Regulation of the Hippo pathway in cancer biology (original) (raw)

References

  1. Gonzalez C (2013) Drosophila melanogaster: a model and a tool to investigate malignancy and identify new therapeutics. Nat Rev Cancer 13(3):172–183. https://doi.org/10.1038/nrc3461
    Article PubMed CAS Google Scholar
  2. St Johnston D (2002) The art and design of genetic screens: drosophila melanogaster. Nat Rev Genet 3(3):176–188. https://doi.org/10.1038/nrg751
    Article PubMed CAS Google Scholar
  3. Justice RW, Zilian O, Woods DF, Noll M, Bryant PJ (1995) The Drosophila tumor suppressor gene warts encodes a homolog of human myotonic dystrophy kinase and is required for the control of cell shape and proliferation. Genes Dev 9(5):534–546
    Article PubMed CAS Google Scholar
  4. Xu T, Wang W, Zhang S, Stewart RA, Yu W (1995) Identifying tumor suppressors in genetic mosaics: the Drosophila lats gene encodes a putative protein kinase. Development 121(4):1053–1063
    PubMed CAS Google Scholar
  5. Tapon N, Harvey KF, Bell DW, Wahrer DC, Schiripo TA, Haber D, Hariharan IK (2002) Salvador promotes both cell cycle exit and apoptosis in Drosophila and is mutated in human cancer cell lines. Cell 110(4):467–478
    Article PubMed CAS Google Scholar
  6. Kango-Singh M, Nolo R, Tao C, Verstreken P, Hiesinger PR, Bellen HJ, Halder G (2002) Shar-pei mediates cell proliferation arrest during imaginal disc growth in Drosophila. Development 129(24):5719–5730
    Article PubMed CAS Google Scholar
  7. Harvey KF, Pfleger CM, Hariharan IK (2003) The Drosophila Mst ortholog, hippo, restricts growth and cell proliferation and promotes apoptosis. Cell 114(4):457–467
    Article PubMed CAS Google Scholar
  8. Jia J, Zhang W, Wang B, Trinko R, Jiang J (2003) The Drosophila Ste20 family kinase dMST functions as a tumor suppressor by restricting cell proliferation and promoting apoptosis. Genes Dev 17(20):2514–2519. https://doi.org/10.1101/gad.1134003
    Article PubMed PubMed Central CAS Google Scholar
  9. Pantalacci S, Tapon N, Leopold P (2003) The Salvador partner Hippo promotes apoptosis and cell-cycle exit in Drosophila. Nat Cell Biol 5(10):921–927. https://doi.org/10.1038/ncb1051
    Article PubMed CAS Google Scholar
  10. Udan RS, Kango-Singh M, Nolo R, Tao C, Halder G (2003) Hippo promotes proliferation arrest and apoptosis in the Salvador/Warts pathway. Nat Cell Biol 5(10):914–920. https://doi.org/10.1038/ncb1050
    Article PubMed CAS Google Scholar
  11. Wu S, Huang J, Dong J, Pan D (2003) Hippo encodes a Ste-20 family protein kinase that restricts cell proliferation and promotes apoptosis in conjunction with salvador and warts. Cell 114(4):445–456
    Article PubMed CAS Google Scholar
  12. Richardson HE, O’Keefe LV, Reed SI, Saint R (1993) A Drosophila G1-specific cyclin E homolog exhibits different modes of expression during embryogenesis. Development 119(3):673–690
    PubMed CAS Google Scholar
  13. Richardson H, O’Keefe LV, Marty T, Saint R (1995) Ectopic cyclin E expression induces premature entry into S phase and disrupts pattern formation in the Drosophila eye imaginal disc. Development 121(10):3371–3379
    PubMed CAS Google Scholar
