dbo:abstract |
In mathematics, finite field arithmetic is arithmetic in a finite field (a field containing a finite number of elements) contrary to arithmetic in a field with an infinite number of elements, like the field of rational numbers. There are infinitely many different finite fields. Their number of elements is necessarily of the form pn where p is a prime number and n is a positive integer, and two finite fields of the same size are isomorphic. The prime p is called the characteristic of the field, and the positive integer n is called the dimension of the field over its prime field. Finite fields are used in a variety of applications, including in classical coding theory in linear block codes such as BCH codes and Reed–Solomon error correction, in cryptography algorithms such as the Rijndael (AES) encryption algorithm, in tournament scheduling, and in the design of experiments. (en) 在数学之中,有限域算术是一种在有限域之内的算术,因为域仅包括有限数量的元素,而有限域算术则相对于无限域算术,后者是包括无限数量的元素的算术(如在有理数之下的算术)。 由于并没有任何有限域是无限的,因此存在着无限多个不同的有限域。它们的势需要是能够在pn的形式下,这其中的p是一则素数,而n则是一则正整数,同时两个持有等量的有限域可以构成同构。素数p被称之为有限域的特征,而正整数n则被称之为有限域的向量空间的维数,凌驾于它的之上,最初域为最小的包括1F的子域。 有限域应用于各种领域,这其中包括在线性分组码之内的编码理论,譬如BCH码和里德-所罗门码,还有在密码学之中的演算法,比如Rijndael加密法之下的加密算法。 (zh) |
dbo:wikiPageExternalLink |
http://www.samiam.org/galois.html%7Ctitle=AE's http://web.eecs.utk.edu/~plank/plank/papers/CS-07-593/%7Ctitle=Fast |
dbo:wikiPageID |
576387 (xsd:integer) |
dbo:wikiPageLength |
26483 (xsd:nonNegativeInteger) |
dbo:wikiPageRevisionID |
1076718492 (xsd:integer) |
dbo:wikiPageWikiLink |
dbr:Primitive_element_(finite_field) dbr:Element_(mathematics) dbr:Monic_polynomial dbr:Monomial_basis dbr:Binary_numeral_system dbr:Variable_(programming) dbr:Design_of_experiments dbr:Invariant_(computer_science) dbr:Galois_field dbr:Multiplicative_inverse dbr:Cryptography dbr:Ancient_Egyptian_multiplication dbr:Mathematics dbr:Timing_attack dbr:GF(2) dbr:Generating_set_of_a_group dbr:Modular_arithmetic dbr:Modular_multiplicative_inverse dbr:Logarithm dbr:Long_division dbr:Composite_number dbr:Évariste_Galois dbr:Normal_basis dbr:1_(number) dbr:BCH_code dbr:CPU_cache dbr:C_(programming_language) dbr:Irreducible_polynomial dbr:Advanced_Encryption_Standard dbc:Arithmetic dbr:D_(programming_language) dbr:Equivalence_relation dbr:Exclusive_or dbr:Exponentiation dbr:Extended_Euclidean_algorithm dbr:Field_(mathematics) dbr:Finite_field dbr:Cardinality dbr:Dimension_(vector_space) dbr:Isomorphism dbr:Itoh–Tsujii_inversion_algorithm dbr:Prime_number dbr:Ring_(algebra) dbr:Arithmetic dbr:AND_gate dbc:Articles_with_example_C_code dbc:Finite_fields dbr:Characteristic_(algebra) dbr:Bijection dbr:Coding_theory dbr:XOR_gate dbc:Articles_with_example_D_code dbr:CLMUL_instruction_set dbr:Polynomial dbr:Polynomial_long_division dbr:Polynomial_ring dbr:Positive_integer dbr:Identity_function dbr:Brute-force_search dbr:Order_(group_theory) dbr:Rational_number dbr:Reed–Solomon_error_correction dbr:X86 dbr:Netpbm_format dbr:Zech's_logarithm dbr:Finite_field_arithmetic dbr:Finite_group dbr:Multiplication_algorithm dbr:Rijndael dbr:Linear_block_code dbr:Wikiversity:Reed–Solomon_codes_for_coders |
