Synaptic Photodamage and Its Application to Study Microglia–Synapse Interactions In Vivo (original) (raw)

References

  1. Lawson LJ, Perry VH, Dri P, Gordon S (1990) Heterogeneity in the distribution and morphology of microglia in the normal adult mouse brain. Neuroscience 39(1):151–170. https://doi.org/10.1016/0306-4522(90)90229-w
    Article CAS PubMed Google Scholar
  2. Dunaevsky A, Mason CA (2003) Spine motility: a means towards an end? Trends Neurosci 26(3):155–160. https://doi.org/10.1016/s0166-2236(03)00028-6
    Article CAS PubMed Google Scholar
  3. Trachtenberg JT, Chen BE, Knott GW, Feng G, Sanes JR, Welker E, Svoboda K (2002) Long-term in vivo imaging of experience-dependent synaptic plasticity in adult cortex. Nature 420(6917):788–794. https://doi.org/10.1038/nature01273
    Article CAS PubMed Google Scholar
  4. Toni N, Buchs PA, Nikonenko I, Bron CR, Muller D (1999) LTP promotes formation of multiple spine synapses between a single axon terminal and a dendrite. Nature 402(6760):421–425. https://doi.org/10.1038/46574
    Article CAS PubMed Google Scholar
  5. Darian-Smith C, Gilbert CD (1994) Axonal sprouting accompanies functional reorganization in adult cat striate cortex. Nature 368(6473):737–740. https://doi.org/10.1038/368737a0
    Article CAS PubMed Google Scholar
  6. Lichtman JW, Colman H (2000) Synapse elimination and indelible memory. Neuron 25(2):269–278. https://doi.org/10.1016/s0896-6273(00)80893-4
    Article CAS PubMed Google Scholar
  7. Purves D, Lichtman JW (1980) Elimination of synapses in the developing nervous system. Science (New York, NY) 210(4466):153–157. https://doi.org/10.1126/science.7414326
    Article CAS Google Scholar
  8. Paolicelli RC, Bolasco G, Pagani F, Maggi L, Scianni M, Panzanelli P, Giustetto M, Ferreira TA, Guiducci E, Dumas L, Ragozzino D, Gross CT (2011) Synaptic pruning by microglia is necessary for normal brain development. Science (New York, NY) 333(6048):1456–1458. https://doi.org/10.1126/science.1202529
    Article CAS Google Scholar
  9. Sipe GO, Lowery RL, Tremblay M, Kelly EA, Lamantia CE, Majewska AK (2016) Microglial P2Y12 is necessary for synaptic plasticity in mouse visual cortex. Nat Commun 7:10905. https://doi.org/10.1038/ncomms10905
    Article CAS PubMed PubMed Central Google Scholar
  10. Stevens B, Allen NJ, Vazquez LE, Howell GR, Christopherson KS, Nouri N, Micheva KD, Mehalow AK, Huberman AD, Stafford B, Sher A, Litke AM, Lambris JD, Smith SJ, John SW, Barres BA (2007) The classical complement cascade mediates CNS synapse elimination. Cell 131(6):1164–1178. https://doi.org/10.1016/j.cell.2007.10.036
    Article CAS PubMed Google Scholar
  11. Tremblay M, Lowery RL, Majewska AK (2010) Microglial interactions with synapses are modulated by visual experience. PLoS Biol 8(11):e1000527. https://doi.org/10.1371/journal.pbio.1000527
    Article CAS PubMed PubMed Central Google Scholar
  12. Pont-Lezica L, Beumer W, Colasse S, Drexhage H, Versnel M, Bessis A (2014) Microglia shape corpus callosum axon tract fasciculation: functional impact of prenatal inflammation. Eur J Neurosci 39(10):1551–1557. https://doi.org/10.1111/ejn.12508
    Article PubMed Google Scholar