  14. Knoblich JA, Sauer K, Jones L, Richardson H, Saint R, Lehner CF (1994) Cyclin E controls S phase progression and its down-regulation during Drosophila embryogenesis is required for the arrest of cell proliferation. Cell 77(1):107–120
    Article PubMed CAS Google Scholar
  15. Wang SL, Hawkins CJ, Yoo SJ, Muller HA, Hay BA (1999) The Drosophila caspase inhibitor DIAP1 is essential for cell survival and is negatively regulated by HID. Cell 98(4):453–463
    Article PubMed CAS Google Scholar
  16. Ryoo HD, Steller H (2003) Hippo and its mission for growth control. Nat Cell Biol 5(10):853–855. https://doi.org/10.1038/ncb1003-853
    Article PubMed CAS Google Scholar
  17. Lai ZC, Wei X, Shimizu T, Ramos E, Rohrbaugh M, Nikolaidis N, Ho LL, Li Y (2005) Control of cell proliferation and apoptosis by mob as tumor suppressor, mats. Cell 120(5):675–685. https://doi.org/10.1016/j.cell.2004.12.036
    Article PubMed CAS Google Scholar
  18. Huang J, Wu S, Barrera J, Matthews K, Pan D (2005) The Hippo signaling pathway coordinately regulates cell proliferation and apoptosis by inactivating Yorkie, the Drosophila Homolog of YAP. Cell 122(3):421–434. https://doi.org/10.1016/j.cell.2005.06.007
    Article PubMed CAS Google Scholar
  19. Dong J, Feldmann G, Huang J, Wu S, Zhang N, Comerford SA, Gayyed MF, Anders RA, Maitra A, Pan D (2007) Elucidation of a universal size-control mechanism in Drosophila and mammals. Cell 130(6):1120–1133. https://doi.org/10.1016/j.cell.2007.07.019
    Article PubMed PubMed Central CAS Google Scholar
  20. Sudol M (1994) Yes-associated protein (YAP65) is a proline-rich phosphoprotein that binds to the SH3 domain of the Yes proto-oncogene product. Oncogene 9(8):2145–2152
    PubMed CAS Google Scholar
  21. Zhao B, Ye X, Yu J, Li L, Li W, Li S, Yu J, Lin JD, Wang CY, Chinnaiyan AM, Lai ZC, Guan KL (2008) TEAD mediates YAP-dependent gene induction and growth control. Genes Dev 22(14):1962–1971. https://doi.org/10.1101/gad.1664408
    Article PubMed PubMed Central CAS Google Scholar
  22. Zhang L, Ren F, Zhang Q, Chen Y, Wang B, Jiang J (2008) The TEAD/TEF family of transcription factor Scalloped mediates Hippo signaling in organ size control. Dev Cell 14(3):377–387. https://doi.org/10.1016/j.devcel.2008.01.006
    Article PubMed PubMed Central CAS Google Scholar
  23. Wu S, Liu Y, Zheng Y, Dong J, Pan D (2008) The TEAD/TEF family protein Scalloped mediates transcriptional output of the Hippo growth-regulatory pathway. Dev Cell 14(3):388–398. https://doi.org/10.1016/j.devcel.2008.01.007
    Article PubMed CAS Google Scholar
  24. Goulev Y, Fauny JD, Gonzalez-Marti B, Flagiello D, Silber J, Zider A (2008) SCALLOPED interacts with YORKIE, the nuclear effector of the hippo tumor-suppressor pathway in Drosophila. Curr Biol 18(6):435–441. https://doi.org/10.1016/j.cub.2008.02.034
    Article PubMed CAS Google Scholar
  25. Thompson BJ, Cohen SM (2006) The Hippo pathway regulates the bantam microRNA to control cell proliferation and apoptosis in Drosophila. Cell 126(4):767–774. https://doi.org/10.1016/j.cell.2006.07.013
    Article PubMed CAS Google Scholar
