Transcriptional control of mammalian pancreas organogenesis (original) (raw)

References

  1. Pictet RL, Clark WR, Williams RH, Rutter WJ (1972) An ultrastructural analysis of the developing embryonic pancreas. Dev Biol 29(4):436–467
    CAS PubMed Google Scholar
  2. Zhou Q, Law AC, Rajagopal J, Anderson WJ, Gray PA, Melton DA (2007) A multipotent progenitor domain guides pancreatic organogenesis. Dev Cell 13(1):103–114
    CAS PubMed Google Scholar
  3. Gittes GK (2009) Developmental biology of the pancreas: a comprehensive review. Dev Biol 326(1):4–35. doi:10.1016/j.ydbio.2008.10.024
    CAS PubMed Google Scholar
  4. Serup P (2012) Signaling pathways regulating murine pancreatic development. Semin Cell Dev Biol 23(6):663–672. doi:10.1016/j.semcdb.2012.06.004
    CAS PubMed Google Scholar
  5. Seymour PA, Sander M (2011) Historical perspective: beginnings of the beta-cell: current perspectives in beta-cell development. Diabetes 60(2):364–376. doi:10.2337/db10-1068
    CAS PubMed Central PubMed Google Scholar
  6. Guo T, Hebrok M (2009) Stem cells to pancreatic beta-cells: new sources for diabetes cell therapy. Endocr Rev 30(3):214–227. doi:10.1210/er.2009-0004
    CAS PubMed Central PubMed Google Scholar
  7. Pan FC, Wright C (2011) Pancreas organogenesis: from bud to plexus to gland. Dev Dyn 240(3):530–565. doi:10.1002/dvdy.22584
    CAS PubMed Google Scholar
  8. Lammert E, Cleaver O, Melton D (2001) Induction of pancreatic differentiation by signals from blood vessels. Science V294(N5542):564–567
    Google Scholar
  9. McCracken KW, Wells JM (2012) Molecular pathways controlling pancreas induction. Semin Cell Dev Biol 23(6):656–662. doi:10.1016/j.semcdb.2012.06.009
    CAS PubMed Central PubMed Google Scholar
  10. Zorn AM, Wells JM (2009) Vertebrate endoderm development and organ formation. Annu Rev Cell Dev Biol 25:221–251. doi:10.1146/annurev.cellbio.042308.113344
    CAS PubMed Central PubMed Google Scholar
  11. Chiang MK, Melton DA (2003) Single-cell transcript analysis of pancreas development. Dev Cell 4(3):383–393
    CAS PubMed Google Scholar
  12. Kawaguchi Y, Cooper B, Gannon M, Ray M, MacDonald RJ, Wright CV (2002) The role of the transcriptional regulator Ptf1a in converting intestinal to pancreatic progenitors. Nat Genet 32(1):128–134
    CAS PubMed Google Scholar
  13. Guz Y, Montminy MR, Stein R, Leonard J, Gamer LW, Wright CVE, Teitelman G (1995) Expression of murine STF-1, a putative insulin gene transcription factor, in β cells of pancreas, duodenal epithelium and pancreatic exocrine and endocrine progenitors during ontogeny. Development 121:149–161
    Google Scholar
  14. Offield MF, Jetton TL, Labosky PA, Ray M, Stein R, Magnuson MA, Hogan BLM, Wright CVE (1996) PDX-1 is required for pancreatic outgrowth and differentiation of the rostral duodenum. Development 122:983–995
    CAS PubMed Google Scholar
  15. Jonsson J, Carlsson L, Edlund T, Edlund H (1994) Insulin-promoter-factor 1 is required for pancreas development in mice. Nature 371:606–609
    CAS PubMed Google Scholar
  16. Stoffers DA, Heller RS, Miller CP, Habener JF (1999) Developmental expression of the homeodomain protein IDX-1 in mice transgenic for an IDX-1 promoter/lacZ transcriptional reporter. Endocrinology 140(11):5374–5381
    CAS PubMed Google Scholar
  17. Larsson LI, Madsen OD, Serup P, Jonsson J, Edlund H (1996) Pancreatic-duodenal homeobox 1 -role in gastric endocrine patterning. Mech Dev 60(2):175–184
    CAS PubMed Google Scholar
  18. Ahlgren U, Jonsson J, Edlund H (1996) The morphogenesis of the pancreatic mesenchyme is uncoupled from that of the pancreatic epithelium in IPF1/PDX1- deficient mice. Development 122:1409–1416
    CAS PubMed Google Scholar
  19. Jonas JC, Bensellam M, Duprez J, Elouil H, Guiot Y, Pascal SM (2009) Glucose regulation of islet stress responses and beta-cell failure in type 2 diabetes. Diabetes Obes Metab 11(Suppl 4):65–81
    CAS PubMed Google Scholar
  20. Burlison JS, Long Q, Fujitani Y, Wright CV, Magnuson MA (2008) Pdx-1 and Ptf1a concurrently determine fate specification of pancreatic multipotent progenitor cells. Dev Biol 316(1):74–86. doi:10.1016/j.ydbio.2008.01.011
    CAS PubMed Central PubMed Google Scholar
  21. Gannon M, Gamer LW, Wright CV (2001) Regulatory regions driving developmental and tissue-specific expression of the essential pancreatic gene pdx1. Dev Biol 238(1):185–201. doi:10.1006/dbio.2001.0359
    CAS PubMed Google Scholar
  22. Wiebe PO, Kormish JD, Roper VT, Fujitani Y, Alston NI, Zaret KS, Wright CV, Stein RW, Gannon M (2007) Ptf1a binds to and activates area III, a highly conserved region of the Pdx1 promoter that mediates early pancreas-wide Pdx1 expression. Mol Cell Biol 27(11):4093–4104. doi:10.1128/MCB.01978-06
    CAS PubMed Central PubMed Google Scholar
  23. Gannon M, Herrera PL, Wright CV (2000) Mosaic Cre-mediated recombination in pancreas using the pdx-1 enhancer/promoter. Genesis 26(2):143–144
    CAS PubMed Google Scholar
  24. Jacquemin P, Lemaigre FP, Rousseau GG (2003) The Onecut transcription factor HNF-6 (OC-1) is required for timely specification of the pancreas and acts upstream of Pdx-1 in the specification cascade. Dev Biol 258(1):105–116
    CAS PubMed Google Scholar
  25. Lee CS, Sund NJ, Behr R, Herrera PL, Kaestner KH (2005) Foxa2 is required for the differentiation of pancreatic alpha-cells. Dev Biol 278(2):484–495
    CAS PubMed Google Scholar
  26. Carrasco M, Delgado I, Soria B, Martin F, Rojas A (2012) GATA4 and GATA6 control mouse pancreas organogenesis. J Clin Investig 122(10):3504–3515. doi:10.1172/JCI63240
    CAS PubMed Central PubMed Google Scholar
  27. Xuan S, Borok MJ, Decker KJ, Battle MA, Duncan SA, Hale MA, Macdonald RJ, Sussel L (2012) Pancreas-specific deletion of mouse Gata4 and Gata6 causes pancreatic agenesis. J Clin Investig 122(10):3516–3528. doi:10.1172/JCI63352
    CAS PubMed Central PubMed Google Scholar
  28. Sherwood RI, Chen TY, Melton DA (2009) Transcriptional dynamics of endodermal organ formation. Dev Dyn 238(1):29–42
    CAS PubMed Central PubMed Google Scholar
  29. Spence JR, Lange AW, Lin SC, Kaestner KH, Lowy AM, Kim I, Whitsett JA, Wells JM (2009) Sox17 regulates organ lineage segregation of ventral foregut progenitor cells. Dev Cell 17(1):62–74. doi:10.1016/j.devcel.2009.05.012
    CAS PubMed Central PubMed Google Scholar
  30. Kanai-Azuma M, Kanai Y, Gad JM, Tajima Y, Taya C, Kurohmaru M, Sanai Y, Yonekawa H, Yazaki K, Tam PP, Hayashi Y (2002) Depletion of definitive gut endoderm in Sox17-null mutant mice. Development 129(10):2367–2379