  13. Squarzoni P, Oller G, Hoeffel G, Pont-Lezica L, Rostaing P, Low D, Bessis A, Ginhoux F, Garel S (2014) Microglia modulate wiring of the embryonic forebrain. Cell Rep 8(5):1271–1279. https://doi.org/10.1016/j.celrep.2014.07.042
    Article CAS PubMed Google Scholar
  14. Wallace J, Lord J, Dissing-Olesen L, Stevens B, Murthy VN (2020) Microglial depletion disrupts normal functional development of adult-born neurons in the olfactory bulb. eLife 9. https://doi.org/10.7554/eLife.50531
  15. Lim TK, Ruthazer ES (2021) Microglial trogocytosis and the complement system regulate axonal pruning in vivo. eLife 10. https://doi.org/10.7554/eLife.62167
  16. Milinkeviciute G, Henningfield CM, Muniak MA, Chokr SM, Green KN, Cramer KS (2019) Microglia regulate pruning of specialized synapses in the auditory brainstem. Front Neural Circuits 13:55. https://doi.org/10.3389/fncir.2019.00055
    Article CAS PubMed PubMed Central Google Scholar
  17. Ma X, Chen K, Cui Y, Huang G, Nehme A, Zhang L, Li H, Wei J, Liong K, Liu Q, Shi L, Wu J, Qiu S (2020) Depletion of microglia in developing cortical circuits reveals its critical role in glutamatergic synapse development, functional connectivity, and critical period plasticity. J Neurosci Res 98(10):1968–1986. https://doi.org/10.1002/jnr.24641
    Article CAS PubMed Google Scholar
  18. Schafer DP, Lehrman EK, Kautzman AG, Koyama R, Mardinly AR, Yamasaki R, Ransohoff RM, Greenberg ME, Barres BA, Stevens B (2012) Microglia sculpt postnatal neural circuits in an activity and complement-dependent manner. Neuron 74(4):691–705. https://doi.org/10.1016/j.neuron.2012.03.026
    Article CAS PubMed PubMed Central Google Scholar
  19. Miyamoto A, Wake H, Ishikawa AW, Eto K, Shibata K, Murakoshi H, Koizumi S (2016) Microglia contact induces synapse formation in developing somatosensory cortex. Nat Commun 7:12540. https://doi.org/10.1038/ncomms12540
    Article CAS PubMed PubMed Central Google Scholar
  20. Parkhurst CN, Yang G, Ninan I, Savas JN, Yates JR 3rd, Lafaille JJ, Hempstead BL, Littman DR, Gan WB (2013) Microglia promote learning-dependent synapse formation through brain-derived neurotrophic factor. Cell 155(7):1596–1609. https://doi.org/10.1016/j.cell.2013.11.030
    Article CAS PubMed PubMed Central Google Scholar
  21. Bitzer-Quintero OK, González-Burgos I (2012) Immune system in the brain: a modulatory role on dendritic spine morphophysiology? Neural Plast 2012:348642. https://doi.org/10.1155/2012/348642
    Article CAS PubMed PubMed Central Google Scholar
  22. Smith BL, Laaker CJ, Lloyd KR, Hiltz AR, Reyes TM (2020) Adolescent microglia play a role in executive function in male mice exposed to perinatal high fat diet. Brain Behav Immun 84:80–89. https://doi.org/10.1016/j.bbi.2019.11.010
    Article CAS PubMed Google Scholar
  23. Torres L, Danver J, Ji K, Miyauchi JT, Chen D, Anderson ME, West BL, Robinson JK, Tsirka SE (2016) Dynamic microglial modulation of spatial learning and social behavior. Brain Behav Immun 55:6–16. https://doi.org/10.1016/j.bbi.2015.09.001
    Article PubMed Google Scholar
  24. Wang C, Yue H, Hu Z, Shen Y, Ma J, Li J, Wang XD, Wang L, Sun B, Shi P, Wang L, Gu Y (2020) Microglia mediate forgetting via complement-dependent synaptic elimination. Science (New York, NY) 367(6478):688–694. https://doi.org/10.1126/science.aaz2288