  26. Nolo R, Morrison CM, Tao C, Zhang X, Halder G (2006) The bantam microRNA is a target of the hippo tumor-suppressor pathway. Curr Biol 16(19):1895–1904. https://doi.org/10.1016/j.cub.2006.08.057
    Article PubMed CAS Google Scholar
  27. Herranz H, Hong X, Cohen SM (2012) Mutual repression by bantam miRNA and Capicua links the EGFR/MAPK and Hippo pathways in growth control. Curr Biol 22(8):651–657. https://doi.org/10.1016/j.cub.2012.02.050
    Article PubMed CAS Google Scholar
  28. Neto-Silva RM, de Beco S, Johnston LA (2010) Evidence for a growth-stabilizing regulatory feedback mechanism between Myc and Yorkie, the Drosophila homolog of Yap. Dev Cell 19(4):507–520. https://doi.org/10.1016/j.devcel.2010.09.009
    Article PubMed PubMed Central CAS Google Scholar
  29. Ziosi M, Baena-Lopez LA, Grifoni D, Froldi F, Pession A, Garoia F, Trotta V, Bellosta P, Cavicchi S, Pession A (2010) dMyc functions downstream of Yorkie to promote the supercompetitive behavior of hippo pathway mutant cells. PLoS Genet 6(9):e1001140. https://doi.org/10.1371/journal.pgen.1001140
    Article PubMed PubMed Central CAS Google Scholar
  30. Peng HW, Slattery M, Mann RS (2009) Transcription factor choice in the Hippo signaling pathway: homothorax and yorkie regulation of the microRNA bantam in the progenitor domain of the Drosophila eye imaginal disc. Genes Dev 23(19):2307–2319. https://doi.org/10.1101/gad.1820009
    Article PubMed PubMed Central CAS Google Scholar
  31. Ota M, Sasaki H (2008) Mammalian Tead proteins regulate cell proliferation and contact inhibition as transcriptional mediators of Hippo signaling. Development 135(24):4059–4069. https://doi.org/10.1242/dev.027151
    Article PubMed CAS Google Scholar
  32. Nishioka N, Inoue K, Adachi K, Kiyonari H, Ota M, Ralston A, Yabuta N, Hirahara S, Stephenson RO, Ogonuki N, Makita R, Kurihara H, Morin-Kensicki EM, Nojima H, Rossant J, Nakao K, Niwa H, Sasaki H (2009) The Hippo signaling pathway components Lats and Yap pattern Tead4 activity to distinguish mouse trophectoderm from inner cell mass. Dev Cell 16(3):398–410. https://doi.org/10.1016/j.devcel.2009.02.003
    Article PubMed CAS Google Scholar
  33. Vassilev A, Kaneko KJ, Shu H, Zhao Y, DePamphilis ML (2001) TEAD/TEF transcription factors utilize the activation domain of YAP65, a Src/Yes-associated protein localized in the cytoplasm. Genes Dev 15(10):1229–1241. https://doi.org/10.1101/gad.888601
    Article PubMed PubMed Central CAS Google Scholar
  34. Zhang W, Gao Y, Li P, Shi Z, Guo T, Li F, Han X, Feng Y, Zheng C, Wang Z, Li F, Chen H, Zhou Z, Zhang L, Ji H (2014) VGLL4 functions as a new tumor suppressor in lung cancer by negatively regulating the YAP–TEAD transcriptional complex. Cell Res 24(3):331–343. https://doi.org/10.1038/cr.2014.10
    Article PubMed PubMed Central CAS Google Scholar
  35. Jiao S, Wang H, Shi Z, Dong A, Zhang W, Song X, He F, Wang Y, Zhang Z, Wang W, Wang X, Guo T, Li P, Zhao Y, Ji H, Zhang L, Zhou Z (2014) A peptide mimicking VGLL4 function acts as a YAP antagonist therapy against gastric cancer. Cancer Cell 25(2):166–180. https://doi.org/10.1016/j.ccr.2014.01.010
    Article PubMed CAS Google Scholar