dbp:wikiPageUsesTemplate |
dbt:Citation dbt:Cite_journal dbt:Cite_web dbt:I_sup dbt:Math dbt:Mvar dbt:Reflist dbt:Isbn dbt:Abs |
dct:subject |
dbc:Arithmetic dbc:Articles_with_example_C_code dbc:Finite_fields dbc:Articles_with_example_D_code |
rdf:type |
yago:Field108569998 yago:GeographicalArea108574314 yago:Location100027167 yago:Object100002684 yago:PhysicalEntity100001930 yago:Region108630985 yago:YagoGeoEntity yago:YagoLegalActorGeo yago:YagoPermanentlyLocatedEntity yago:Tract108673395 yago:WikicatFiniteFields |
rdfs:comment |
在数学之中,有限域算术是一种在有限域之内的算术,因为域仅包括有限数量的元素,而有限域算术则相对于无限域算术,后者是包括无限数量的元素的算术(如在有理数之下的算术)。 由于并没有任何有限域是无限的,因此存在着无限多个不同的有限域。它们的势需要是能够在pn的形式下,这其中的p是一则素数,而n则是一则正整数,同时两个持有等量的有限域可以构成同构。素数p被称之为有限域的特征,而正整数n则被称之为有限域的向量空间的维数,凌驾于它的之上,最初域为最小的包括1F的子域。 有限域应用于各种领域,这其中包括在线性分组码之内的编码理论,譬如BCH码和里德-所罗门码,还有在密码学之中的演算法,比如Rijndael加密法之下的加密算法。 (zh) In mathematics, finite field arithmetic is arithmetic in a finite field (a field containing a finite number of elements) contrary to arithmetic in a field with an infinite number of elements, like the field of rational numbers. There are infinitely many different finite fields. Their number of elements is necessarily of the form pn where p is a prime number and n is a positive integer, and two finite fields of the same size are isomorphic. The prime p is called the characteristic of the field, and the positive integer n is called the dimension of the field over its prime field. (en) |
rdfs:label |
Finite field arithmetic (en) 有限域算术 (zh) |
owl:sameAs |
freebase:Finite field arithmetic yago-res:Finite field arithmetic wikidata:Finite field arithmetic dbpedia-zh:Finite field arithmetic https://global.dbpedia.org/id/4jVgP |
prov:wasDerivedFrom |
wikipedia-en:Finite_field_arithmetic?oldid=1076718492&ns=0 |
foaf:isPrimaryTopicOf |
wikipedia-en:Finite_field_arithmetic |
is dbo:wikiPageDisambiguates of |
dbr:FFA |
is dbo:wikiPageRedirects of |
dbr:Rijndael_Galois_field dbr:Galois_field_arithmetic dbr:Arithmetic_in_finite_fields dbr:Arithmetic_of_finite_fields |
is dbo:wikiPageWikiLink of |
dbr:FFA dbr:List_of_abstract_algebra_topics dbr:Block_cipher_mode_of_operation dbr:Rijndael_S-box dbr:Disk_encryption_theory dbr:Galois/Counter_Mode dbr:Janko_group_J3 dbr:K-independent_hashing dbr:Linear-feedback_shift_register dbr:ARM_architecture_family dbr:Advanced_Encryption_Standard dbr:Extended_Euclidean_algorithm dbr:Finite_field dbr:Itoh–Tsujii_inversion_algorithm dbr:Arithmetic dbr:AArch64 dbr:CLMUL_instruction_set dbr:Carry-less_product dbr:Shamir's_Secret_Sharing dbr:Zech's_logarithm dbr:Finite_field_arithmetic dbr:Rijndael_MixColumns dbr:Rijndael_Galois_field dbr:Galois_field_arithmetic dbr:Arithmetic_in_finite_fields dbr:Arithmetic_of_finite_fields |
is foaf:primaryTopic of |
wikipedia-en:Finite_field_arithmetic |