Categorification (original) (raw)
In mathematics, categorification is the process of replacing set-theoretic theorems with category-theoretic analogues. Categorification, when done successfully, replaces sets with categories, functions with functors, and equations with natural isomorphisms of functors satisfying additional properties. The term was coined by Louis Crane. Categorification and decategorification are not precise mathematical procedures, but rather a class of possible analogues. They are used in a similar way to the words like 'generalization', and not like 'sheafification'.
Property | Value |
---|---|
dbo:abstract | In mathematics, categorification is the process of replacing set-theoretic theorems with category-theoretic analogues. Categorification, when done successfully, replaces sets with categories, functions with functors, and equations with natural isomorphisms of functors satisfying additional properties. The term was coined by Louis Crane. The reverse of categorification is the process of decategorification. Decategorification is a systematic process by which isomorphic objects in a category are identified as equal. Whereas decategorification is a straightforward process, categorification is usually much less straightforward. In the representation theory of Lie algebras, modules over specific algebras are the principal objects of study, and there are several frameworks for what a categorification of such a module should be, e.g., so called (weak) abelian categorifications. Categorification and decategorification are not precise mathematical procedures, but rather a class of possible analogues. They are used in a similar way to the words like 'generalization', and not like 'sheafification'. (en) En matemáticas, categorificar es el proceso de reemplazar teoremas de la teoría de conjuntos por teoremas equivalentes en teoría de categorías. Para hacer una categorificación exitosa, se deben reemplazar conjuntos con categorías, funciones con , y ecuaciones con isomorfismos naturales de funtores satisfaciendo propiedades adicionales. El término categorificación (en inglés categorification) fue acuñado por Louis Crane. El proceso inverso de categorificación es el proceso de descategorificación. Descategorificar es un proceso sistemático en el que objetos isomórfos en una categoría se identifican como iguales. Sistemáticamente, descategorificar es un proceso directo, mientras que categorificar suele ser mucho menos directo. Por ejemplo, en la teoría de representación de álgebras de Lie, los módulos sobre álgebras concretas son los objetos principales de estudio, y existen varias maneras en las que se pueden categorificar dichos módulos; tal es el caso de la llamada categorificación abeliana (débil). Categorificar y descategorificar no son procedimientos matemáticos precisos, sino una clase de posibles análogos. (es) |
dbo:wikiPageExternalLink | http://www.numdam.org/item/CTGDC_1998__39_1_3_0 https://golem.ph.utexas.edu/category/2008/10/what_is_categorification.html. |
dbo:wikiPageID | 1596969 (xsd:integer) |
dbo:wikiPageLength | 7390 (xsd:nonNegativeInteger) |
dbo:wikiPageRevisionID | 1100529948 (xsd:integer) |
dbo:wikiPageWikiLink | dbr:Module_(mathematics) dbr:Representation_theory dbr:Ring_of_symmetric_functions dbr:Homology_theory dbr:Betti_number dbr:Character_(mathematics) dbr:Mathematics dbr:Generalization dbr:Natural_transformation dbr:Emmy_Noether dbr:Equality_(mathematics) dbr:Equation dbr:Function_(mathematics) dbr:Module_over_a_ring dbr:Morphism dbr:Coproduct dbr:Theorem dbr:Symmetric_functions dbr:Lie_algebra dbr:Littlewood–Richardson_rule dbr:Cahiers_de_Topologie_et_Géométrie_Différentielle_Catégoriques dbr:Combinatorial_proof dbr:Functor dbr:Schur_class dbr:Category_(category_theory) dbr:Topology dbr:Categorical_ring dbc:Algebraic_topology dbr:Finite_group_theory dbr:Number_theory dbr:Khovanov_homology dbr:Knot_theory dbr:Product_(category_theory) dbr:Rank_of_a_group dbr:Ring_(mathematics) dbr:Higher-dimensional_algebra dbc:Category_theory dbr:Abelian_category dbr:Higher_category_theory dbr:Free_abelian_group dbr:Grothendieck_group dbr:Knot_invariant dbr:Natural_number dbr:Category_theory dbr:Set_(mathematics) dbr:Set_theory dbr:Symmetric_group dbr:Specht_module dbr:Category_of_finite_sets dbr:Louis_Crane dbr:Sheafification |
dbp:wikiPageUsesTemplate | dbt:Citation dbt:Refbegin dbt:Refend dbt:Reflist dbt:Sfn dbt:Short_description dbt:Category_theory |
dcterms:subject | dbc:Algebraic_topology dbc:Category_theory |
gold:hypernym | dbr:Process |
rdf:type | dbo:Election |
rdfs:comment | In mathematics, categorification is the process of replacing set-theoretic theorems with category-theoretic analogues. Categorification, when done successfully, replaces sets with categories, functions with functors, and equations with natural isomorphisms of functors satisfying additional properties. The term was coined by Louis Crane. Categorification and decategorification are not precise mathematical procedures, but rather a class of possible analogues. They are used in a similar way to the words like 'generalization', and not like 'sheafification'. (en) En matemáticas, categorificar es el proceso de reemplazar teoremas de la teoría de conjuntos por teoremas equivalentes en teoría de categorías. Para hacer una categorificación exitosa, se deben reemplazar conjuntos con categorías, funciones con , y ecuaciones con isomorfismos naturales de funtores satisfaciendo propiedades adicionales. El término categorificación (en inglés categorification) fue acuñado por Louis Crane. Categorificar y descategorificar no son procedimientos matemáticos precisos, sino una clase de posibles análogos. (es) |
rdfs:label | Categorification (en) Categorificación (es) |
owl:sameAs | freebase:Categorification wikidata:Categorification dbpedia-es:Categorification https://global.dbpedia.org/id/4gJTS |
prov:wasDerivedFrom | wikipedia-en:Categorification?oldid=1100529948&ns=0 |
foaf:isPrimaryTopicOf | wikipedia-en:Categorification |
is dbo:knownFor of | dbr:Sergei_Gukov |
is dbo:notableIdea of | dbr:David_Corfield |
is dbo:wikiPageRedirects of | dbr:Decategorification |
is dbo:wikiPageWikiLink of | dbr:Quantum_logic dbr:Monoidal_category dbr:Posetal_category dbr:Vittoria_Bussi dbr:David_Corfield dbr:Day_convolution dbr:R-algebroid dbr:Timeline_of_category_theory_and_related_mathematics dbr:Chromatic_polynomial dbr:Glossary_of_areas_of_mathematics dbr:Glossary_of_category_theory dbr:Mikhail_Khovanov dbr:Combinatorial_proof dbr:H-object dbr:K-theory_of_a_category dbr:Floer_homology dbr:Khovanov_homology dbr:2-ring dbr:Higher-dimensional_algebra dbr:Ivan_Losev_(mathematician) dbr:Bijective_proof dbr:Higher_category_theory dbr:Tensor_product_(disambiguation) dbr:Knot_invariant dbr:Sergei_Gukov dbr:Morse_homology dbr:Decategorification |
is rdfs:seeAlso of | dbr:Gluing_axiom |
is foaf:primaryTopic of | wikipedia-en:Categorification |