    CAS PubMed Google Scholar
  31. Pan FC, Bankaitis ED, Boyer D, Xu X, Van de Casteele M, Magnuson MA, Heimberg H, Wright CV (2013) Spatiotemporal patterns of multipotentiality in Ptf1a-expressing cells during pancreas organogenesis and injury-induced facultative restoration. Development 140(4):751–764. doi:10.1242/dev.090159
    CAS PubMed Central PubMed Google Scholar
  32. Xu CR, Cole PA, Meyers DJ, Kormish J, Dent S, Zaret KS (2011) Chromatin “prepattern” and histone modifiers in a fate choice for liver and pancreas. Science 332(6032):963–966. doi:10.1126/science.1202845
    CAS PubMed Central PubMed Google Scholar
  33. Kesavan G, Sand FW, Greiner TU, Johansson JK, Kobberup S, Wu X, Brakebusch C, Semb H (2009) Cdc42-mediated tubulogenesis controls cell specification. Cell 139(4):791–801. doi:10.1016/j.cell.2009.08.049
    CAS PubMed Google Scholar
  34. Villasenor A, Chong DC, Henkemeyer M, Cleaver O (2010) Epithelial dynamics of pancreatic branching morphogenesis. Development 137(24):4295–4305. doi:10.1242/dev.052993
    CAS PubMed Central PubMed Google Scholar
  35. Kopp JL, von Figura G, Mayes E, Liu FF, Dubois CL, Morris JPt, Pan FC, Akiyama H, Wright CV, Jensen K, Hebrok M, Sander M (2012) Identification of Sox9-dependent acinar-to-ductal reprogramming as the principal mechanism for initiation of pancreatic ductal adenocarcinoma. Cancer Cell 22(6):737–750. doi:10.1016/j.ccr.2012.10.025
    CAS PubMed Central PubMed Google Scholar
  36. Schaffer AE, Freude KK, Nelson SB, Sander M (2010) Nkx6 transcription factors and Ptf1a function as antagonistic lineage determinants in multipotent pancreatic progenitors. Dev Cell 18(6):1022–1029. doi:10.1016/j.devcel.2010.05.015
    CAS PubMed Central PubMed Google Scholar
  37. Sugiyama T, Benitez CM, Ghodasara A, Liu L, McLean GW, Lee J, Blauwkamp TA, Nusse R, Wright CV, Gu G, Kim SK (2013) Reconstituting pancreas development from purified progenitor cells reveals genes essential for islet differentiation. Proc Natl Acad Sci USA 110(31):12691–12696. doi:10.1073/pnas.1304507110
    CAS PubMed Central PubMed Google Scholar
  38. Gu G, Dubauskaite J, Melton DA (2002) Direct evidence for the pancreatic lineage: NGN3+ cells are islet progenitors and are distinct from duct progenitors. Development 129(10):2447–2457
    CAS PubMed Google Scholar
  39. Solar M, Cardalda C, Houbracken I, Martin M, Maestro MA, De Medts N, Xu X, Grau V, Heimberg H, Bouwens L, Ferrer J (2009) Pancreatic exocrine duct cells give rise to insulin-producing beta cells during embryogenesis but not after birth. Dev Cell 17(6):849–860. doi:10.1016/j.devcel.2009.11.003
    CAS PubMed Google Scholar
  40. Kopinke D, Murtaugh LC (2010) Exocrine-to-endocrine differentiation is detectable only prior to birth in the uninjured mouse pancreas. BMC Dev Biol 10:38. doi:10.1186/1471-213X-10-38
    PubMed Central PubMed Google Scholar
  41. Kopinke D, Brailsford M, Shea JE, Leavitt R, Scaife CL, Murtaugh LC (2011) Lineage tracing reveals the dynamic contribution of Hes1+ cells to the developing and adult pancreas. Development 138(3):431–441. doi:10.1242/dev.053843
    CAS PubMed Central PubMed Google Scholar
  42. Kopp JL, Dubois CL, Schaffer AE, Hao E, Shih HP, Seymour PA, Ma J, Sander M (2011) Sox9+ ductal cells are multipotent progenitors throughout development but do not produce new endocrine cells in the normal or injured adult pancreas. Development 138(4):653–665. doi:10.1242/dev.056499
    CAS PubMed Central PubMed Google Scholar
  43. Stanger BZ, Tanaka AJ, Melton DA (2007) Organ size is limited by the number of embryonic progenitor cells in the pancreas but not the liver. Nature 445(7130):886–891. doi:10.1038/nature05537
    CAS PubMed Google Scholar
  44. Bhushan A, Itoh N, Kato S, Thiery JP, Czernichow P, Bellusci S, Scharfmann R (2001) Fgf10 is essential for maintaining the proliferative capacity of epithelial progenitor cells during early pancreatic organogenesis. Development 128(24):5109–5117
    CAS PubMed Google Scholar
  45. Murtaugh LC, Law AC, Dor Y, Melton DA (2005) Beta-catenin is essential for pancreatic acinar but not islet development. Development 132(21):4663–4674. doi:10.1242/dev.02063
    Google Scholar
  46. Wells JM, Esni F, Boivin GP, Aronow BJ, Stuart W, Combs C, Sklenka A, Leach SD, Lowy AM (2007) Wnt/beta-catenin signaling is required for development of the exocrine pancreas. BMC Dev Biol 7:4
    PubMed Central PubMed Google Scholar
  47. Holland AM, Hale MA, Kagami H, Hammer RE, MacDonald RJ (2002) Experimental control of pancreatic development and maintenance. Proc Natl Acad Sci USA 99(19):12236–12241. doi:10.1073/pnas.192255099
    CAS PubMed Central PubMed Google Scholar
  48. Hale MA, Kagami H, Shi L, Holland AM, Elsasser HP, Hammer RE, MacDonald RJ (2005) The homeodomain protein PDX1 is required at mid-pancreatic development for the formation of the exocrine pancreas. Dev Biol 286(1):225–237. doi:10.1016/j.ydbio.2005.07.026
    CAS PubMed Google Scholar
  49. Svensson P, Williams C, Lundeberg J, Ryden P, Bergqvist I, Edlund H (2007) Gene array identification of Ipf1/Pdx1-/- regulated genes in pancreatic progenitor cells. BMC Dev Biol 7:129. doi:10.1186/1471-213X-7-129
    PubMed Central PubMed Google Scholar
  50. Seymour PA, Shih HP, Patel NA, Freude KK, Xie R, Lim CJ, Sander M (2012) A Sox9/Fgf feed-forward loop maintains pancreatic organ identity. Development 139(18):3363–3372. doi:10.1242/dev.078733
    CAS PubMed Central PubMed Google Scholar
  51. Rojas A, Schachterle W, Xu SM, Black BL (2009) An endoderm-specific transcriptional enhancer from the mouse Gata4 gene requires GATA and homeodomain protein-binding sites for function in vivo. Dev Dyn 238(10):2588–2598. doi:10.1002/dvdy.22091
    CAS PubMed Central PubMed Google Scholar
  52. Oliver-Krasinski JM, Kasner MT, Yang J, Crutchlow MF, Rustgi AK, Kaestner KH, Stoffers DA (2009) The diabetes gene Pdx1 regulates the transcriptional network of pancreatic endocrine progenitor cells in mice. J Clin Invest 119(7):1888–1898. doi:10.1172/JCI37028
    CAS PubMed Central PubMed Google Scholar
  53. Jacquemin P, Yoshitomi H, Kashima Y, Rousseau GG, Lemaigre FP, Zaret KS (2006) An endothelial-mesenchymal relay pathway regulates early phases of pancreas development. Dev Biol 290(1):189–199. doi:10.1016/j.ydbio.2005.11.023
    CAS PubMed Google Scholar
