LF-space (original) (raw)

Property Value
dbo:abstract (LF)-Räume sind eine in der Mathematik betrachtete Klasse von Vektorräumen. Abstrahiert man die Konstruktion gewisser Räume aus der Distributionstheorie, so wird man zwanglos auf den Begriff des (LF)-Raums geführt. Dabei handelt es sich um die Vereinigung einer aufsteigenden Folge von Fréchet-Räumen, was man auch als induktiven Limes von Fréchet-Räumen bezeichnet, woher der Name (LF)-Raum rührt. (de) In mathematics, an LF-space, also written (LF)-space, is a topological vector space (TVS) X that is a locally convex inductive limit of a countable inductive system of Fréchet spaces. This means that X is a direct limit of a direct system in the category of locally convex topological vector spaces and each is a Fréchet space. The name LF stands for Limit of Fréchet spaces. If each of the bonding maps is an embedding of TVSs then the LF-space is called a strict LF-space. This means that the subspace topology induced on Xn by Xn+1 is identical to the original topology on Xn.Some authors (e.g. Schaefer) define the term "LF-space" to mean "strict LF-space," so when reading mathematical literature, it is recommended to always check how LF-space is defined. (en) 数学における LF-空間(エルエフくうかん、英: LF-space)は、ベクトル空間の一類で、一口に言えばシュヴァルツ超函数の構成法を抽象化するものである。LF-空間の名は、それがフレシェ空間の増大列の合併(正確には、狭義の可算帰納極限と呼ばれるもの)になっていることに由来する (inductive Limit of F-space)。 (ja)
dbo:wikiPageID 2314852 (xsd:integer)
dbo:wikiPageLength 22582 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID 1101322729 (xsd:integer)
dbo:wikiPageWikiLink dbr:Topological_embedding dbr:Barrelled_space dbr:Bornological_space dbc:Topological_vector_spaces dbr:DF-space dbr:Initial_topology dbr:LB-space dbr:Mathematics dbr:Meager_set dbr:Nuclear_space dbr:Fréchet_space dbr:Locally_convex_topological_vector_space dbr:Comparison_of_topologies dbr:Functional_analysis dbr:Topological_vector_space dbr:Distinguished_space dbr:Hausdorff_space dbr:Absolutely_convex_set dbr:Alexander_Grothendieck dbr:F-space dbr:Normable dbr:Direct_limit dbr:Directed_set dbr:Homeomorphism dbr:Distribution_(mathematics) dbr:Final_topology dbr:Continuous_function_(topology) dbr:Ultrabornological_space dbr:If_and_only_if dbr:Injective_function dbr:Category_(mathematics) dbr:Category_of_topological_spaces dbr:Locally_convex dbr:Strong_topology dbr:LF_space dbr:Bijective_map dbr:Algebraic_dual_space dbr:Inductive_limit dbr:Quasi-barrelled_space dbr:Quotient_map dbr:Injective_map dbr:Bounded_map dbr:Sequentially_continuous dbr:Surjective_map
dbp:wikiPageUsesTemplate dbt:Bierstedt_An_Introduction_to_Locally_Convex_Inductive_Limits dbt:Valdivia_Topics_in_Locally_Convex_Spaces dbt:Big dbt:Block_indent dbt:Main dbt:Math dbt:Mvar dbt:Reflist dbt:See_also dbt:Sfn dbt:Strong dbt:Large dbt:Su dbt:Bourbaki_Topological_Vector_Spaces_Part_1_Chapters_1–5 dbt:Underset dbt:Dugundji_Topology dbt:Edwards_Functional_Analysis_Theory_and_Applications dbt:Functional_Analysis dbt:Grothendieck_Topological_Vector_Spaces dbt:Jarchow_Locally_Convex_Spaces dbt:Khaleelulla_Counterexamples_in_Topological_Vector_Spaces