Chow group (original) (raw)

Property Value
dbo:abstract In der Algebraischen Geometrie, einem Teilgebiet der Mathematik, sind Chow-Gruppen eine wichtige Invariante von Varietäten. (de) In algebraic geometry, the Chow groups (named after Wei-Liang Chow by Claude Chevalley) of an algebraic variety over any field are algebro-geometric analogs of the homology of a topological space. The elements of the Chow group are formed out of subvarieties (so-called algebraic cycles) in a similar way to how simplicial or cellular homology groups are formed out of subcomplexes. When the variety is smooth, the Chow groups can be interpreted as cohomology groups (compare Poincaré duality) and have a multiplication called the intersection product. The Chow groups carry rich information about an algebraic variety, and they are correspondingly hard to compute in general. (en) 代数幾何学のチャウ群(チャウぐん、英: Chow group)とは、任意の体上の代数多様体に対して定義される、位相空間のホモロジー群の代数幾何学的な類似物である。単体や胞体から単体ホモロジー群やを作るのと同じやり方で、チャウ群は部分多様体(いわゆる代数的サイクル)から作られる。多様体がな場合にはチャウ群は(ポアンカレ双対性によって)コホモロジー群と思うこともでき、交叉積と呼ばれる乗法を持つ。チャウ群は代数多様体に関する豊富な情報を持つが、一般的に計算するのは困難である。 (ja) 代數幾何中,代數簇的周環(得名於周煒良)是簇作為拓撲空間的的替代品:子簇(所謂)構成了它的元素,而其乘法結構來自子簇的相交。事實上,兩環間有一自然映射,它保持了二者都有的幾何概念(例如陳類、相交配對以及龐加萊對偶)。周環的優勢在於其幾何定義不需使用非代數概念。並且,使用了純拓撲情況下不可用的代數工具後,某些兩環都有的構造在周環中更簡單。 (zh)
dbo:wikiPageExternalLink http://www.numdam.org/item%3Fid=SCC_1958__3__A2_0 http://www.numdam.org/item%3Fid=SCC_1958__3__A3_0
dbo:wikiPageID 4282051 (xsd:integer)
dbo:wikiPageLength 26201 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID 1123604109 (xsd:integer)
dbo:wikiPageWikiLink dbr:Cambridge_University_Press dbr:Princeton_University_Press dbr:Projective_space dbr:Robert_MacPherson_(mathematician) dbr:Enumerative_geometry dbr:Motive_(algebraic_geometry) dbr:Mordell–Weil_group dbr:Mordell–Weil_theorem dbr:David_Mumford dbr:Algebraic_space dbr:Algebraically_closed_field dbr:Annals_of_Mathematics dbr:Arakelov_theory dbr:Hodge_conjecture dbr:Degree_of_a_field_extension dbr:Intermediate_Jacobian dbr:Intersection_number dbr:Invertible_sheaf dbr:Jacobian_variety dbr:Transversality_(mathematics) dbc:Chinese_mathematical_discoveries dbr:Quotient_group dbr:Special_values_of_L-functions dbr:Elliptic_curve dbr:Geometric_genus dbr:Glossary_of_algebraic_geometry dbc:Topological_methods_of_algebraic_geometry dbr:Bass_conjecture dbr:Chow's_moving_lemma dbr:Chow_group_of_a_stack dbr:Complete_variety dbr:Deligne_cohomology dbr:Function_field_of_an_algebraic_variety dbr:Functor dbr:Ideal_class_group dbr:Picard_group dbr:Bézout's_theorem dbr:Adequate_equivalence_relation dbr:Wei-Liang_Chow dbr:William_Fulton_(mathematician) dbr:Linear_combination dbr:Tate_conjecture dbr:Poincaré_duality dbr:Alexander_Beilinson dbr:Alexander_Grothendieck dbr:Algebraic_geometry dbr:Algebraic_variety dbr:Etale_cohomology dbr:Field_(mathematics) dbr:Finite_field dbr:Flat_morphism dbr:Francesco_Severi dbr:Number_field dbr:Graded_ring dbr:Projective_variety dbr:Proper_morphism dbr:Rational_point dbr:Ring_(mathematics) dbr:Group_(mathematics) dbr:Hirzebruch_surface dbr:Intersection_theory dbr:Tensor_product dbr:Arithmetic_Chow_group dbr:Abel–Jacobi_map dbc:Algebraic_geometry dbr:Advances_in_Mathematics dbr:Chern_class dbr:Albanese_variety dbr:Kazuya_Kato dbr:Blowing_up dbr:Codimension dbr:Cohomology_ring dbr:Homology_(mathematics) dbr:Differential_form dbr:Divisor_(algebraic_geometry) dbr:Borel–Moore_homology dbc:Intersection_theory dbr:Spencer_Bloch