  54. Beres TM, Masui T, Swift GH, Shi L, Henke RM, MacDonald RJ (2006) PTF1 is an organ-specific and Notch-independent basic helix-loop-helix complex containing the mammalian Suppressor of Hairless (RBP-J) or its paralogue, RBP-L. Mol Cell Biol 26(1):117–130. doi:10.1128/MCB.26.1.117-130.2006
    CAS PubMed Central PubMed Google Scholar
  55. Masui T, Long Q, Beres TM, Magnuson MA, MacDonald RJ (2007) Early pancreatic development requires the vertebrate Suppressor of Hairless (RBPJ) in the PTF1 bHLH complex. Genes Dev 21(20):2629–2643. doi:10.1101/gad.1575207
    CAS PubMed Central PubMed Google Scholar
  56. Thompson N, Gesina E, Scheinert P, Bucher P, Grapin-Botton A (2012) RNA profiling and chromatin immunoprecipitation-sequencing reveal that PTF1a stabilizes pancreas progenitor identity via the control of MNX1/HLXB9 and a network of other transcription factors. Mol Cell Biol 32(6):1189–1199. doi:10.1128/MCB.06318-11
    CAS PubMed Central PubMed Google Scholar
  57. Masui T, Swift GH, Hale MA, Meredith DM, Johnson JE, Macdonald RJ (2008) Transcriptional autoregulation controls pancreatic Ptf1a expression during development and adulthood. Mol Cell Biol 28(17):5458–5468. doi:10.1128/MCB.00549-08
    CAS PubMed Central PubMed Google Scholar
  58. Seymour PA, Freude KK, Tran MN, Mayes EE, Jensen J, Kist R, Scherer G, Sander M (2007) From the Cover: SOX9 is required for maintenance of the pancreatic progenitor cell pool. Proc Natl Acad Sci USA 104(6):1865–1870
    CAS PubMed Central PubMed Google Scholar
  59. Lynn FC, Smith SB, Wilson ME, Yang KY, Nekrep N, German MS (2007) Sox9 coordinates a transcriptional network in pancreatic progenitor cells. Proc Natl Acad Sci USA 104(25):10500–10505. doi:10.1073/pnas.0704054104
    CAS PubMed Central PubMed Google Scholar
  60. Arceci RJ, King AA, Simon MC, Orkin SH, Wilson DB (1993) Mouse GATA-4: a retinoic acid-inducible GATA-binding transcription factor expressed in endodermally derived tissues and heart. Mol Cell Biol 13(4):2235–2246
    CAS PubMed Central PubMed Google Scholar
  61. Molkentin JD (2000) The zinc finger-containing transcription factors GATA-4, -5, and -6. Ubiquitously expressed regulators of tissue-specific gene expression. J Biol Chem 275(50):38949–38952
    CAS PubMed Google Scholar
  62. Patient RK, McGhee JD (2002) The GATA family (vertebrates and invertebrates). Curr Opin Genet Dev 12(4):416–422
    CAS PubMed Google Scholar
  63. Ketola I, Otonkoski T, Pulkkinen MA, Niemi H, Palgi J, Jacobsen CM, Wilson DB, Heikinheimo M (2004) Transcription factor GATA-6 is expressed in the endocrine and GATA-4 in the exocrine pancreas. Mol Cell Endocrinol 226(1–2):51–57
    CAS PubMed Google Scholar
  64. Coffinier C, Thepot D, Babinet C, Yaniv M, Barra J (1999) Essential role for the homeoprotein vHNF1/HNF1beta in visceral endoderm differentiation. Development 126(21):4785–4794
    CAS PubMed Google Scholar
  65. Maestro MA, Boj SF, Luco RF, Pierreux CE, Cabedo J, Servitja JM, German MS, Rousseau GG, Lemaigre FP, Ferrer J (2003) Hnf6 and Tcf2 (MODY5) are linked in a gene network operating in a precursor cell domain of the embryonic pancreas. Hum Mol Genet 12(24):3307–3314. doi:10.1093/hmg/ddg355
    CAS PubMed Google Scholar
  66. Haumaitre C, Barbacci E, Jenny M, Ott MO, Gradwohl G, Cereghini S (2005) Lack of TCF2/vHNF1 in mice leads to pancreas agenesis. Proc Natl Acad Sci USA 102(5):1490–1495. doi:10.1073/pnas.0405776102
    CAS PubMed Central PubMed Google Scholar
  67. Zhang H, Ables ET, Pope CF, Washington MK, Hipkens S, Means AL, Path G, Seufert J, Costa RH, Leiter AB, Magnuson MA, Gannon M (2009) Multiple, temporal-specific roles for HNF6 in pancreatic endocrine and ductal differentiation. Mech Dev 126(11–12):958–973. doi:10.1016/j.mod.2009.09.006
    CAS PubMed Central PubMed Google Scholar
  68. Poll AV, Pierreux CE, Lokmane L, Haumaitre C, Achouri Y, Jacquemin P, Rousseau GG, Cereghini S, Lemaigre FP (2006) A vHNF1/TCF2-HNF6 cascade regulates the transcription factor network that controls generation of pancreatic precursor cells. Diabetes 55(1):61–69
    CAS PubMed Google Scholar
  69. Li H, Arber S, Jessell TM, Edlund H (1999) Selective agenesis of the dorsal pancreas in mice lacking homeobox gene Hlxb9. Nat Genet 23(1):67–70
    CAS PubMed Google Scholar
  70. Harrison KA, Thaler J, Pfaff SL, Gu H, Kehrl JH (1999) Pancreas dorsal lobe agenesis and abnormal islets of Langerhans in Hlxb9-deficient mice. Nat Genet 23(1):71–75
    CAS PubMed Google Scholar
  71. Jorgensen MC, Ahnfelt-Ronne J, Hald J, Madsen OD, Serup P, Hecksher-Sorensen J (2007) An illustrated review of early pancreas development in the mouse. Endocr Rev 28(6):685–705
    PubMed Google Scholar
  72. Wang J, Kilic G, Aydin M, Burke Z, Oliver G, Sosa-Pineda B (2005) Prox1 activity controls pancreas morphogenesis and participates in the production of “secondary transition” pancreatic endocrine cells. Dev Biol 286(1):182–194. doi:10.1016/j.ydbio.2005.07.021
    CAS PubMed Google Scholar
  73. Westmoreland JJ, Kilic G, Sartain C, Sirma S, Blain J, Rehg J, Harvey N, Sosa-Pineda B (2012) Pancreas-specific deletion of Prox1 affects development and disrupts homeostasis of the exocrine pancreas. Gastroenterology 142 (4):999–1009 e1006. doi:10.1053/j.gastro.2011.12.007
    Google Scholar
  74. Gao N, LeLay J, Vatamaniuk MZ, Rieck S, Friedman JR, Kaestner KH (2008) Dynamic regulation of Pdx1 enhancers by Foxa1 and Foxa2 is essential for pancreas development. Genes Dev 22(24):3435–3448. doi:10.1101/gad.1752608
    CAS PubMed Central PubMed Google Scholar
  75. Servitja JM, Ferrer J (2004) Transcriptional networks controlling pancreatic development and beta cell function. Diabetologia 47(4):597–613. doi:10.1007/s00125-004-1368-9
    CAS PubMed Google Scholar
  76. Arda HE, Benitez CM, Kim SK (2013) Gene regulatory networks governing pancreas development. Dev Cell 25(1):5–13. doi:10.1016/j.devcel.2013.03.016
    CAS PubMed Central PubMed Google Scholar
  77. Pictet R, Rutter WJ (1972) Development of the embryonic endocrine pancreas. In: Greep RO, Astwood EB, Steiner DF, Freinkel N, Geiger SR (eds) Handbook of physiology, vol I. American Physiological Society, Washington, DC, pp 25–76
    Google Scholar
  78. Hald J, Sprinkel AE, Ray M, Serup P, Wright C, Madsen OD (2008) Generation and characterization of Ptf1a antiserum and localization of Ptf1a in relation to Nkx6.1 and Pdx1 during the earliest stages of mouse pancreas development. J Histochem Cytochem 56(6):587–595. doi:10.1369/jhc.2008.950675
    CAS PubMed Central PubMed Google Scholar
