Monadic Boolean algebra (original) (raw)
Monadyczna algebra Boole’a – algebra Boole’a z dodatkowym działaniem jednoargumentowym które spełnia pewne warunki naśladujące własności kwantyfikatora egzystencjalnego.
Property | Value |
---|---|
dbo:abstract | In abstract algebra, a monadic Boolean algebra is an algebraic structure A with signature ⟨·, +, ', 0, 1, ∃⟩ of type ⟨2,2,1,0,0,1⟩, where ⟨A, ·, +, ', 0, 1⟩ is a Boolean algebra. The monadic/unary operator ∃ denotes the existential quantifier, which satisfies the identities (using the received prefix notation for ∃): * ∃0 = 0 * ∃x ≥ x * ∃(x + y) = ∃x + ∃y * ∃x∃y = ∃(x∃y). ∃x is the existential closure of x. Dual to ∃ is the unary operator ∀, the universal quantifier, defined as ∀x := (∃x' )'. A monadic Boolean algebra has a dual definition and notation that take ∀ as primitive and ∃ as defined, so that ∃x := (∀x ' )' . (Compare this with the definition of the dual Boolean algebra.) Hence, with this notation, an algebra A has signature ⟨·, +, ', 0, 1, ∀⟩, with ⟨A, ·, +, ', 0, 1⟩ a Boolean algebra, as before. Moreover, ∀ satisfies the following dualized version of the above identities: 1. * ∀1 = 1 2. * ∀x ≤ x 3. * ∀(xy) = ∀x∀y 4. * ∀x + ∀y = ∀(x + ∀y). ∀x is the universal closure of x. (en) Monadyczna algebra Boole’a – algebra Boole’a z dodatkowym działaniem jednoargumentowym które spełnia pewne warunki naśladujące własności kwantyfikatora egzystencjalnego. (pl) 在抽象代数中,一元布尔代数是带有如下(signature)的代数结构 <A, ·, +, ', 0, 1, ∃> 有型 <2,2,1,0,0,1>, 这里的 <A, ·, +, ', 0, 1> 是布尔代数。 前缀一元算子 ∃ 指示存在量词,它满足恒等式: 1. * ∃0 = 0 2. * ∃x ≥ x 3. * ∃(x + y) = ∃x + ∃y 4. * ∃x∃y = ∃(x∃y). ∃x 是 x 的“存在闭包”。于 ∃ 的是一元算子 ∀,它是全称量词,定义为 ∀x := (∃x' )'。 一元布尔代数有公式,取 ∀ 为原始,把 ∃ 定义为 ∃x := (∀x ' )' 。所以对偶的代数有标识 <A, ·, +, ', 0, 1, ∀>,带有 <A, ·, +, ', 0, 1> 是布尔代数。此外,∀ 满足上面恒等式的对偶版本: 1. * ∀1 = 1 2. * ∀x ≤ x 3. * ∀(xy) = ∀x∀y 4. * ∀x + ∀y = ∀(x + ∀y). ∀x 是 x 的“全称闭包”。 (zh) |
dbo:wikiPageID | 1018197 (xsd:integer) |
dbo:wikiPageLength | 3749 (xsd:nonNegativeInteger) |
dbo:wikiPageRevisionID | 1014607548 (xsd:integer) |
dbo:wikiPageWikiLink | dbr:Modal_logic dbr:Łukasiewicz–Moisil_algebra dbr:Algebraic_structure dbr:Paul_Halmos dbr:Cylindric_algebra dbr:Interior_algebra dbr:Prefix dbr:Universal_quantifier dbr:Lindenbaum–Tarski_algebra dbr:Closure_operator dbr:Clopen_set dbr:Propositional_logic dbr:Synonym dbr:Topology dbr:Duality_(order_theory) dbr:First-order_logic dbc:Boolean_algebra dbr:Semisimple_algebra dbr:Abstract_algebra dbc:Algebraic_logic dbc:Closure_operators dbr:Boolean_algebra_(structure) dbr:Kuratowski_closure_axioms dbr:Signature_(logic) dbr:Variety_(universal_algebra) dbr:Polyadic_algebra dbr:Interior_operator dbr:Closure_algebra dbr:Monadic_(arity) dbr:Monadic_logic dbr:Existential_quantifier dbr:Unary_operator |