    Article CAS Google Scholar
  25. Meyer-Luehmann M, Spires-Jones TL, Prada C, Garcia-Alloza M, de Calignon A, Rozkalne A, Koenigsknecht-Talboo J, Holtzman DM, Bacskai BJ, Hyman BT (2008) Rapid appearance and local toxicity of amyloid-beta plaques in a mouse model of Alzheimer’s disease. Nature 451(7179):720–724. https://doi.org/10.1038/nature06616
    Article CAS PubMed PubMed Central Google Scholar
  26. Tzioras M, Daniels M, King D, Popovic K, Holloway R, Stevenson A, Tulloch J, Kandasamy J, Sokol D, Clare J, Smith C, Miron E, Henstridge C, McColl B, Spires-Jones TL (2019) Altered synaptic ingestion by human microglia in Alzheimer’s disease. bioRxiv:795930. https://doi.org/10.1101/795930
  27. Azevedo EP, Ledo JH, Barbosa G, Sobrinho M, Diniz L, Fonseca AC, Gomes F, Romão L, Lima FR, Palhano FL, Ferreira ST, Foguel D (2013) Activated microglia mediate synapse loss and short-term memory deficits in a mouse model of transthyretin-related oculoleptomeningeal amyloidosis. Cell Death Dis 4(9):e789. https://doi.org/10.1038/cddis.2013.325
    Article CAS PubMed PubMed Central Google Scholar
  28. Fonseca M, Zhou J, Botto M, Tenner A (2004) Absence of C1q leads to less neuropathology in transgenic mouse models of Alzheimer’s disease. J Neurosci 24(29):6457–6465. https://doi.org/10.1523/jneurosci.0901-04.2004
    Article CAS PubMed PubMed Central Google Scholar
  29. Hong S, Beja-Glasser VF, Nfonoyim BM, Frouin A, Li S, Ramakrishnan S, Merry KM, Shi Q, Rosenthal A, Barres BA, Lemere CA, Selkoe DJ, Stevens B (2016) Complement and microglia mediate early synapse loss in Alzheimer mouse models. Science 352(6286):712–716. https://doi.org/10.1126/science.aad8373
    Article CAS PubMed PubMed Central Google Scholar
  30. Dejanovic B, Wu T, Tsai MC, Graykowski D, Gandham VD, Rose CM, Bakalarski CE, Ngu H, Wang Y, Pandey S, Rezzonico MG, Friedman BA, Edmonds R, De Mazière A, Rakosi-Schmidt R, Singh T, Klumperman J, Foreman O, Chang MC, Xie L, Sheng M, Hanson JE (2022) Complement C1q-dependent excitatory and inhibitory synapse elimination by astrocytes and microglia in Alzheimer’s disease mouse models. Nat Aging 2(9):837–850. https://doi.org/10.1038/s43587-022-00281-1
    Article CAS PubMed PubMed Central Google Scholar
  31. Czirr E (2017) Microglial complement receptor 3 regulates brain Aβ levels through secreted proteolytic activity. J Neurosci 214(4):1081–1092. https://doi.org/10.1523/jneurosci.3882-16.201710.1084/jem.20162011
    Article Google Scholar
  32. Shi Q, Chowdhury S (2017) Complement C3 deficiency protects against neurodegeneration in aged plaque-rich APP/PS1 mice. Sci Transl Med 9(392). https://doi.org/10.1126/scitranslmed.aaf6295
  33. Galbraith JA, Terasaki M (2003) Controlled damage in thick specimens by multiphoton excitation. Mol Biol Cell 14(5):1808–1817. https://doi.org/10.1091/mbc.e02-03-0163
    Article CAS PubMed PubMed Central Google Scholar
  34. Vogel A, Lorenz K, Horneffer V, Hüttmann G, von Smolinski D, Gebert A (2007) Mechanisms of laser-induced dissection and transport of histologic specimens. Biophys J 93(12):4481–4500. https://doi.org/10.1529/biophysj.106.102277