  79. Murtaugh LC, Stanger BZ, Kwan KM, Melton DA (2003) Notch signaling controls multiple steps of pancreatic differentiation. Proc Natl Acad Sci USA 100(25):14920–14925
    CAS PubMed Central PubMed Google Scholar
  80. Afelik S, Qu X, Hasrouni E, Bukys MA, Deering T, Nieuwoudt S, Rogers W, Macdonald RJ, Jensen J (2012) Notch-mediated patterning and cell fate allocation of pancreatic progenitor cells. Development 139(10):1744–1753. doi:10.1242/dev.075804
    CAS PubMed Central PubMed Google Scholar
  81. Horn S, Kobberup S, Jorgensen MC, Kalisz M, Klein T, Kageyama R, Gegg M, Lickert H, Lindner J, Magnuson MA, Kong YY, Serup P, Ahnfelt-Ronne J, Jensen JN (2012) Mind bomb 1 is required for pancreatic beta-cell formation. Proc Natl Acad Sci USA 109(19):7356–7361. doi:10.1073/pnas.1203605109
    CAS PubMed Central PubMed Google Scholar
  82. Magenheim J, Ilovich O, Lazarus A, Klochendler A, Ziv O, Werman R, Hija A, Cleaver O, Mishani E, Keshet E, Dor Y (2011) Blood vessels restrain pancreas branching, differentiation and growth. Development 138(21):4743–4752. doi:10.1242/dev.066548
    CAS PubMed Google Scholar
  83. Pierreux CE, Cordi S, Hick AC, Achouri Y, Ruiz de Almodovar C, Prevot PP, Courtoy PJ, Carmeliet P, Lemaigre FP (2010) Epithelial: endothelial cross-talk regulates exocrine differentiation in developing pancreas. Dev Biol 347(1):216–227. doi:10.1016/j.ydbio.2010.08.024
    CAS PubMed Google Scholar
  84. Rukstalis JM, Habener JF (2007) Snail2, a mediator of epithelial-mesenchymal transitions, expressed in progenitor cells of the developing endocrine pancreas. Gene Expr Patterns 7(4):471–479. doi:10.1016/j.modgep.2006.11.001
    CAS PubMed Central PubMed Google Scholar
  85. Cole L, Anderson M, Antin PB, Limesand SW (2009) One process for pancreatic beta-cell coalescence into islets involves an epithelial-mesenchymal transition. J Endocrinol 203(1):19–31. doi:10.1677/JOE-09-0072
    CAS PubMed Central PubMed Google Scholar
  86. Metzger DE, Gasperowicz M, Otto F, Cross JC, Gradwohl G, Zaret KS (2012) The transcriptional co-repressor Grg3/Tle3 promotes pancreatic endocrine progenitor delamination and beta-cell differentiation. Development 139(8):1447–1456. doi:10.1242/dev.072892
    CAS PubMed Central PubMed Google Scholar
  87. Magenheim J, Klein AM, Stanger BZ, Ashery-Padan R, Sosa-Pineda B, Gu G, Dor Y (2011) Ngn3(+) endocrine progenitor cells control the fate and morphogenesis of pancreatic ductal epithelium. Dev Biol 359(1):26–36. doi:10.1016/j.ydbio.2011.08.006
    CAS PubMed Central PubMed Google Scholar
  88. Beucher A, Martin M, Spenle C, Poulet M, Collin C, Gradwohl G (2012) Competence of failed endocrine progenitors to give rise to acinar but not ductal cells is restricted to early pancreas development. Dev Biol 361(2):277–285. doi:10.1016/j.ydbio.2011.10.025
    CAS PubMed Central PubMed Google Scholar
  89. Gouzi M, Kim YH, Katsumoto K, Johansson K, Grapin-Botton A (2011) Neurogenin3 initiates stepwise delamination of differentiating endocrine cells during pancreas development. Dev Dyn 240(3):589–604. doi:10.1002/dvdy.22544
    CAS PubMed Google Scholar
  90. Greiner TU, Kesavan G, Stahlberg A, Semb H (2009) Rac1 regulates pancreatic islet morphogenesis. BMC Dev Biol 9:2. doi:10.1186/1471-213X-9-2
    PubMed Central PubMed Google Scholar
  91. Schwitzgebel VM, Scheel DW, Conners JR, Kalamaras J, Lee JE, Anderson DJ, Sussel L, Johnson JD, German MS (2000) Expression of neurogenin3 reveals an islet cell precursor population in the pancreas. Development 127(16):3533–3542
    CAS PubMed Google Scholar
  92. Gradwohl G, Dierich A, LeMeur M, Guillemot F (2000) Neurogenin3 is required for the development of the four endocrine cell lineages of the pancreas. Proc Natl Acad Sci USA 97(4):1607–1611
    CAS PubMed Central PubMed Google Scholar
  93. Apelqvist A, Li H, Sommer L, Beatus P, Anderson DJ, Honjo T, Hrabe de Angelis M, Lendahl U, Edlund H (1999) Notch signalling controls pancreatic cell differentiation. Nature 400(6747):877–881
    CAS PubMed Google Scholar
  94. Johansson KA, Dursun U, Jordan N, Gu G, Beermann F, Gradwohl G, Grapin-Botton A (2007) Temporal control of neurogenin3 activity in pancreas progenitors reveals competence windows for the generation of different endocrine cell types. Dev Cell 12(3):457–465. doi:10.1016/j.devcel.2007.02.010
    CAS PubMed Google Scholar
  95. Wang S, Yan J, Anderson DA, Xu Y, Kanal MC, Cao Z, Wright CV, Gu G (2010) Neurog3 gene dosage regulates allocation of endocrine and exocrine cell fates in the developing mouse pancreas. Dev Biol 339(1):26–37. doi:10.1016/j.ydbio.2009.12.009
    CAS PubMed Central PubMed Google Scholar
  96. Ejarque M, Cervantes S, Pujadas G, Tutusaus A, Sanchez L, Gasa R (2013) Neurogenin3 cooperates with Foxa2 to autoactivate its own expression. J Biol Chem 288(17):11705–11717. doi:10.1074/jbc.M112.388173
    CAS PubMed Central PubMed Google Scholar
  97. Lee JC, Smith SB, Watada H, Lin J, Scheel D, Wang J, Mirmira RG, German MS (2001) Regulation of the pancreatic pro-endocrine gene neurogenin3. Diabetes 50(5):928–936
    CAS PubMed Google Scholar
  98. Yang YP, Thorel F, Boyer DF, Herrera PL, Wright CV (2011) Context-specific alpha- to-beta-cell reprogramming by forced Pdx1 expression. Genes Dev 25(16):1680–1685. doi:10.1101/gad.16875711
    CAS PubMed Central PubMed Google Scholar
  99. Jensen J, Pedersen EE, Galante P, Hald J, Heller RS, Ishibashi M, Kageyama R, Guillemot F, Serup P, Madsen OD (2000) Control of endodermal endocrine development by Hes-1. Nat Genet 24(1):36–44
    CAS PubMed Google Scholar
  100. Jensen J, Heller RS, Funder-Nielsen T, Pedersen EE, Lindsell C, Weinmaster G, Madsen OD, Serup P (2000) Independent development of pancreatic alpha- and beta-cells from neurogenin3-expressing precursors: a role for the notch pathway in repression of premature differentiation. Diabetes 49(2):163–176
    CAS PubMed Google Scholar
  101. Shih HP, Kopp JL, Sandhu M, Dubois CL, Seymour PA, Grapin-Botton A, Sander M (2012) A Notch-dependent molecular circuitry initiates pancreatic endocrine and ductal cell differentiation. Development 139(14):2488–2499. doi:10.1242/dev.078634
    CAS PubMed Central PubMed Google Scholar
  102. Golson ML, Le Lay J, Gao N, Bramswig N, Loomes KM, Oakey R, May CL, White P, Kaestner KH (2009) Jagged1 is a competitive inhibitor of Notch signaling in the embryonic pancreas. Mech Dev 126(8–9):687–699. doi:10.1016/j.mod.2009.05.005
    CAS PubMed Central PubMed Google Scholar
