrectly raising when passed a
ndarraywithfloat16dtype (GH 44715) - Bug in calling
np.sqrtonBooleanArrayreturning a malformedFloatingArray(GH 44715) - Bug in Series.where() with
ExtensionDtypewhenotheris a NA scalar incompatible with the Series dtype (e.g.NaTwith a numeric dtype) incorrectly casting to a compatible NA value (GH 44697) - Bug in Series.replace() where explicitly passing
value=Noneis treated as if novaluewas passed, andNonenot being in the result (GH 36984, GH 19998) - Bug in Series.replace() with unwanted downcasting being done in no-op replacements (GH 44498)
- Bug in Series.replace() with
FloatDtype,string[python], orstring[pyarrow]dtype not being preserved when possible (GH 33484, GH 40732, GH 31644, GH 41215, GH 25438)
Styler#
- Bug in Styler where the
uuidat initialization maintained a floating underscore (GH 43037) - Bug in Styler.to_html() where the
Stylerobject was updated if theto_htmlmethod was called with some args (GH 43034) - Bug in
Styler.copy()whereuuidwas not previously copied (GH 40675) - Bug in
Styler.apply()where functions which returned Series objects were not correctly handled in terms of aligning their index labels (GH 13657, GH 42014) - Bug when rendering an empty DataFrame with a named Index (GH 43305)
- Bug when rendering a single level MultiIndex (GH 43383)
- Bug when combining non-sparse rendering and
Styler.hide_columns()orStyler.hide_index()(GH 43464) - Bug setting a table style when using multiple selectors in Styler (GH 44011)
- Bugs where row trimming and column trimming failed to reflect hidden rows (GH 43703, GH 44247)
Other#
- Bug in DataFrame.astype() with non-unique columns and a Series
dtypeargument (GH 44417) - Bug in
CustomBusinessMonthBegin.__add__()(CustomBusinessMonthEnd.__add__()) not applying the extraoffsetparameter when beginning (end) of the target month is already a business day (GH 41356) - Bug in
RangeIndex.union()with anotherRangeIndexwith matching (even)stepand starts differing by strictly less thanstep / 2(GH 44019) - Bug in
RangeIndex.difference()withsort=Noneandstep<0failing to sort (GH 44085) - Bug in Series.replace() and DataFrame.replace() with
value=Noneand ExtensionDtypes (GH 44270, GH 37899) - Bug in
FloatingArray.equals()failing to consider two arrays equal if they containnp.nanvalues (GH 44382) - Bug in DataFrame.shift() with
axis=1andExtensionDtypecolumns incorrectly raising when an incompatiblefill_valueis passed (GH 44564) - Bug in DataFrame.shift() with
axis=1andperiodslarger thanlen(frame.columns)producing an invalid DataFrame (GH 44978) - Bug in DataFrame.diff() when passing a NumPy integer object instead of an
intobject (GH 44572) - Bug in Series.replace() raising
ValueErrorwhen usingregex=Truewith a Series containingnp.nanvalues (GH 43344) - Bug in DataFrame.to_records() where an incorrect
nwas used when missing names were replaced bylevel_n(GH 44818) - Bug in DataFrame.eval() where
resolversargument was overriding the default resolvers (GH 34966) Series.__repr__()andDataFrame.__repr__()no longer replace all null-values in indexes with “NaN” but use their real string-representations. “NaN” is used only forfloat("nan")(GH 45263)
Contributors#
A total of 275 people contributed patches to this release. People with a “+” by their names contributed a patch for the first time.
- Abhishek R
- Albert Villanova del Moral
- Alessandro Bisiani +
- Alex Lim
- Alex-Gregory-1 +
- Alexander Gorodetsky
- Alexander Regueiro +
- Alexey Györi
- Alexis Mignon
- Aleš Erjavec
- Ali McMaster
- Alibi +
- Andrei Batomunkuev +
- Andrew Eckart +
- Andrew Hawyrluk
- Andrew Wood
- Anton Lodder +
- Armin Berres +
- Arushi Sharma +
- Benedikt Heidrich +
- Beni Bienz +
- Benoît Vinot
- Bert Palm +
- Boris Rumyantsev +
- Brian Hulette
- Brock
- Bruno Costa +
- Bryan Racic +
- Caleb Epstein
- Calvin Ho
- ChristofKaufmann +
- Christopher Yeh +
- Chuliang Xiao +
- ClaudiaSilver +
- DSM
- Daniel Coll +
- Daniel Schmidt +