    Article CAS PubMed PubMed Central Google Scholar
  35. Vogel A, Venugopalan V (2003) Mechanisms of pulsed laser ablation of biological tissues. Chem Rev 103(2):577–644. https://doi.org/10.1021/cr010379n
    Article CAS PubMed Google Scholar
  36. Tsai PS, Blinder P, Migliori BJ, Neev J, Jin Y, Squier JA, Kleinfeld D (2009) Plasma-mediated ablation: an optical tool for submicrometer surgery on neuronal and vascular systems. Curr Opin Biotechnol 20(1):90–99. https://doi.org/10.1016/j.copbio.2009.02.003
    Article CAS PubMed PubMed Central Google Scholar
  37. Sun Q, Qin Z, Wu W, Lin Y, Chen C, He S, Li X, Wu Z, Luo Y, Qu JY (2018) In vivo imaging-guided microsurgery based on femtosecond laser produced new fluorescent compounds in biological tissues. Biomed Opt Express 9(2):581–590. https://doi.org/10.1364/boe.9.000581
    Article CAS PubMed PubMed Central Google Scholar
  38. Müller D, Hagenah D, Biswanath S, Coffee M, Kampmann A, Zweigerdt R, Heisterkamp A, Kalies SMK (2019) Femtosecond laser-based nanosurgery reveals the endogenous regeneration of single Z-discs including physiological consequences for cardiomyocytes. Sci Rep 9(1):3625. https://doi.org/10.1038/s41598-019-40308-z
    Article CAS PubMed PubMed Central Google Scholar
  39. Allegra Mascaro AL, Cesare P, Sacconi L, Grasselli G, Mandolesi G, Maco B, Knott GW, Huang L, De Paola V, Strata P, Pavone FS (2013) In vivo single branch axotomy induces GAP-43-dependent sprouting and synaptic remodeling in cerebellar cortex. Proc Natl Acad Sci USA 110(26):10824–10829. https://doi.org/10.1073/pnas.1219256110
    Article PubMed PubMed Central Google Scholar
  40. Allegra Mascaro AL, Sacconi L, Pavone FS (2010) Multi-photon nanosurgery in live brain. Front Neuroenerg 2. https://doi.org/10.3389/fnene.2010.00021
  41. Canty AJ, Huang L, Jackson JS, Little GE, Knott G, Maco B, De Paola V (2013) In-vivo single neuron axotomy triggers axon regeneration to restore synaptic density in specific cortical circuits. Nat Commun 4:2038. https://doi.org/10.1038/ncomms3038
    Article CAS PubMed Google Scholar
  42. Canty AJ, Jackson JS, Huang L, Trabalza A, Bass C, Little G, Tortora M, Khan S, De Paola V (2020) In vivo imaging of injured cortical axons reveals a rapid onset form of Wallerian degeneration. BMC Biol 18(1):170. https://doi.org/10.1186/s12915-020-00869-2
    Article CAS PubMed PubMed Central Google Scholar
  43. Go MA, Choy JM, Colibaba AS, Redman S, Bachor HA, Stricker C, Daria VR (2016) Targeted pruning of a neuron’s dendritic tree via femtosecond laser dendrotomy. Sci Rep 6:19078. https://doi.org/10.1038/srep19078
    Article CAS PubMed PubMed Central Google Scholar
  44. Park J, Papoutsi A, Ash RT, Marin MA, Poirazi P, Smirnakis SM (2019) Contribution of apical and basal dendrites to orientation encoding in mouse V1 L2/3 pyramidal neurons. Nat Commun 10(1):5372. https://doi.org/10.1038/s41467-019-13029-0
    Article CAS PubMed PubMed Central Google Scholar
  45. Sacconi L, O’Connor RP, Jasaitis A, Masi A, Buffelli M, Pavone FS (2007) In vivo multiphoton nanosurgery on cortical neurons. J Biomed Opt 12(5):050502. https://doi.org/10.1117/1.2798723
    Article PubMed Google Scholar