  103. Cras-Meneur C, Li L, Kopan R, Permutt MA (2009) Presenilins, Notch dose control the fate of pancreatic endocrine progenitors during a narrow developmental window. Genes Dev 23(17):2088–2101. doi:10.1101/gad.1800209
    CAS PubMed Central PubMed Google Scholar
  104. Ahnfelt-Ronne J, Jorgensen MC, Klinck R, Jensen JN, Fuchtbauer EM, Deering T, MacDonald RJ, Wright CV, Madsen OD, Serup P (2012) Ptf1a-mediated control of Dll1 reveals an alternative to the lateral inhibition mechanism. Development 139(1):33–45. doi:10.1242/dev.071761
    PubMed Central PubMed Google Scholar
  105. Haumaitre C, Lenoir O, Scharfmann R (2008) Histone deacetylase inhibitors modify pancreatic cell fate determination and amplify endocrine progenitors. Mol Cell Biol 28(20):6373–6383. doi:10.1128/MCB.00413-08
    CAS PubMed Central PubMed Google Scholar
  106. Cortijo C, Gouzi M, Tissir F, Grapin-Botton A (2012) Planar cell polarity controls pancreatic beta cell differentiation and glucose homeostasis. Cell Rep 2(6):1593–1606. doi:10.1016/j.celrep.2012.10.016
    CAS PubMed Central PubMed Google Scholar
  107. Desgraz R, Herrera PL (2009) Pancreatic neurogenin 3-expressing cells are unipotent islet precursors. Development 136(21):3567–3574. doi:10.1242/dev.039214
    CAS PubMed Central PubMed Google Scholar
  108. Smith SB, Gasa R, Watada H, Wang J, Griffen SC, German MS (2003) Neurogenin3 and hepatic nuclear factor 1 cooperate in activating pancreatic expression of Pax4. J Biol Chem 278(40):38254–38259
    CAS PubMed Google Scholar
  109. Mellitzer G, Bonne S, Luco RF, Van De Casteele M, Lenne-Samuel N, Collombat P, Mansouri A, Lee J, Lan M, Pipeleers D, Nielsen FC, Ferrer J, Gradwohl G, Heimberg H (2006) IA1 is NGN3-dependent and essential for differentiation of the endocrine pancreas. EMBO J 25(6):1344–1352. doi:10.1038/sj.emboj.7601011
    CAS PubMed Central PubMed Google Scholar
  110. Huang HP, Liu M, El-Hodiri HM, Chu K, Jamrich M, Tsai MJ (2000) Regulation of the pancreatic islet-specific gene BETA2 (neuroD) by neurogenin 3. Mol Cell Biol 20(9):3292–3307
    CAS PubMed Central PubMed Google Scholar
  111. Watada H, Scheel DW, Leung J, German MS (2003) Distinct gene expression programs function in progenitor and mature islet cells. J Biol Chem 278(19):17130–17140. doi:10.1074/jbc.M213196200
    Google Scholar
  112. Gasa R, Mrejen C, Leachman N, Otten M, Barnes M, Wang J, Chakrabarti S, Mirmira R, German M (2004) Proendocrine genes coordinate the pancreatic islet differentiation program in vitro. Proc Natl Acad Sci USA 101(36):13245–13250
    CAS PubMed Central PubMed Google Scholar
  113. Wang S, Hecksher-Sorensen J, Xu Y, Zhao A, Dor Y, Rosenberg L, Serup P, Gu G (2008) Myt1 and Ngn3 form a feed-forward expression loop to promote endocrine islet cell differentiation. Dev Biol 317(2):531–540. doi:10.1016/j.ydbio.2008.02.052
    CAS PubMed Central PubMed Google Scholar
  114. Smith SB, Qu HQ, Taleb N, Kishimoto NY, Scheel DW, Lu Y, Patch AM, Grabs R, Wang J, Lynn FC, Miyatsuka T, Mitchell J, Seerke R, Desir J, Vanden Eijnden S, Abramowicz M, Kacet N, Weill J, Renard ME, Gentile M, Hansen I, Dewar K, Hattersley AT, Wang R, Wilson ME, Johnson JD, Polychronakos C, German MS (2010) Rfx6 directs islet formation and insulin production in mice and humans. Nature 463(7282):775–780. doi:10.1038/nature08748
    CAS PubMed Central PubMed Google Scholar
  115. Soyer J, Flasse L, Raffelsberger W, Beucher A, Orvain C, Peers B, Ravassard P, Vermot J, Voz ML, Mellitzer G, Gradwohl G (2010) Rfx6 is an Ngn3-dependent winged helix transcription factor required for pancreatic islet cell development. Development 137(2):203–212. doi:10.1242/dev.041673
    CAS PubMed Central PubMed Google Scholar
  116. Petri A, Ahnfelt-Ronne J, Frederiksen KS, Edwards DG, Madsen D, Serup P, Fleckner J, Heller RS (2006) The effect of neurogenin3 deficiency on pancreatic gene expression in embryonic mice. J Mol Endocrinol 37(2):301–316. doi:10.1677/jme.1.02096
    CAS PubMed Google Scholar
  117. Gu G, Wells JM, Dombkowski D, Preffer F, Aronow B, Melton DA (2004) Global expression analysis of gene regulatory pathways during endocrine pancreatic development. Development 131(1):165–179. doi:10.1242/dev.00921
    CAS PubMed Google Scholar
  118. White P, May CL, Lamounier RN, Brestelli JE, Kaestner KH (2008) Defining pancreatic endocrine precursors and their descendants. Diabetes 57(3):654–668. doi:10.2337/db07-1362
    CAS PubMed Google Scholar
  119. Juhl K, Sarkar SA, Wong R, Jensen J, Hutton JC (2008) Mouse pancreatic endocrine cell transcriptome defined in the embryonic Ngn3-null mouse. Diabetes 57(10):2755–2761. doi:10.2337/db07-1126
    CAS PubMed Central PubMed Google Scholar
  120. Oliver-Krasinski JM, Stoffers DA (2008) On the origin of the beta cell. Genes Dev 22(15):1998–2021. doi:10.1101/gad.1670808
    CAS PubMed Central PubMed Google Scholar
  121. Gierl MS, Karoulias N, Wende H, Strehle M, Birchmeier C (2006) The zinc-finger factor Insm1 (IA-1) is essential for the development of pancreatic beta cells and intestinal endocrine cells. Genes Dev 20(17):2465–2478. doi:10.1101/gad.381806
    CAS PubMed Central PubMed Google Scholar
  122. Naya FJ, Huang HP, Qiu Y, Mutoh H, DeMayo FJ, Leiter AB, Tsai MJ (1997) Diabetes, defective pancreatic morphogenesis, and abnormal enteroendocrine differentiation in BETA2/neuroD-deficient mice. Genes Dev 11(18):2323–2334
    CAS PubMed Central PubMed Google Scholar
  123. Du A, Hunter CS, Murray J, Noble D, Cai CL, Evans SM, Stein R, May CL (2009) Islet-1 is required for the maturation, proliferation, and survival of the endocrine pancreas. Diabetes 58(9):2059–2069. doi:10.2337/db08-0987
    CAS PubMed Central PubMed Google Scholar
  124. Sussel L, Kalamaras J, Hartigan-O’Connor DJ, Meneses JJ, Pedersen RA, Rubenstein JL, German MS (1998) Mice lacking the homeodomain transcription factor Nkx2.2 have diabetes due to arrested differentiation of pancreatic beta cells. Development 125(12):2213–2221
    CAS PubMed Google Scholar
  125. Sander M, Sussel L, Conners J, Scheel D, Kalamaras J, Dela Cruz F, Schwitzgebel V, Hayes-Jordan A, German M (2000) Homeobox gene Nkx6.1 lies downstream of Nkx2.2 in the major pathway of ß-cell formation in the pancreas. Development 127 (24):5533–5540
    Google Scholar
  126. Henseleit KD, Nelson SB, Kuhlbrodt K, Hennings JC, Ericson J, Sander M (2005) NKX6 transcription factor activity is required for alpha- and beta-cell development in the pancreas. Development 132(13):3139–3149. doi:10.1242/dev.01875
    CAS PubMed Google Scholar