dbp:wikiPageUsesTemplate | dbt:Logic-stub |
dcterms:subject | dbc:Boolean_algebra dbc:Algebraic_logic dbc:Closure_operators |
gold:hypernym | dbr:Structure |
rdf:type | yago:WikicatClosureOperators yago:Abstraction100002137 yago:Function113783816 yago:MathematicalRelation113783581 yago:Operator113786413 yago:Relation100031921 dbo:Building |
rdfs:comment | Monadyczna algebra Boole’a – algebra Boole’a z dodatkowym działaniem jednoargumentowym które spełnia pewne warunki naśladujące własności kwantyfikatora egzystencjalnego. (pl) 在抽象代数中,一元布尔代数是带有如下(signature)的代数结构 <A, ·, +, ', 0, 1, ∃> 有型 <2,2,1,0,0,1>, 这里的 <A, ·, +, ', 0, 1> 是布尔代数。 前缀一元算子 ∃ 指示存在量词,它满足恒等式: 1. * ∃0 = 0 2. * ∃x ≥ x 3. * ∃(x + y) = ∃x + ∃y 4. * ∃x∃y = ∃(x∃y). ∃x 是 x 的“存在闭包”。于 ∃ 的是一元算子 ∀,它是全称量词,定义为 ∀x := (∃x' )'。 一元布尔代数有公式,取 ∀ 为原始,把 ∃ 定义为 ∃x := (∀x ' )' 。所以对偶的代数有标识 <A, ·, +, ', 0, 1, ∀>,带有 <A, ·, +, ', 0, 1> 是布尔代数。此外,∀ 满足上面恒等式的对偶版本: 1. * ∀1 = 1 2. * ∀x ≤ x 3. * ∀(xy) = ∀x∀y 4. * ∀x + ∀y = ∀(x + ∀y). ∀x 是 x 的“全称闭包”。 (zh) In abstract algebra, a monadic Boolean algebra is an algebraic structure A with signature ⟨·, +, ', 0, 1, ∃⟩ of type ⟨2,2,1,0,0,1⟩, where ⟨A, ·, +, ', 0, 1⟩ is a Boolean algebra. The monadic/unary operator ∃ denotes the existential quantifier, which satisfies the identities (using the received prefix notation for ∃): * ∃0 = 0 * ∃x ≥ x * ∃(x + y) = ∃x + ∃y * ∃x∃y = ∃(x∃y). ∃x is the existential closure of x. Dual to ∃ is the unary operator ∀, the universal quantifier, defined as ∀x := (∃x' )'. 1. * ∀1 = 1 2. * ∀x ≤ x 3. * ∀(xy) = ∀x∀y 4. * ∀x + ∀y = ∀(x + ∀y). (en) |
rdfs:label | Monadic Boolean algebra (en) Monadyczna algebra Boole’a (pl) 一元布尔代数 (zh) |
owl:sameAs | freebase:Monadic Boolean algebra yago-res:Monadic Boolean algebra wikidata:Monadic Boolean algebra dbpedia-pl:Monadic Boolean algebra dbpedia-zh:Monadic Boolean algebra https://global.dbpedia.org/id/4rgtw |
prov:wasDerivedFrom | wikipedia-en:Monadic_Boolean_algebra?oldid=1014607548&ns=0 |
foaf:isPrimaryTopicOf | wikipedia-en:Monadic_Boolean_algebra |
is dbo:wikiPageRedirects of | dbr:S5_algebra |
is dbo:wikiPageWikiLink of | dbr:Łukasiewicz–Moisil_algebra dbr:Paul_Halmos dbr:Cylindric_algebra dbr:Interior_algebra dbr:List_of_Boolean_algebra_topics dbr:Algebraic_logic dbr:Outline_of_logic dbr:S5_algebra |
is foaf:primaryTopic of | wikipedia-en:Monadic_Boolean_algebra |