dbt:Köthe_Topological_Vector_Spaces_I dbt:Köthe_Topological_Vector_Spaces_II dbt:Narici_Beckenstein_Topological_Vector_Spaces dbt:Robertson_Topological_Vector_Spaces dbt:Schaefer_Wolff_Topological_Vector_Spaces dbt:Schechter_Handbook_of_Analysis_and_Its_Foundations dbt:Swartz_An_Introduction_to_Functional_Analysis dbt:TopologicalVectorSpaces dbt:Trèves_François_Topological_vector_spaces,_distributions_and_kernels dbt:Wilansky_Modern_Methods_in_Topological_Vector_Spaces dbt:Adasch_Topological_Vector_Spaces dbt:Voigt_A_Course_on_Topological_Vector_Spaces dbt:Horváth_Topological_Vector_Spaces_and_Distributions_Volume_1_1966
dct:subject dbc:Topological_vector_spaces
rdf:type owl:Thing yago:WikicatTopologicalVectorSpaces yago:Abstraction100002137 yago:Attribute100024264 yago:Possession100032613 yago:Property113244109 yago:Relation100031921 yago:Space100028651 yago:WikicatPropertiesOfTopologicalSpaces
rdfs:comment (LF)-Räume sind eine in der Mathematik betrachtete Klasse von Vektorräumen. Abstrahiert man die Konstruktion gewisser Räume aus der Distributionstheorie, so wird man zwanglos auf den Begriff des (LF)-Raums geführt. Dabei handelt es sich um die Vereinigung einer aufsteigenden Folge von Fréchet-Räumen, was man auch als induktiven Limes von Fréchet-Räumen bezeichnet, woher der Name (LF)-Raum rührt. (de) 数学における LF-空間(エルエフくうかん、英: LF-space)は、ベクトル空間の一類で、一口に言えばシュヴァルツ超函数の構成法を抽象化するものである。LF-空間の名は、それがフレシェ空間の増大列の合併(正確には、狭義の可算帰納極限と呼ばれるもの)になっていることに由来する (inductive Limit of F-space)。 (ja) In mathematics, an LF-space, also written (LF)-space, is a topological vector space (TVS) X that is a locally convex inductive limit of a countable inductive system of Fréchet spaces. This means that X is a direct limit of a direct system in the category of locally convex topological vector spaces and each is a Fréchet space. The name LF stands for Limit of Fréchet spaces. (en)
rdfs:label (LF)-Raum (de) LF-space (en) LF空間 (ja)
rdfs:seeAlso dbr:Category_(mathematics)
owl:sameAs freebase:LF-space yago-res:LF-space wikidata:LF-space dbpedia-de:LF-space dbpedia-ja:LF-space https://global.dbpedia.org/id/ZsCF
prov:wasDerivedFrom wikipedia-en:LF-space?oldid=1101322729&ns=0
foaf:isPrimaryTopicOf wikipedia-en:LF-space
is dbo:wikiPageRedirects of dbr:LF_space dbr:Limit_of_topological_vector_spaces dbr:Lf_space dbr:Direct_limit_of_TVSs dbr:Direct_limit_of_topological_vector_spaces dbr:(LF)-space dbr:Strict_LF-space
is dbo:wikiPageWikiLink of dbr:Bornological_space dbr:Complete_topological_vector_space dbr:Fréchet_space dbr:Banach_space dbr:Topological_homomorphism dbr:Topological_vector_space dbr:Topologies_on_spaces_of_linear_maps dbr:Distribution_(mathematics) dbr:Polar_topology dbr:Spaces_of_test_functions_and_distributions dbr:List_of_vector_spaces_in_mathematics dbr:Strong_dual_space dbr:LF_space dbr:Limit_of_topological_vector_spaces dbr:Lf_space dbr:Direct_limit_of_TVSs dbr:Direct_limit_of_topological_vector_spaces dbr:(LF)-space dbr:Strict_LF-space
is rdfs:seeAlso of dbr:Distribution_(mathematics) dbr:Spaces_of_test_functions_and_distributions
is foaf:primaryTopic of wikipedia-en:LF-space