  127. Prado CL, Pugh-Bernard AE, Elghazi L, Sosa-Pineda B, Sussel L (2004) Ghrelin cells replace insulin-producing beta cells in two mouse models of pancreas development. Proc Natl Acad Sci USA 101(9):2924–2929
    CAS PubMed Central PubMed Google Scholar
  128. Chao CS, Loomis ZL, Lee JE, Sussel L (2007) Genetic identification of a novel NeuroD1 function in the early differentiation of islet alpha, PP and epsilon cells. Dev Biol 312(2):523–532. doi:10.1016/j.ydbio.2007.09.057
    CAS PubMed Central PubMed Google Scholar
  129. Mastracci TL, Anderson KR, Papizan JB, Sussel L (2013) Regulation of Neurod1 contributes to the lineage potential of Neurogenin3+ endocrine precursor cells in the pancreas. PLoS Genet 9(2):e1003278. doi:10.1371/journal.pgen.1003278
    CAS PubMed Central PubMed Google Scholar
  130. Mastracci TL, Wilcox CL, Arnes L, Panea C, Golden JA, May CL, Sussel L (2011) Nkx2.2 and Arx genetically interact to regulate pancreatic endocrine cell development and endocrine hormone expression. Dev Biol 359(1):1–11. doi:10.1016/j.ydbio.2011.08.001
    CAS PubMed Central PubMed Google Scholar
  131. Bramswig NC, Kaestner KH (2011) Transcriptional regulation of alpha-cell differentiation. Diabetes Obes Metab 13(Suppl 1):13–20. doi:10.1111/j.1463-1326.2011.01440.x
    CAS PubMed Google Scholar
  132. Collombat P, Mansouri A, Hecksher-Sorensen J, Serup P, Krull J, Gradwohl G, Gruss P (2003) Opposing actions of Arx and Pax4 in endocrine pancreas development. Genes Dev 17(20):2591–2603
    CAS PubMed Central PubMed Google Scholar
  133. Sosa-Pineda B, Chowdhury K, Torres M, Oliver G, Gruss P (1997) The Pax4 gene is essential for differentiation of insulin-producing β cells in the mammalian pancreas. Nature 386:399–402
    CAS PubMed Google Scholar
  134. Collombat P, Xu X, Ravassard P, Sosa-Pineda B, Dussaud S, Billestrup N, Madsen OD, Serup P, Heimberg H, Mansouri A (2009) The ectopic expression of Pax4 in the mouse pancreas converts progenitor cells into alpha and subsequently beta cells. Cell 138(3):449–462. doi:10.1016/j.cell.2009.05.035
    CAS PubMed Central PubMed Google Scholar
  135. Collombat P, Hecksher-Sorensen J, Krull J, Berger J, Riedel D, Herrera PL, Serup P, Mansouri A (2007) Embryonic endocrine pancreas and mature beta cells acquire alpha and PP cell phenotypes upon Arx misexpression. J Clin Invest 117(4):961–970. doi:10.1172/JCI29115
    CAS PubMed Central PubMed Google Scholar
  136. Schaffer AE, Taylor BL, Benthuysen JR, Liu J, Thorel F, Yuan W, Jiao Y, Kaestner KH, Herrera PL, Magnuson MA, May CL, Sander M (2013) Nkx6.1 controls a gene regulatory network required for establishing and maintaining pancreatic Beta cell identity. PLoS Genet 9(1):e1003274. doi:10.1371/journal.pgen.1003274
    CAS PubMed Central PubMed Google Scholar
  137. Gannon M, Ables ET, Crawford L, Lowe D, Offield MF, Magnuson MA, Wright CV (2008) pdx-1 function is specifically required in embryonic beta cells to generate appropriate numbers of endocrine cell types and maintain glucose homeostasis. Dev Biol 314(2):406–417. doi:10.1016/j.ydbio.2007.10.038
    CAS PubMed Central PubMed Google Scholar
  138. Papizan JB, Singer RA, Tschen SI, Dhawan S, Friel JM, Hipkens SB, Magnuson MA, Bhushan A, Sussel L (2011) Nkx2.2 repressor complex regulates islet beta-cell specification and prevents beta-to-alpha-cell reprogramming. Genes Dev 25(21):2291–2305. doi:10.1101/gad.173039.111
    CAS PubMed Central PubMed Google Scholar
  139. Dhawan S, Georgia S, Tschen SI, Fan G, Bhushan A (2011) Pancreatic beta cell identity is maintained by DNA methylation-mediated repression of Arx. Dev Cell 20(4):419–429. doi:10.1016/j.devcel.2011.03.012
    CAS PubMed Central PubMed Google Scholar
  140. Thorel F, Nepote V, Avril I, Kohno K, Desgraz R, Chera S, Herrera PL (2010) Conversion of adult pancreatic alpha-cells to beta-cells after extreme beta-cell loss. Nature 464(7292):1149–1154. doi:10.1038/nature08894
    CAS PubMed Central PubMed Google Scholar
  141. Esni F, Ghosh B, Biankin AV, Lin JW, Albert MA, Yu X, MacDonald RJ, Civin CI, Real FX, Pack MA, Ball DW, Leach SD (2004) Notch inhibits Ptf1 function and acinar cell differentiation in developing mouse and zebrafish pancreas. Development 131(17):4213–4224. doi:10.1242/dev.01280
    CAS PubMed Google Scholar
  142. Masui T, Swift GH, Deering T, Shen C, Coats WS, Long Q, Elsasser HP, Magnuson MA, MacDonald RJ (2010) Replacement of Rbpj with Rbpjl in the PTF1 complex controls the final maturation of pancreatic acinar cells. Gastroenterology 139(1):270–280. doi:10.1053/j.gastro.2010.04.003
    CAS PubMed Central PubMed Google Scholar
  143. Decker K, Goldman DC, Grasch CL, Sussel L (2006) Gata6 is an important regulator of mouse pancreas development. Dev Biol 298(2):415–429
    CAS PubMed Central PubMed Google Scholar
  144. Martinelli P, Canamero M, Del Pozo N, Madriles F, Zapata A, Real FX (2012) Gata6 is required for complete acinar differentiation and maintenance of the exocrine pancreas in adult mice. Gut. doi:10.1136/gutjnl-2012-303328
    PubMed Google Scholar
  145. von Figura G, Morris JPt, Wright CV, Hebrok M (2013) Nr5a2 maintains acinar cell differentiation and constrains oncogenic Kras-mediated pancreatic neoplastic initiation. Gut. doi:10.1136/gutjnl-2012-304287
    Google Scholar
  146. Pin CL, Rukstalis JM, Johnson C, Konieczny SF (2001) The bHLH transcription factor Mist1 is required to maintain exocrine pancreas cell organization and acinar cell identity. J Cell Biol 155(4):519–530. doi:10.1083/jcb.200105060
    CAS PubMed Central PubMed Google Scholar
  147. Holmstrom SR, Deering T, Swift GH, Poelwijk FJ, Mangelsdorf DJ, Kliewer SA, MacDonald RJ (2011) LRH-1 and PTF1-L coregulate an exocrine pancreas-specific transcriptional network for digestive function. Genes Dev 25(16):1674–1679. doi:10.1101/gad.16860911
    CAS PubMed Central PubMed Google Scholar
  148. MacDonald RJ, Swift GH, Real FX (2010) Transcriptional control of acinar development and homeostasis. Prog Mol Biol Transl Sci 97:1–40. doi:10.1016/B978-0-12-385233-5.00001-5
    CAS PubMed Google Scholar
  149. Reichert M, Rustgi AK (2011) Pancreatic ductal cells in development, regeneration, and neoplasia. J Clin Investig 121(12):4572–4578. doi:10.1172/JCI57131
    CAS PubMed Central PubMed Google Scholar
  150. Pierreux CE, Poll AV, Kemp CR, Clotman F, Maestro MA, Cordi S, Ferrer J, Leyns L, Rousseau GG, Lemaigre FP (2006) The transcription factor hepatocyte nuclear factor-6 controls the development of pancreatic ducts in the mouse. Gastroenterology 130(2):532–541. doi:10.1053/j.gastro.2005.12.005