  46. Nimmerjahn A, Kirchhoff F, Helmchen F (2005) Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science (New York, NY) 308(5726):1314–1318. https://doi.org/10.1126/science.1110647
    Article CAS Google Scholar
  47. Davalos D, Grutzendler J, Yang G, Kim JV, Zuo Y, Jung S, Littman DR, Dustin ML, Gan WB (2005) ATP mediates rapid microglial response to local brain injury in vivo. Nat Neurosci 8(6):752–758. https://doi.org/10.1038/nn1472
    Article CAS PubMed Google Scholar
  48. Dissing-Olesen L, LeDue JM, Rungta RL, Hefendehl JK, Choi HB, MacVicar BA (2014) Activation of neuronal NMDA receptors triggers transient ATP-mediated microglial process outgrowth. J Neurosci Off J Soc Neurosci 34(32):10511–10527. https://doi.org/10.1523/jneurosci.0405-14.2014
    Article Google Scholar
  49. Haynes SE, Hollopeter G, Yang G, Kurpius D, Dailey ME, Gan WB, Julius D (2006) The P2Y12 receptor regulates microglial activation by extracellular nucleotides. Nat Neurosci 9(12):1512–1519. https://doi.org/10.1038/nn1805
    Article CAS PubMed Google Scholar
  50. Mendes MS, Le L, Atlas J, Brehm Z, Ladron-de-Guevara A, Matei E, Lamantia C, McCall MN, Majewska AK (2021) The role of P2Y12 in the kinetics of microglial self-renewal and maturation in the adult visual cortex in vivo. eLife 10. https://doi.org/10.7554/eLife.61173
  51. Dibaj P, Nadrigny F, Steffens H, Scheller A, Hirrlinger J, Schomburg ED, Neusch C, Kirchhoff F (2010) NO mediates microglial response to acute spinal cord injury under ATP control in vivo. Glia 58(9):1133–1144. https://doi.org/10.1002/glia.20993
    Article PubMed Google Scholar
  52. Avignone E, Lepleux M, Angibaud J, Nägerl UV (2015) Altered morphological dynamics of activated microglia after induction of status epilepticus. J Neuroinflammation 12:202. https://doi.org/10.1186/s12974-015-0421-6
    Article CAS PubMed PubMed Central Google Scholar
  53. Eyo UB, Haruwaka K, Mo M, Campos-Salazar AB, Wang L, Speros XST, Sabu S, Xu P, Wu LJ (2021) Microglia provide structural resolution to injured dendrites after severe seizures. Cell Rep 35(5):109080. https://doi.org/10.1016/j.celrep.2021.109080
    Article CAS PubMed PubMed Central Google Scholar
  54. Gyoneva S, Davalos D, Biswas D, Swanger SA, Garnier-Amblard E, Loth F, Akassoglou K, Traynelis SF (2014) Systemic inflammation regulates microglial responses to tissue damage in vivo. Glia 62(8):1345–1360. https://doi.org/10.1002/glia.22686
    Article PubMed PubMed Central Google Scholar
  55. Krabbe G, Halle A, Matyash V, Rinnenthal JL, Eom GD, Bernhardt U, Miller KR, Prokop S, Kettenmann H, Heppner FL (2013) Functional impairment of microglia coincides with Beta-amyloid deposition in mice with Alzheimer-like pathology. PLoS One 8(4):e60921. https://doi.org/10.1371/journal.pone.0060921
    Article CAS PubMed PubMed Central Google Scholar
  56. Stoyanov S, Sun W (2021) Attenuation of the extracellular matrix restores microglial activity during the early stage of amyloidosis. Glia 69(1):182–200. https://doi.org/10.1002/glia.23894
    Article CAS PubMed Google Scholar
  57. Cangalaya C, Stoyanov S, Fischer KD, Dityatev A (2020) Light-induced engagement of microglia to focally remodel synapses in the adult brain. eLife 9:e58435. https://doi.org/10.7554/eLife.58435