  36. Koontz LM, Liu-Chittenden Y, Yin F, Zheng Y, Yu J, Huang B, Chen Q, Wu S, Pan D (2013) The Hippo effector Yorkie controls normal tissue growth by antagonizing scalloped-mediated default repression. Dev Cell 25(4):388–401. https://doi.org/10.1016/j.devcel.2013.04.021
    Article PubMed PubMed Central CAS Google Scholar
  37. Guo T, Lu Y, Li P, Yin MX, Lv D, Zhang W, Wang H, Zhou Z, Ji H, Zhao Y, Zhang L (2013) A novel partner of Scalloped regulates Hippo signaling via antagonizing Scalloped-Yorkie activity. Cell Res 23(10):1201–1214. https://doi.org/10.1038/cr.2013.120
    Article PubMed PubMed Central CAS Google Scholar
  38. Moroishi T, Hansen CG, Guan KL (2015) The emerging roles of YAP and TAZ in cancer. Nat Rev Cancer 15(2):73–79. https://doi.org/10.1038/nrc3876
    Article PubMed PubMed Central CAS Google Scholar
  39. Lai D, Ho KC, Hao Y, Yang X (2011) Taxol resistance in breast cancer cells is mediated by the hippo pathway component TAZ and its downstream transcriptional targets Cyr61 and CTGF. Cancer Res 71(7):2728–2738. https://doi.org/10.1158/0008-5472.CAN-10-2711
    Article PubMed CAS Google Scholar
  40. Park HW, Kim YC, Yu B, Moroishi T, Mo JS, Plouffe SW, Meng Z, Lin KC, Yu FX, Alexander CM, Wang CY, Guan KL (2015) Alternative Wnt Signaling Activates YAP/TAZ. Cell 162(4):780–794. https://doi.org/10.1016/j.cell.2015.07.013
    Article PubMed PubMed Central CAS Google Scholar
  41. Seo E, Kim WY, Hur J, Kim H, Nam SA, Choi A, Kim YM, Park SH, Chung C, Kim J, Min S, Myung SJ, Lim DS, Kim YK (2016) The Hippo-Salvador signaling pathway regulates renal tubulointerstitial fibrosis. Sci Rep 6:31931. https://doi.org/10.1038/srep31931
    Article PubMed PubMed Central CAS Google Scholar
  42. Tschaharganeh DF, Chen X, Latzko P, Malz M, Gaida MM, Felix K, Ladu S, Singer S, Pinna F, Gretz N, Sticht C, Tomasi ML, Delogu S, Evert M, Fan B, Ribback S, Jiang LJ, Brozzetti S, Bergmann F, Dombrowski F, Schirmacher P, Calvisi DF, Breuhahn K (2013) Yes-associated protein up-regulates jagged-1 and activates the NOTCH pathway in human hepatocellular carcinoma. Gastroenterology 144(7):1530-U1368. https://doi.org/10.1053/j.gastro.2013.02.009
    Article CAS Google Scholar
  43. Kim T, Yang SJ, Hwang D, Song J, Kim M, Kyum Kim S, Kang K, Ahn J, Lee D, Kim MY, Kim S, Seung Koo J, Seok Koh S, Kim SY, Lim DS (2015) A basal-like breast cancer-specific role for SRF-IL6 in YAP-induced cancer stemness. Nat Commun 6:10186. https://doi.org/10.1038/ncomms10186
    Article PubMed PubMed Central CAS Google Scholar
  44. Zhang J, Ji JY, Yu M, Overholtzer M, Smolen GA, Wang R, Brugge JS, Dyson NJ, Haber DA (2009) YAP-dependent induction of amphiregulin identifies a non-cell-autonomous component of the Hippo pathway. Nat Cell Biol 11(12):1444–1450. https://doi.org/10.1038/ncb1993
    Article PubMed PubMed Central CAS Google Scholar
  45. Kwon Y, Vinayagam A, Sun X, Dephoure N, Gygi SP, Hong P, Perrimon N (2013) The Hippo signaling pathway interactome. Science 342(6159):737–740. https://doi.org/10.1126/science.1243971
    Article PubMed PubMed Central CAS Google Scholar
  46. Zhao B, Li L, Tumaneng K, Wang CY, Guan KL (2010) A coordinated phosphorylation by Lats and CK1 regulates YAP stability through SCF(beta-TRCP). Genes Dev 24(1):72–85. https://doi.org/10.1101/gad.1843810