    CAS PubMed Google Scholar
  151. Cano DA, Murcia NS, Pazour GJ, Hebrok M (2004) Orpk mouse model of polycystic kidney disease reveals essential role of primary cilia in pancreatic tissue organization. Development 131(14):3457–3467
    CAS PubMed Google Scholar
  152. Cano DA, Sekine S, Hebrok M (2006) Primary cilia deletion in pancreatic epithelial cells results in cyst formation and pancreatitis. Gastroenterology 131(6):1856–1869
    CAS PubMed Google Scholar
  153. Reichert M, Takano S, von Burstin J, Kim SB, Lee JS, Ihida-Stansbury K, Hahn C, Heeg S, Schneider G, Rhim AD, Stanger BZ, Rustgi AK (2013) The Prrx1 homeodomain transcription factor plays a central role in pancreatic regeneration and carcinogenesis. Genes Dev 27(3):288–300. doi:10.1101/gad.204453.112
    CAS PubMed Central PubMed Google Scholar
  154. Piper K, Brickwood S, Turnpenny LW, Cameron IT, Ball SG, Wilson DI, Hanley NA (2004) Beta cell differentiation during early human pancreas development. J Endocrinol 181(1):11–23
    CAS PubMed Google Scholar
  155. Polak M, Bouchareb-Banaei L, Scharfmann R, Czernichow P (2000) Early pattern of differentiation in the human pancreas. Diabetes 49(2):225–232
    CAS PubMed Google Scholar
  156. Lyttle BM, Li J, Krishnamurthy M, Fellows F, Wheeler MB, Goodyer CG, Wang R (2008) Transcription factor expression in the developing human fetal endocrine pancreas. Diabetologia 51(7):1169–1180. doi:10.1007/s00125-008-1006-z
    CAS PubMed Google Scholar
  157. Sarkar SA, Kobberup S, Wong R, Lopez AD, Quayum N, Still T, Kutchma A, Jensen JN, Gianani R, Beattie GM, Jensen J, Hayek A, Hutton JC (2008) Global gene expression profiling and histochemical analysis of the developing human fetal pancreas. Diabetologia 51(2):285–297. doi:10.1007/s00125-007-0880-0
    CAS PubMed Google Scholar
  158. Jeon J, Correa-Medina M, Ricordi C, Edlund H, Diez JA (2009) Endocrine cell clustering during human pancreas development. J Histochem Cytochem 57(9):811–824. doi:10.1369/jhc.2009.953307
    CAS PubMed Central PubMed Google Scholar
  159. Jennings RE, Berry AA, Kirkwood-Wilson R, Roberts NA, Hearn T, Salisbury RJ, Blaylock J, Hanley KP, Hanley NA (2013) Development of the human pancreas from foregut to endocrine commitment. Diabetes 62(10):3514–3522. doi:10.2337/db12-1479
    CAS PubMed Google Scholar
  160. Capito C, Simon MT, Aiello V, Clark A, Aigrain Y, Ravassard P, Scharfmann R (2013) The mouse muscle as an ectopic permissive site for human pancreatic development. Diabetes. doi:10.2337/db13-0554
    PubMed Google Scholar
  161. Brissova M, Fowler MJ, Nicholson WE, Chu A, Hirshberg B, Harlan DM, Powers AC (2005) Assessment of human pancreatic islet architecture and composition by laser scanning confocal microscopy. J Histochem Cytochem 53(9):1087–1097. doi:10.1369/jhc.5C6684.2005
    CAS PubMed Google Scholar
  162. Cabrera O, Berman DM, Kenyon NS, Ricordi C, Berggren PO, Caicedo A (2006) The unique cytoarchitecture of human pancreatic islets has implications for islet cell function. Proc Natl Acad Sci USA 103(7):2334–2339. doi:10.1073/pnas.0510790103
    CAS PubMed Central PubMed Google Scholar
  163. Bosco D, Armanet M, Morel P, Niclauss N, Sgroi A, Muller YD, Giovannoni L, Parnaud G, Berney T (2010) Unique arrangement of alpha- and beta-cells in human islets of Langerhans. Diabetes 59(5):1202–1210. doi:10.2337/db09-1177
    CAS PubMed Central PubMed Google Scholar
  164. Riedel MJ, Asadi A, Wang R, Ao Z, Warnock GL, Kieffer TJ (2012) Immunohistochemical characterisation of cells co-producing insulin and glucagon in the developing human pancreas. Diabetologia 55(2):372–381. doi:10.1007/s00125-011-2344-9
    CAS PubMed Google Scholar
  165. Dai C, Brissova M, Hang Y, Thompson C, Poffenberger G, Shostak A, Chen Z, Stein R, Powers AC (2012) Islet-enriched gene expression and glucose-induced insulin secretion in human and mouse islets. Diabetologia 55(3):707–718. doi:10.1007/s00125-011-2369-0
    CAS PubMed Central PubMed Google Scholar
  166. Dorrell C, Schug J, Lin CF, Canaday PS, Fox AJ, Smirnova O, Bonnah R, Streeter PR, Stoeckert CJ Jr, Kaestner KH, Grompe M (2011) Transcriptomes of the major human pancreatic cell types. Diabetologia 54(11):2832–2844. doi:10.1007/s00125-011-2283-5
    CAS PubMed Google Scholar
  167. McKnight KD, Wang P, Kim SK (2010) Deconstructing pancreas development to reconstruct human islets from pluripotent stem cells. Cell Stem Cell 6(4):300–308. doi:10.1016/j.stem.2010.03.003
    CAS PubMed Central PubMed Google Scholar
  168. Castaing M, Peault B, Basmaciogullari A, Casal I, Czernichow P, Scharfmann R (2001) Blood glucose normalization upon transplantation of human embryonic pancreas into beta-cell-deficient SCID mice. Diabetologia 44(11):2066–2076. doi:10.1007/s001250100012
    CAS PubMed Google Scholar
  169. Mayhew CN, Wells JM (2010) Converting human pluripotent stem cells into beta-cells: recent advances and future challenges. Curr Opin Organ Transplant 15(1):54–60. doi:10.1097/MOT.0b013e3283337e1c
    PubMed Central PubMed Google Scholar
  170. Nostro MC, Keller G (2012) Generation of beta cells from human pluripotent stem cells: potential for regenerative medicine. Semin Cell Dev Biol 23(6):701–710. doi:10.1016/j.semcdb.2012.06.010
    CAS PubMed Google Scholar
  171. Kroon E, Martinson LA, Kadoya K, Bang AG, Kelly OG, Eliazer S, Young H, Richardson M, Smart NG, Cunningham J, Agulnick AD, D’Amour KA, Carpenter MK, Baetge EE (2008) Pancreatic endoderm derived from human embryonic stem cells generates glucose-responsive insulin-secreting cells in vivo. Nat Biotechnol 26(4):443–452. doi:10.1038/nbt1393
    CAS PubMed Google Scholar
  172. D'Amour KA, Bang AG, Eliazer S, Kelly OG, Agulnick AD, Smart NG, Moorman MA, Kroon E, Carpenter MK, Baetge EE (2006) Production of pancreatic hormone-expressing endocrine cells from human embryonic stem cells. Nat Biotechnol 24(11):1392–1401. doi:10.1038/nbt1259
    Google Scholar
  173. Xie R, Everett LJ, Lim HW, Patel NA, Schug J, Kroon E, Kelly OG, Wang A, D’Amour KA, Robins AJ, Won KJ, Kaestner KH, Sander M (2013) Dynamic chromatin remodeling mediated by Polycomb proteins orchestrates pancreatic differentiation of human embryonic stem cells. Cell Stem Cell 12(2):224–237. doi:10.1016/j.stem.2012.11.023
    CAS PubMed Central PubMed Google Scholar
  174. Wang P, Rodriguez RT, Wang J, Ghodasara A, Kim SK (2011) Targeting SOX17 in human embryonic stem cells creates unique strategies for isolating and analyzing developing endoderm. Cell Stem Cell 8(3):335–346. doi:10.1016/j.stem.2011.01.017