    Article CAS PubMed PubMed Central Google Scholar
  58. Keller JN, Lauderback CM, Butterfield DA, Kindy MS, Yu J, Markesbery WR (2000) Amyloid beta-peptide effects on synaptosomes from apolipoprotein E-deficient mice. J Neurochem 74(4):1579–1586. https://doi.org/10.1046/j.1471-4159.2000.0741579.x
    Article CAS PubMed Google Scholar
  59. Cai Q, Tammineni P (2017) Mitochondrial aspects of synaptic dysfunction in Alzheimer’s disease. J Alzheimers Dis 57(4):1087–1103. https://doi.org/10.1523/jneurosci.3882-16.201710.3233/jad-160726
    Article CAS PubMed PubMed Central Google Scholar
  60. Devi L, Prabhu BM, Galati DF, Avadhani NG, Anandatheerthavarada HK (2006) Accumulation of amyloid precursor protein in the mitochondrial import channels of human Alzheimer’s disease brain is associated with mitochondrial dysfunction. Nat Commun 26(35):9057–9068. https://doi.org/10.1038/s41467-021-22301-110.1523/jneurosci.1469-06.2006
    Article CAS Google Scholar
  61. Reddy PH, Beal MF (2008) Amyloid beta, mitochondrial dysfunction and synaptic damage: implications for cognitive decline in aging and Alzheimer’s disease. Trends Mol Med 14(2):45–53. https://doi.org/10.1016/j.molmed.2007.12.002
    Article CAS PubMed PubMed Central Google Scholar
  62. D’Amelio M, Cavallucci V, Middei S, Marchetti C, Pacioni S, Ferri A, Diamantini A, De Zio D, Carrara P, Battistini L, Moreno S, Bacci A, Ammassari-Teule M, Marie H, Cecconi F (2011) Caspase-3 triggers early synaptic dysfunction in a mouse model of Alzheimer’s disease. Nat Neurosci 14(1):69–76. https://doi.org/10.1038/nn.2709
    Article CAS PubMed Google Scholar
  63. Yoon J, Ryu SW, Lee S, Choi C (2015) Cytosolic irradiation of femtosecond laser induces mitochondria-dependent apoptosis-like cell death via intrinsic reactive oxygen cascades. Sci Rep 5:8231. https://doi.org/10.1038/srep08231
    Article CAS PubMed PubMed Central Google Scholar
  64. Scott-Hewitt N, Perrucci F, Morini R, Erreni M, Mahoney M, Witkowska A, Carey A, Faggiani E, Schuetz LT, Mason S, Tamborini M, Bizzotto M, Passoni L, Filipello F, Jahn R, Stevens B, Matteoli M (2020) Local externalization of phosphatidylserine mediates developmental synaptic pruning by microglia. EMBO J 39(16):e105380. https://doi.org/10.15252/embj.2020105380
    Article CAS PubMed PubMed Central Google Scholar
  65. Cangalaya C, Wegmann S, Sun W, Diez L, Gottfried A, Richter K, Stoyanov S, Pakan J, Fischer KD, Dityatev A (2023) Real-time mechanisms of exacerbated synaptic remodeling by microglia in acute models of systemic inflammation and tauopathy. Brain Behav Immun 110:245–259. https://doi.org/10.1016/j.bbi.2023.02.023
    Article CAS PubMed Google Scholar
  66. Holmes JR, Berkowitz A (2014) Dendritic orientation and branching distinguish a class of multifunctional turtle spinal interneurons Frontiers in Neural Circuits 8:136. https://doi.org/10.3389/fncir.2014.00136
  67. Sun W, Suzuki K, Toptunov D, Stoyanov S, Yuzaki M, Khiroug L, Dityatev A (2019) In vivo two-photon imaging of anesthesia-specific alterations in microglial surveillance and photodamage-directed motility in mouse cortex. Front Neurosci 13:421. https://doi.org/10.3389/fnins.2019.00421
    Article PubMed PubMed Central Google Scholar

Download references