- Dare Adewumi
- David +
- David Sanders +
- David Wales +
- Derzan Chiang +
- DeviousLab +
- Dhruv B Shetty +
- Digres45 +
- Dominik Kutra +
- Drew Levitt +
- DriesS
- EdAbati
- Elle
- Elliot Rampono
- Endre Mark Borza
- Erfan Nariman
- Evgeny Naumov +
- Ewout ter Hoeven +
- Fangchen Li
- Felix Divo
- Felix Dulys +
- Francesco Andreuzzi +
- Francois Dion +
- Frans Larsson +
- Fred Reiss
- GYvan
- Gabriel Di Pardi Arruda +
- Gesa Stupperich
- Giacomo Caria +
- Greg Siano +
- Griffin Ansel
- Hiroaki Ogasawara +
- Horace +
- Horace Lai +
- Irv Lustig
- Isaac Virshup
- JHM Darbyshire (MBP)
- JHM Darbyshire (iMac)
- JHM Darbyshire +
- Jack Liu
- Jacob Skwirsk +
- Jaime Di Cristina +
- James Holcombe +
- Janosh Riebesell +
- Jarrod Millman
- Jason Bian +
- Jeff Reback
- Jernej Makovsek +
- Jim Bradley +
- Joel Gibson +
- Joeperdefloep +
- Johannes Mueller +
- John S Bogaardt +
- John Zangwill +
- Jon Haitz Legarreta Gorroño +
- Jon Wiggins +
- Jonas Haag +
- Joris Van den Bossche
- Josh Friedlander
- José Duarte +
- Julian Fleischer +
- Julien de la Bruère-T
- Justin McOmie
- Kadatatlu Kishore +
- Kaiqi Dong
- Kashif Khan +
- Kavya9986 +
- Kendall +
- Kevin Sheppard
- Kiley Hewitt
- Koen Roelofs +
- Krishna Chivukula
- KrishnaSai2020
- Leonardo Freua +
- Leonardus Chen
- Liang-Chi Hsieh +
- Loic Diridollou +
- Lorenzo Maffioli +
- Luke Manley +
- LunarLanding +
- Marc Garcia
- Marcel Bittar +
- Marcel Gerber +
- Marco Edward Gorelli
- Marco Gorelli
- MarcoGorelli
- Marvin +
- Mateusz Piotrowski +
- Mathias Hauser +
- Matt Richards +
- Matthew Davis +
- Matthew Roeschke
- Matthew Zeitlin
- Matthias Bussonnier
- Matti Picus
- Mauro Silberberg +
- Maxim Ivanov
- Maximilian Carr +
- MeeseeksMachine
- Michael Sarrazin +
- Michael Wang +
- Michał Górny +
- Mike Phung +
- Mike Taves +
- Mohamad Hussein Rkein +
- NJOKU OKECHUKWU VALENTINE +
- Neal McBurnett +
- Nick Anderson +
- Nikita Sobolev +
- Olivier Cavadenti +
- PApostol +
- Pandas Development Team
- Patrick Hoefler
- Peter
- Peter Tillmann +
- Prabha Arivalagan +
- Pradyumna Rahul
- Prerana Chakraborty
- Prithvijit +
- Rahul Gaikwad +
- Ray Bell
- Ricardo Martins +
- Richard Shadrach
- Robbert-jan ‘t Hoen +
- Robert Voyer +
- Robin Raymond +
- Rohan Sharma +
- Rohan Sirohia +
- Roman Yurchak
- Ruan Pretorius +
- Sam James +
- Scott Talbert
- Shashwat Sharma +
- Sheogorath27 +
- Shiv Gupta
- Shoham Debnath
- Simon Hawkins
- Soumya +
- Stan West +
- Stefanie Molin +
- Stefano Alberto Russo +
- Stephan Heßelmann
- Stephen
- Suyash Gupta +
- Sven
- Swanand01 +
- Sylvain Marié +
- TLouf
- Tania Allard +
- Terji Petersen
- TheDerivator +
- Thomas Dickson
- Thomas Kastl +
- Thomas Kluyver
- Thomas Li
- Thomas Smith
- Tim Swast
- Tim Tran +
- Tobias McNulty +
- Tobias Pitters
- Tomoki Nakagawa +
- Tony Hirst +
- Torsten Wörtwein
- V.I. Wood +
- Vaibhav K +
- Valentin Oliver Loftsson +
- Varun Shrivastava +
- Vivek Thazhathattil +
- Vyom Pathak
- Wenjun Si
- William Andrea +
- William Bradley +
- Wojciech Sadowski +
- Yao-Ching Huang +
- Yash Gupta +
- Yiannis Hadjicharalambous +
- Yoshiki Vázquez Baeza
- Yuanhao Geng
- Yury Mikhaylov
- Yvan Gatete +
- Yves Delley +
- Zach Rait
- Zbyszek Królikowski +
- Zero +
- Zheyuan
- Zhiyi Wu +
- aiudirog
- ali sayyah +
- aneesh98 +
- aptalca
- arw2019 +
- attack68
- brendandrury +
- bubblingoak +
- calvinsomething +
- claws +
- deponovo +
- dicristina
- el-g-1 +
- evensure +
- fotino21 +
- fshi01 +
- gfkang +
- github-actions[bot]
- i-aki-y
- jbrockmendel
- jreback
- juliandwain +
- jxb4892 +
- kendall smith +
- lmcindewar +
- lrepiton
- maximilianaccardo +
- michal-gh
- neelmraman
- partev
- phofl +
- pratyushsharan +
- quantumalaviya +
- rafael +
- realead
- rocabrera +
- rosagold
- saehuihwang +
- salomondush +
- shubham11941140 +
- srinivasan +
- stphnlyd
- suoniq
- trevorkask +
- tushushu
- tyuyoshi +
- usersblock +
- vernetya +
- vrserpa +
- willie3838 +
- zeitlinv +
- zhangxiaoxing +