dbr:Free_abelian_group dbr:Grothendieck_group dbr:Grothendieck–Riemann–Roch_theorem dbr:Integer dbr:Algebraic_cycles dbr:Natural_number dbr:Operational_Chow_ring dbr:Scheme_(mathematics) dbr:Vector_bundle dbr:Gysin_homomorphism dbr:Exact_sequence dbr:Motivic_cohomology dbr:Smooth_scheme dbr:Topological_space dbr:Divisor_class_group dbr:Uncountable dbr:Virtual_fundamental_class dbr:Intersection_product dbr:Equivariant_Chow_group dbr:L-adic_cohomology dbr:Springer-Verlag dbr:Associated_projective_bundle dbr:Chern_character dbr:Higher_Chow_groups dbr:Cohomology_theory dbr:Degree_of_a_projective_variety dbr:Exponential_sequence
dbp:authorlink Claude Chevalley (en)
dbp:first Claude (en)
dbp:last Chevalley (en)
dbp:wikiPageUsesTemplate dbt:Citation dbt:Short_description dbt:Harvs
dbp:year 1958 (xsd:integer)
dcterms:subject dbc:Chinese_mathematical_discoveries dbc:Topological_methods_of_algebraic_geometry dbc:Algebraic_geometry dbc:Intersection_theory
rdfs:comment In der Algebraischen Geometrie, einem Teilgebiet der Mathematik, sind Chow-Gruppen eine wichtige Invariante von Varietäten. (de) In algebraic geometry, the Chow groups (named after Wei-Liang Chow by Claude Chevalley) of an algebraic variety over any field are algebro-geometric analogs of the homology of a topological space. The elements of the Chow group are formed out of subvarieties (so-called algebraic cycles) in a similar way to how simplicial or cellular homology groups are formed out of subcomplexes. When the variety is smooth, the Chow groups can be interpreted as cohomology groups (compare Poincaré duality) and have a multiplication called the intersection product. The Chow groups carry rich information about an algebraic variety, and they are correspondingly hard to compute in general. (en) 代数幾何学のチャウ群(チャウぐん、英: Chow group)とは、任意の体上の代数多様体に対して定義される、位相空間のホモロジー群の代数幾何学的な類似物である。単体や胞体から単体ホモロジー群やを作るのと同じやり方で、チャウ群は部分多様体(いわゆる代数的サイクル)から作られる。多様体がな場合にはチャウ群は(ポアンカレ双対性によって)コホモロジー群と思うこともでき、交叉積と呼ばれる乗法を持つ。チャウ群は代数多様体に関する豊富な情報を持つが、一般的に計算するのは困難である。 (ja) 代數幾何中,代數簇的周環(得名於周煒良)是簇作為拓撲空間的的替代品:子簇(所謂)構成了它的元素,而其乘法結構來自子簇的相交。事實上,兩環間有一自然映射,它保持了二者都有的幾何概念(例如陳類、相交配對以及龐加萊對偶)。周環的優勢在於其幾何定義不需使用非代數概念。並且,使用了純拓撲情況下不可用的代數工具後,某些兩環都有的構造在周環中更簡單。 (zh)
rdfs:label Chow-Gruppe (de) Chow group (en) チャウ群 (ja) 저우 환 (ko) 周環 (zh)
owl:sameAs yago-res:Chow group wikidata:Chow group dbpedia-de:Chow group dbpedia-ja:Chow group dbpedia-ko:Chow group dbpedia-zh:Chow group https://global.dbpedia.org/id/4hift
prov:wasDerivedFrom wikipedia-en:Chow_group?oldid=1123604109&ns=0
foaf:isPrimaryTopicOf wikipedia-en:Chow_group
is dbo:wikiPageRedirects of dbr:Chow_ring dbr:Chow_Group dbr:Chow_Groups dbr:Chow_groups dbr:Push-forward_(Chow_groups) dbr:Cycle_class_map
is dbo:wikiPageWikiLink of dbr:Behrend_function dbr:Algebraic_K-theory dbr:List_of_incomplete_proofs dbr:Timeline_of_category_theory_and_related_mathematics dbr:Chow_ring dbr:Quadric_(algebraic_geometry) dbr:Glossary_of_algebraic_geometry dbr:Chow_group_of_a_stack dbr:Simplex dbr:Wei-Liang_Chow dbr:H._Blaine_Lawson dbr:Intersection_theory dbr:Chern_class dbr:Albanese_variety dbr:Bivariant_theory dbr:Bloch's_formula dbr:Bloch's_higher_Chow_group dbr:Hodge_theory dbr:Divisor_(algebraic_geometry) dbr:Scheme_(mathematics) dbr:Euler_sequence dbr:Eva-Maria_Feichtner dbr:Segre_class dbr:Riemann–Roch-type_theorem dbr:Chow_Group dbr:Chow_Groups dbr:Chow_groups dbr:Push-forward_(Chow_groups) dbr:Cycle_class_map
is foaf:primaryTopic of wikipedia-en:Chow_group