dbo:abstract |
In mathematics, particularly functional analysis, spaces of linear maps between two vector spaces can be endowed with a variety of topologies. Studying space of linear maps and these topologies can give insight into the spaces themselves. The article operator topologies discusses topologies on spaces of linear maps between normed spaces, whereas this article discusses topologies on such spaces in the more general setting of topological vector spaces (TVSs). (en) 해석학에서 균등 수렴 위상(均等收斂位相, 영어: topology of uniform convergence)은 일반위상수학적인 극한이 균등 수렴과 일치하게 하는, 함수 공간 위의 위상이다. 이 경우, 공역에 위상 벡터 공간 또는 (보다 일반적으로) 균등 공간 구조가 필요하다. 만약 공역에 거리 공간이나 노름 공간과 같은 구조가 주어지면, 이 위상 및 균등 공간 구조와 호환되는 균등 거리 함수(영어: uniform metric) 및 균등 노름(영어: uniform norm)을 정의할 수 있다. (ko) |
dbo:wikiPageID |
41677409 (xsd:integer) |
dbo:wikiPageLength |
38089 (xsd:nonNegativeInteger) |
dbo:wikiPageRevisionID |
1108332991 (xsd:integer) |
dbo:wikiPageWikiLink |
dbr:Product_topology dbr:Quasi-complete dbr:Montel_space dbr:Barrelled_space dbr:Bornological_space dbr:Bounded_set_(topological_vector_space) dbc:Topological_vector_spaces dbr:Uniform_space dbr:Vector_space dbr:Complete_topological_vector_space dbr:Completely_regular_space dbr:Complex_numbers dbr:Convex_set dbr:Mathematics dbr:Separable_space dbr:Quasi-complete_space dbr:Fréchet_space dbr:Operator_topologies dbr:Dense_set dbr:Functional_analysis dbr:Mackey_topology dbr:Balanced_set dbr:Topological_vector_space dbr:Topology_(structure) dbr:Weak_topology dbr:Hausdorff_space dbr:Linear_map dbr:Linear_span dbr:Absolutely_convex_set dbr:Dual_space dbr:F-space dbr:Absolutely_convex dbr:Normed_space dbr:Directed_set dbr:Baire_space dbr:Tensor_product dbr:Absorbing_set dbc:Functional_analysis dbr:LF-space dbc:Topology_of_function_spaces dbr:Bornology dbr:Polar_topology dbr:Metrizable_TVS dbr:Neighbourhood_system dbr:Net_(mathematics) dbr:Real_numbers dbr:Saturated_family dbr:Locally_convex dbr:Total_set dbr:Strong_dual_space dbr:Equicontinuous_linear_functionals dbr:Equicontinuous_linear_maps dbr:Barreled_space dbr:Filter_base dbr:Minkowski_sum |
dbp:mathStatement |
Let be a non-empty collection of bounded subsets of Then the -topology on is not altered if is replaced by any of the following collections of subsets of : all subsets of all finite unions of sets in ; all scalar multiples of all sets in ; all finite Minkowski sums of sets in ; the balanced hull of every set in ; the closure of every set in ; and if and are locally convex, then we may add to this list: the closed convex balanced hull of every set in (en) If and if is a net in then in the -topology on if and only if for every converges uniformly to on (en) The -topology on is compatible with the vector space structure of if and only if every is -bounded; that is, if and only if for every and every is bounded in (en) |
dbp:name |
Theorem (en) |
dbp:wikiPageUsesTemplate |
dbt:Annotated_link dbt:Em dbt:Main dbt:Ordered_list dbt:Reflist dbt:See_also dbt:Sfn dbt:Functional_analysis dbt:Grothendieck_Topological_Vector_Spaces dbt:Hogbe-Nlend_Bornologies_and_Functional_Analysis dbt:Jarchow_Locally_Convex_Spaces dbt:Khaleelulla_Counterexamples_in_Topological_Vector_Spaces dbt:Math_theorem dbt:Narici_Beckenstein_Topological_Vector_Spaces dbt:Schaefer_Wolff_Topological_Vector_Spaces dbt:Topological_vector_spaces dbt:Trèves_François_Topological_vector_spaces,_distributions_and_kernels dbt:Duality_and_spaces_of_linear_maps |
dcterms:subject |
dbc:Topological_vector_spaces dbc:Functional_analysis dbc:Topology_of_function_spaces |
rdf:type |
owl:Thing |
rdfs:comment |
In mathematics, particularly functional analysis, spaces of linear maps between two vector spaces can be endowed with a variety of topologies. Studying space of linear maps and these topologies can give insight into the spaces themselves. The article operator topologies discusses topologies on spaces of linear maps between normed spaces, whereas this article discusses topologies on such spaces in the more general setting of topological vector spaces (TVSs). (en) 해석학에서 균등 수렴 위상(均等收斂位相, 영어: topology of uniform convergence)은 일반위상수학적인 극한이 균등 수렴과 일치하게 하는, 함수 공간 위의 위상이다. 이 경우, 공역에 위상 벡터 공간 또는 (보다 일반적으로) 균등 공간 구조가 필요하다. 만약 공역에 거리 공간이나 노름 공간과 같은 구조가 주어지면, 이 위상 및 균등 공간 구조와 호환되는 균등 거리 함수(영어: uniform metric) 및 균등 노름(영어: uniform norm)을 정의할 수 있다. (ko) |
rdfs:label |
균등 수렴 위상 (ko) Topologies on spaces of linear maps (en) |
rdfs:seeAlso |
dbr:Uniform_space |
owl:sameAs |
wikidata:Topologies on spaces of linear maps dbpedia-ko:Topologies on spaces of linear maps https://global.dbpedia.org/id/f5de |
prov:wasDerivedFrom |
wikipedia-en:Topologies_on_spaces_of_linear_maps?oldid=1108332991&ns=0 |
foaf:isPrimaryTopicOf |
wikipedia-en:Topologies_on_spaces_of_linear_maps |
is dbo:wikiPageRedirects of |
dbr:Topology_of_uniform_convergence dbr:Space_of_linear_maps dbr:Ε-topology dbr:Topologies_of_Uniform_Convergence |
is dbo:wikiPageWikiLink of |
dbr:Bornological_space dbr:Complete_topological_vector_space dbr:Topology_of_uniform_convergence dbr:Weak_topology dbr:Polar_topology dbr:List_of_topologies dbr:Space_of_linear_maps dbr:Ε-topology dbr:Strong_dual_space dbr:Topologies_of_Uniform_Convergence |
is foaf:primaryTopic of |
wikipedia-en:Topologies_on_spaces_of_linear_maps |