Tate conjecture (original) (raw)

Property Value
dbo:abstract In number theory and algebraic geometry, the Tate conjecture is a 1963 conjecture of John Tate that would describe the algebraic cycles on a variety in terms of a more computable invariant, the Galois representation on étale cohomology. The conjecture is a central problem in the theory of algebraic cycles. It can be considered an arithmetic analog of the Hodge conjecture. (en) 数論および代数幾何学において、テイト予想(テイトよそう、英: Tate conjecture)は、ジョン・テイト (John Tate) による1963年の予想であり、代数多様体上の代数的サイクルをより計算可能な不変量であるエタールコホモロジー上のガロワ加群のことばで記述するものであった。テイト予想は代数的サイクルの理論において中心的な問題である。予想はホッジ予想の数論的類似物と考えることができる。 (ja)
dbo:thumbnail wiki-commons:Special:FilePath/John_Tate.jpg?width=300
dbo:wikiPageExternalLink http://www.jmilne.org/math/articles/2007e.pdf
dbo:wikiPageID 3124804 (xsd:integer)
dbo:wikiPageLength 9703 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID 1059600943 (xsd:integer)
dbo:wikiPageWikiLink dbr:Prime_field dbr:Mordell_conjecture dbr:Birch_and_Swinnerton-Dyer_conjecture dbr:Algebraic_closure dbr:Algebraic_cycle dbr:Hodge_conjecture dbr:John_Tate_(mathematician) dbr:Inventiones_Mathematicae dbr:Jacobian_variety dbr:Numerical_equivalence dbr:L-adic_number dbc:Conjectures dbr:Gerd_Faltings dbr:Conjecture dbc:Topological_methods_of_algebraic_geometry dbr:Standard_conjectures_on_algebraic_cycles dbr:Étale_cohomology dbr:Function_field_of_an_algebraic_variety dbr:Galois_module dbr:Irreducible_representation dbr:James_Milne_(mathematician) dbr:Hasse-Weil_zeta_function dbr:Algebraic_geometry dbr:Algebraic_variety dbr:Cyclotomic_character dbr:Field_(mathematics) dbc:Diophantine_geometry dbr:Abelian_varieties dbr:Number_theory dbr:P-adic_integer dbr:Lefschetz_theorem_on_(1,1)-classes dbr:Projective_variety dbr:Isogeny dbr:Prime_number dbr:Abelian_variety dbc:Unsolved_problems_in_number_theory dbr:Absolute_Galois_group dbr:K3_surface dbr:Codimension dbr:Divisor_(algebraic_geometry) dbr:Arthur_Ogus dbr:Group_representation dbr:Smooth_scheme dbr:Tate_module dbr:Tate_twist dbr:L-adic_cohomology
dbp:caption John Tate in 1993 (en)
dbp:conjectureDate 1963 (xsd:integer)
dbp:conjecturedBy dbr:John_Tate_(mathematician)
dbp:consequences dbr:Standard_conjectures_on_algebraic_cycles
dbp:field Algebraic geometry and number theory (en)
dbp:knownCases divisors on abelian varieties (en)
dbp:name Tate conjecture (en)
dbp:wikiPageUsesTemplate dbt:Infobox_mathematical_statement dbt:Citation dbt:Harvtxt dbt:Reflist
dct:subject dbc:Conjectures dbc:Topological_methods_of_algebraic_geometry dbc:Diophantine_geometry dbc:Unsolved_problems_in_number_theory
gold:hypernym dbr:Conjecture
rdf:type yago:WikicatConjectures yago:WikicatTopologicalMethodsOfAlgebraicGeometry yago:Ability105616246 yago:Abstraction100002137 yago:Cognition100023271 yago:Concept105835747 yago:Content105809192 yago:Hypothesis105888929 yago:Idea105833840 yago:Know-how105616786 yago:Method105660268 yago:PsychologicalFeature100023100 yago:Speculation105891783
rdfs:comment In number theory and algebraic geometry, the Tate conjecture is a 1963 conjecture of John Tate that would describe the algebraic cycles on a variety in terms of a more computable invariant, the Galois representation on étale cohomology. The conjecture is a central problem in the theory of algebraic cycles. It can be considered an arithmetic analog of the Hodge conjecture. (en) 数論および代数幾何学において、テイト予想(テイトよそう、英: Tate conjecture)は、ジョン・テイト (John Tate) による1963年の予想であり、代数多様体上の代数的サイクルをより計算可能な不変量であるエタールコホモロジー上のガロワ加群のことばで記述するものであった。テイト予想は代数的サイクルの理論において中心的な問題である。予想はホッジ予想の数論的類似物と考えることができる。 (ja)
rdfs:label テイト予想 (代数幾何学) (ja) Tate conjecture (en)
owl:sameAs freebase:Tate conjecture yago-res:Tate conjecture wikidata:Tate conjecture dbpedia-ja:Tate conjecture https://global.dbpedia.org/id/4vQYf
prov:wasDerivedFrom wikipedia-en:Tate_conjecture?oldid=1059600943&ns=0
foaf:depiction wiki-commons:Special:FilePath/John_Tate.jpg
foaf:isPrimaryTopicOf wikipedia-en:Tate_conjecture
is dbo:knownFor of dbr:John_Tate_(mathematician)
is dbo:wikiPageRedirects of dbr:Tate_Conjecture dbr:Tate_conjectures
is dbo:wikiPageWikiLink of dbr:List_of_conjectures dbr:Motive_(algebraic_geometry) dbr:Algebraic_cycle dbr:Hodge_conjecture dbr:John_Tate_(mathematician) dbr:Deaths_in_October_2019 dbr:List_of_important_publications_in_mathematics dbr:Analytic_subgroup_theorem dbr:Gerd_Faltings dbr:Glossary_of_arithmetic_and_diophantine_geometry dbr:Arithmetic_of_abelian_varieties dbr:Chow_group dbr:Standard_conjectures_on_algebraic_cycles dbr:Supersingular_K3_surface dbr:Alexander_Beilinson dbr:Faltings's_theorem dbr:Brauer_group dbr:K3_surface dbr:Zarhin_trick dbr:List_of_unsolved_problems_in_mathematics dbr:Tate_Conjecture dbr:Tate_module dbr:Tate_conjectures
is dbp:knownFor of dbr:John_Tate_(mathematician)
is foaf:primaryTopic of wikipedia-en:Tate_conjecture