    Article PubMed PubMed Central CAS Google Scholar
  47. Lei QY, Zhang H, Zhao B, Zha ZY, Bai F, Pei XH, Zhao S, Xiong Y, Guan KL (2008) TAZ promotes cell proliferation and epithelial-mesenchymal transition and is inhibited by the hippo pathway. Mol Cell Biol 28(7):2426–2436. https://doi.org/10.1128/MCB.01874-07
    Article PubMed PubMed Central CAS Google Scholar
  48. Liu CY, Zha ZY, Zhou X, Zhang H, Huang W, Zhao D, Li T, Chan SW, Lim CJ, Hong W, Zhao S, Xiong Y, Lei QY, Guan KL (2010) The hippo tumor pathway promotes TAZ degradation by phosphorylating a phosphodegron and recruiting the SCF{beta}-TrCP E3 ligase. J Biol Chem 285(48):37159–37169. https://doi.org/10.1074/jbc.M110.152942
    Article PubMed PubMed Central CAS Google Scholar
  49. Kanai F, Marignani PA, Sarbassova D, Yagi R, Hall RA, Donowitz M, Hisaminato A, Fujiwara T, Ito Y, Cantley LC, Yaffe MB (2000) TAZ: a novel transcriptional co-activator regulated by interactions with 14-3-3 and PDZ domain proteins. EMBO J 19(24):6778–6791. https://doi.org/10.1093/emboj/19.24.6778
    Article PubMed PubMed Central CAS Google Scholar
  50. Meng Z, Moroishi T, Guan KL (2016) Mechanisms of Hippo pathway regulation. Genes Dev 30(1):1–17. https://doi.org/10.1101/gad.274027.115
    Article PubMed PubMed Central CAS Google Scholar
  51. He M, Zhou Z, Shah AA, Hong Y, Chen Q, Wan Y (2016) New insights into posttranslational modifications of Hippo pathway in carcinogenesis and therapeutics. Cell Div 11:4. https://doi.org/10.1186/s13008-016-0013-6
    Article PubMed PubMed Central CAS Google Scholar
  52. Boggiano JC, Vanderzalm PJ, Fehon RG (2011) Tao-1 phosphorylates Hippo/MST kinases to regulate the Hippo-Salvador-Warts tumor suppressor pathway. Dev Cell 21(5):888–895. https://doi.org/10.1016/j.devcel.2011.08.028
    Article PubMed PubMed Central CAS Google Scholar
  53. Poon CL, Lin JI, Zhang X, Harvey KF (2011) The sterile 20-like kinase Tao-1 controls tissue growth by regulating the Salvador–Warts–Hippo pathway. Dev Cell 21(5):896–906. https://doi.org/10.1016/j.devcel.2011.09.012
    Article PubMed CAS Google Scholar
  54. Plouffe SW, Meng Z, Lin KC, Lin B, Hong AW, Chun JV, Guan KL (2016) Characterization of Hippo pathway components by gene inactivation. Mol Cell 64(5):993–1008. https://doi.org/10.1016/j.molcel.2016.10.034
    Article PubMed PubMed Central CAS Google Scholar
  55. Li Q, Li S, Mana-Capelli S, Roth Flach RJ, Danai LV, Amcheslavsky A, Nie Y, Kaneko S, Yao X, Chen X, Cotton JL, Mao J, McCollum D, Jiang J, Czech MP, Xu L, Ip YT (2014) The conserved misshapen-warts-Yorkie pathway acts in enteroblasts to regulate intestinal stem cells in Drosophila. Dev Cell 31(3):291–304. https://doi.org/10.1016/j.devcel.2014.09.012
    Article PubMed PubMed Central CAS Google Scholar
  56. Mohseni M, Sun J, Lau A, Curtis S, Goldsmith J, Fox VL, Wei C, Frazier M, Samson O, Wong KK, Kim C, Camargo FD (2014) A genetic screen identifies an LKB1-MARK signalling axis controlling the Hippo-YAP pathway. Nat Cell Biol 16(1):108–117. https://doi.org/10.1038/ncb2884
    Article PubMed CAS Google Scholar