    PubMed Central PubMed Google Scholar
  175. Stoffers DA, Zinkin NT, Stanojevic V, Clarke WL, Habener JF (1997) Pancreatic agenesis attributable to a single nucleotide deletion in the human IPF1 gene coding sequence. Nat Genet 15(1):106–110
    CAS PubMed Google Scholar
  176. Sellick GS, Barker KT, Stolte-Dijkstra I, Fleischmann C, Coleman RJ, Garrett C, Gloyn AL, Edghill EL, Hattersley AT, Wellauer PK, Goodwin G, Houlston RS (2004) Mutations in PTF1A cause pancreatic and cerebellar agenesis. Nat Genet 36(12):1301–1305. doi:10.1038/ng1475
    CAS PubMed Google Scholar
  177. Rubio-Cabezas O, Minton JA, Kantor I, Williams D, Ellard S, Hattersley AT (2010) Homozygous mutations in NEUROD1 are responsible for a novel syndrome of permanent neonatal diabetes and neurological abnormalities. Diabetes 59(9):2326–2331. doi:10.2337/db10-0011
    PubMed Central PubMed Google Scholar
  178. Senee V, Chelala C, Duchatelet S, Feng D, Blanc H, Cossec JC, Charon C, Nicolino M, Boileau P, Cavener DR, Bougneres P, Taha D, Julier C (2006) Mutations in GLIS3 are responsible for a rare syndrome with neonatal diabetes mellitus and congenital hypothyroidism. Nat Genet 38(6):682–687. doi:10.1038/ng1802
    CAS PubMed Google Scholar
  179. Rubio-Cabezas O, Jensen JN, Hodgson MI, Codner E, Ellard S, Serup P, Hattersley AT (2011) Permanent neonatal diabetes and enteric anendocrinosis associated with biallelic mutations in NEUROG3. Diabetes 60(4):1349–1353. doi:10.2337/db10-1008
    CAS PubMed Central PubMed Google Scholar
  180. Yamagata K, Furuta H, Oda N, Kaisaki PJ, Menzel S, Cox NJ, Fajans SS, Signorini S, Stoffel M, Bell GI (1996) Mutations in the hepatocyte nuclear factor-4alpha gene in maturity-onset diabetes of the young (MODY1). Nature 384(6608):458–460
    CAS PubMed Google Scholar
  181. Horikawa Y, Iwasaki N, Hara M, Furuta H, Hinokio Y, Cockburn BN, Lindner T, Yamagata K, Ogata M, Tomonaga O, Kuroki H, Kasahara T, Iwamoto Y, Bell GI (1997) Mutation in hepatocyte nuclear factor-1 beta gene (TCF2) associated with MODY. Nat Genet 17(4):384–385
    CAS PubMed Google Scholar
  182. Yamagata K, Oda N, Kaisaki PJ, Menzel S, Furuta H, Vaxillaire M, Southam L, Cox RD, Lathrop GM, Boriraj VV, Chen X, Cox NJ, Oda Y, Yano H, Le Beau MM, Yamada S, Nishigori H, Takeda J, Fajans SS, Hattersley AT, Iwasaki N, Hansen T, Pedersen O, Polonsky KS, Bell GI et al (1996) Mutations in the hepatocyte nuclear factor-1alpha gene in maturity-onset diabetes of the young (MODY3). Nature 384(6608):455–458. doi:10.1038/384455a0
    CAS PubMed Google Scholar
  183. Rodriguez-Segui S, Akerman I, Ferrer J (2012) GATA believe it: new essential regulators of pancreas development. J Clin Investig 122(10):3469–3471. doi:10.1172/JCI65751
    CAS PubMed Central PubMed Google Scholar
  184. Kitamura K, Yanazawa M, Sugiyama N, Miura H, Iizuka-Kogo A, Kusaka M, Omichi K, Suzuki R, Kato-Fukui Y, Kamiirisa K, Matsuo M, Kamijo S, Kasahara M, Yoshioka H, Ogata T, Fukuda T, Kondo I, Kato M, Dobyns WB, Yokoyama M, Morohashi K (2002) Mutation of ARX causes abnormal development of forebrain and testes in mice and X-linked lissencephaly with abnormal genitalia in humans. Nat Genet 32(3):359–369. doi:10.1038/ng1009
    CAS PubMed Google Scholar
  185. Itoh M, Takizawa Y, Hanai S, Okazaki S, Miyata R, Inoue T, Akashi T, Hayashi M, Goto Y (2010) Partial loss of pancreas endocrine and exocrine cells of human ARX-null mutation: consideration of pancreas differentiation. Differentiation 80(2–3):118–122. doi:10.1016/j.diff.2010.05.003
    CAS PubMed Google Scholar
  186. Lango Allen H, Flanagan SE, Shaw-Smith C, De Franco E, Akerman I, Caswell R, Ferrer J, Hattersley AT, Ellard S (2012) GATA6 haploinsufficiency causes pancreatic agenesis in humans. Nat Genet 44(1):20–22. doi:10.1038/ng.1035
    Google Scholar
  187. De Franco E, Shaw-Smith C, Flanagan SE, Shepherd MH, Hattersley AT, Ellard S (2013) GATA6 mutations cause a broad phenotypic spectrum of diabetes from pancreatic agenesis to adult-onset diabetes without exocrine insufficiency. Diabetes 62(3):993–997. doi:10.2337/db12-0885
    PubMed Central PubMed Google Scholar
  188. Rubio-Cabezas O, Minton JA, Caswell R, Shield JP, Deiss D, Sumnik Z, Cayssials A, Herr M, Loew A, Lewis V, Ellard S, Hattersley AT (2009) Clinical heterogeneity in patients with FOXP3 mutations presenting with permanent neonatal diabetes. Diabetes Care 32(1):111–116. doi:10.2337/dc08-1188
    CAS PubMed Central PubMed Google Scholar
  189. Bonnefond A, Vaillant E, Philippe J, Skrobek B, Lobbens S, Yengo L, Huyvaert M, Cave H, Busiah K, Scharfmann R, Polak M, Abdul-Rasoul M, Froguel P, Vaxillaire M (2013) Transcription factor gene MNX1 is a novel cause of permanent neonatal diabetes in a consanguineous family. Diabetes Metab 39(3):276–280. doi:10.1016/j.diabet.2013.02.007
    CAS PubMed Google Scholar
  190. Malecki MT, Jhala US, Antonellis A, Fields L, Doria A, Orban T, Saad M, Warram JH, Montminy M, Krolewski AS (1999) Mutations in NEUROD1 are associated with the development of type 2 diabetes mellitus. Nat Genet 23(3):323–328. doi:10.1038/15500
    CAS PubMed Google Scholar
  191. Jensen JN, Rosenberg LC, Hecksher-Sorensen J, Serup P (2007) Mutant neurogenin-3 in congenital malabsorptive diarrhea. N Engl J Med 356(17):1781–1782. doi:10.1056/NEJMc063247 (author reply 1782)
    CAS PubMed Google Scholar
  192. Wang J, Cortina G, Wu SV, Tran R, Cho JH, Tsai MJ, Bailey TJ, Jamrich M, Ament ME, Treem WR, Hill ID, Vargas JH, Gershman G, Farmer DG, Reyen L, Martin MG (2006) Mutant neurogenin-3 in congenital malabsorptive diarrhea. N Engl J Med 355(3):270–280. doi:10.1056/NEJMoa054288
    CAS PubMed Google Scholar
  193. Plengvidhya N, Kooptiwut S, Songtawee N, Doi A, Furuta H, Nishi M, Nanjo K, Tantibhedhyangkul W, Boonyasrisawat W, Yenchitsomanus PT, Doria A, Banchuin N (2007) PAX4 mutations in Thais with maturity onset diabetes of the young. J Clin Endocrinol Metab 92(7):2821–2826. doi:10.1210/jc.2006-1927
    CAS PubMed Google Scholar
  194. Stoffers DA, Ferrer J, Clarke WL, Habener JF (1997) Early-onset type-II diabetes mellitus (MODY4) linked to IPF1. Nat Genet 17(2):138–139
    CAS PubMed Google Scholar
  195. Piper K, Ball SG, Keeling JW, Mansoor S, Wilson DI, Hanley NA (2002) Novel SOX9 expression during human pancreas development correlates to abnormalities in Campomelic dysplasia. Mech Dev 116(1–2):223–226
    CAS PubMed Google Scholar

Download references