  57. Zheng Y, Wang W, Liu B, Deng H, Uster E, Pan D (2015) Identification of Happyhour/MAP4K as alternative Hpo/Mst-like kinases in the Hippo kinase cascade. Dev Cell 34(6):642–655. https://doi.org/10.1016/j.devcel.2015.08.014
    Article PubMed PubMed Central CAS Google Scholar
  58. Meng Z, Moroishi T, Mottier-Pavie V, Plouffe SW, Hansen CG, Hong AW, Park HW, Mo JS, Lu W, Lu S, Flores F, Yu FX, Halder G, Guan KL (2015) MAP4K family kinases act in parallel to MST1/2 to activate LATS1/2 in the Hippo pathway. Nat Commun 6:8357. https://doi.org/10.1038/ncomms9357
    Article PubMed PubMed Central CAS Google Scholar
  59. Rodriguez-Boulan E, Macara IG (2014) Organization and execution of the epithelial polarity programme. Nat Rev Mol Cell Biol 15(4):225–242. https://doi.org/10.1038/nrm3775
    Article PubMed PubMed Central CAS Google Scholar
  60. Zecca M, Struhl G (2010) A feed-forward circuit linking wingless, fat-dachsous signaling, and the warts-hippo pathway to Drosophila wing growth. PLoS Biol 8(6):e1000386. https://doi.org/10.1371/journal.pbio.1000386
    Article PubMed PubMed Central CAS Google Scholar
  61. Vrabioiu AM, Struhl G (2015) Fat/Dachsous signaling promotes drosophila wing growth by regulating the conformational state of the NDR kinase warts. Dev Cell 35(6):737–749. https://doi.org/10.1016/j.devcel.2015.11.027
    Article PubMed PubMed Central CAS Google Scholar
  62. Renfranz PJ, Siegrist SE, Stronach BE, Macalma T, Beckerle MC (2003) Molecular and phylogenetic characterization of Zyx102, a Drosophila orthologue of the zyxin family that interacts with Drosophila Enabled. Gene 305(1):13–26
    Article PubMed CAS Google Scholar
  63. Rauskolb C, Pan G, Reddy BV, Oh H, Irvine KD (2011) Zyxin links fat signaling to the hippo pathway. PLoS Biol 9(6):e1000624. https://doi.org/10.1371/journal.pbio.1000624
    Article PubMed PubMed Central CAS Google Scholar
  64. Chen CL, Gajewski KM, Hamaratoglu F, Bossuyt W, Sansores-Garcia L, Tao C, Halder G (2010) The apical-basal cell polarity determinant Crumbs regulates Hippo signaling in Drosophila. Proc Natl Acad Sci USA 107(36):15810–15815. https://doi.org/10.1073/pnas.1004060107
    Article PubMed PubMed Central CAS Google Scholar
  65. Grzeschik NA, Parsons LM, Allott ML, Harvey KF, Richardson HE (2010) Lgl, aPKC, and Crumbs regulate the Salvador/Warts/Hippo pathway through two distinct mechanisms. Curr Biol 20(7):573–581. https://doi.org/10.1016/j.cub.2010.01.055
    Article PubMed CAS Google Scholar
  66. Ling C, Zheng Y, Yin F, Yu J, Huang J, Hong Y, Wu S, Pan D (2010) The apical transmembrane protein Crumbs functions as a tumor suppressor that regulates Hippo signaling by binding to Expanded. Proc Natl Acad Sci USA 107(23):10532–10537. https://doi.org/10.1073/pnas.1004279107
    Article PubMed PubMed Central Google Scholar
  67. Robinson BS, Huang J, Hong Y, Moberg KH (2010) Crumbs regulates Salvador/Warts/Hippo signaling in Drosophila via the FERM-domain protein Expanded. Curr Biol 20(7):582–590. https://doi.org/10.1016/j.cub.2010.03.019
    Article PubMed PubMed Central CAS Google Scholar
  68. McCartney BM, Kulikauskas RM, LaJeunesse DR, Fehon RG (2000) The neurofibromatosis-2 homologue, Merlin, and the tumor suppressor expanded function together in Drosophila to regulate cell proliferation and differentiation. Development 127(6):1315–1324
    PubMed CAS Google Scholar
  69. Badouel C, Gardano L, Amin N, Garg A, Rosenfeld R, Le Bihan T, McNeill H (2009) The FERM-domain protein Expanded regulates Hippo pathway activity via direct interactions with the transcriptional activator Yorkie. Dev Cell 16(3):411–420. https://doi.org/10.1016/j.devcel.2009.01.010
    Article PubMed CAS Google Scholar
  70. Ribeiro P, Holder M, Frith D, Snijders AP, Tapon N (2014) Crumbs promotes expanded recognition and degradation by the SCF(Slimb/beta-TrCP) ubiquitin ligase. Proc Natl Acad Sci USA 111(19):E1980–1989. https://doi.org/10.1073/pnas.1315508111
    Article PubMed PubMed Central CAS Google Scholar
  71. Baumgartner R, Poernbacher I, Buser N, Hafen E, Stocker H (2010) The WW domain protein Kibra acts upstream of Hippo in Drosophila. Dev Cell 18(2):309–316. https://doi.org/10.1016/j.devcel.2009.12.013
    Article PubMed CAS Google Scholar
  72. Genevet A, Wehr MC, Brain R, Thompson BJ, Tapon N (2010) Kibra is a regulator of the Salvador/Warts/Hippo signaling network. Dev Cell 18(2):300–308. https://doi.org/10.1016/j.devcel.2009.12.011
    Article PubMed PubMed Central CAS Google Scholar
  73. Yu J, Zheng Y, Dong J, Klusza S, Deng WM, Pan D (2010) Kibra functions as a tumor suppressor protein that regulates Hippo signaling in conjunction with Merlin and Expanded. Dev Cell 18(2):288–299. https://doi.org/10.1016/j.devcel.2009.12.012
    Article PubMed PubMed Central CAS Google Scholar
  74. Zhou PJ, Xue W, Peng J, Wang Y, Wei L, Yang Z, Zhu HH, Fang YX, Gao WQ (2017) Elevated expression of Par3 promotes prostate cancer metastasis by forming a Par3/aPKC/KIBRA complex and inactivating the hippo pathway. J Exp Clin Cancer Res 36(1):139. https://doi.org/10.1186/s13046-017-0609-y
    Article PubMed PubMed Central Google Scholar
  75. Bratt A, Wilson WJ, Troyanovsky B, Aase K, Kessler R, Van Meir EG, Holmgren L (2002) Angiomotin belongs to a novel protein family with conserved coiled-coil and PDZ binding domains. Gene 298(1):69–77
    Article PubMed CAS Google Scholar
  76. Sugihara-Mizuno Y, Adachi M, Kobayashi Y, Hamazaki Y, Nishimura M, Imai T, Furuse M, Tsukita S (2007) Molecular characterization of angiomotin/JEAP family proteins: interaction with MUPP1/Patj and their endogenous properties. Genes Cells 12(4):473–486. https://doi.org/10.1111/j.1365-2443.2007.01066.x
    Article PubMed CAS Google Scholar
  77. Wells CD, Fawcett JP, Traweger A, Yamanaka Y, Goudreault M, Elder K, Kulkarni S, Gish G, Virag C, Lim C, Colwill K, Starostine A, Metalnikov P, Pawson T (2006) A Rich1/Amot complex regulates the Cdc42 GTPase and apical-polarity proteins in epithelial cells. Cell 125(3):535–548. https://doi.org/10.1016/j.cell.2006.02.045
    Article PubMed CAS Google Scholar
  78. Zhao B, Li L, Lu Q, Wang LH, Liu CY, Lei Q, Guan KL (2011) Angiomotin is a novel Hippo pathway component that inhibits YAP oncoprotein. Genes Dev 25(1):51–63. https://doi.org/10.1101/gad.2000111
    Article PubMed PubMed Central CAS Google Scholar
  79. Chan SW, Lim CJ, Chong YF, Pobbati AV, Huang C, Hong W (2011) Hippo pathway-independent restriction of TAZ and YAP by angiomotin. J Biol Chem 286(9):7018–7026. https://doi.org/10.1074/jbc.C110.212621
    Article PubMed PubMed Central CAS Google Scholar
  80. Wang W, Huang J, Chen J (2011) Angiomotin-like proteins associate with and negatively regulate YAP1. J Biol Chem 286(6):4364–4370. https://doi.org/10.1074/jbc.C110.205401
    Article PubMed CAS Google Scholar
  81. Paramasivam M, Sarkeshik A, Yates JR 3rd, Fernandes MJ, McCollum D (2011) Angiomotin family proteins are novel activators of the LATS2 kinase tumor suppressor. Mol Biol Cell 22(19):3725–3733. https://doi.org/10.1091/mbc.E11-04-0300
    Article PubMed PubMed Central CAS Google Scholar
  82. Cordenonsi M, Zanconato F, Azzolin L, Forcato M, Rosato A, Frasson C, Inui M, Montagner M, Parenti AR, Poletti A, Daidone MG, Dupont S, Basso G, Bicciato S, Piccolo S (2011) The Hippo transducer TAZ confers cancer stem cell-related traits on breast cancer cells. Cell 147(4):759–772. https://doi.org/10.1016/j.cell.2011.09.048
    Article PubMed CAS Google Scholar
  83. Oka T, Remue E, Meerschaert K, Vanloo B, Boucherie C, Gfeller D, Bader GD, Sidhu SS, Vandekerckhove J, Gettemans J, Sudol M (2010) Functional complexes between YAP2 and ZO-2 are PDZ domain-dependent, and regulate YAP2 nuclear localization and signalling. Biochem J 432(3):461–472. https://doi.org/10.1042/BJ20100870
    Article PubMed CAS Google Scholar
  84. Remue E, Meerschaert K, Oka T, Boucherie C, Vandekerckhove J, Sudol M, Gettemans J (2010) TAZ interacts with zonula occludens-1 and -2 proteins in a PDZ-1 dependent manner. FEBS Lett 584(19):4175–4180. https://doi.org/10.1016/j.febslet.2010.09.020
    Article PubMed CAS Google Scholar
  85. Kobielak A, Fuchs E (2004) Alpha-catenin: at the junction of intercellular adhesion and actin dynamics. Nat Rev Mol Cell Biol 5(8):614–625. https://doi.org/10.1038/nrm1433
    Article PubMed PubMed Central CAS Google Scholar
  86. Schlegelmilch K, Mohseni M, Kirak O, Pruszak J, Rodriguez JR, Zhou D, Kreger BT, Vasioukhin V, Avruch J, Brummelkamp TR, Camargo FD (2011) Yap1 acts downstream of alpha-catenin to control epidermal proliferation. Cell 144(5):782–795. https://doi.org/10.1016/j.cell.2011.02.031
    Article PubMed PubMed Central CAS Google Scholar
  87. Silvis MR, Kreger BT, Lien WH, Klezovitch O, Rudakova GM, Camargo FD, Lantz DM, Seykora JT, Vasioukhin V (2011) Alpha-catenin is a tumor suppressor that controls cell accumulation by regulating the localization and activity of the transcriptional coactivator Yap1. Sci Signal 4(174):ra33. https://doi.org/10.1126/scisignal.2001823
    Article PubMed PubMed Central CAS Google Scholar
  88. Kim NG, Koh E, Chen X, Gumbiner BM (2011) E-cadherin mediates contact inhibition of proliferation through Hippo signaling-pathway components. Proc Natl Acad Sci USA 108(29):11930–11935. https://doi.org/10.1073/pnas.1103345108
    Article PubMed PubMed Central Google Scholar
  89. Huang JM, Nagatomo I, Suzuki E, Mizuno T, Kumagai T, Berezov A, Zhang H, Karlan B, Greene MI, Wang Q (2013) YAP modifies cancer cell sensitivity to EGFR and survivin inhibitors and is negatively regulated by the non-receptor type protein tyrosine phosphatase 14. Oncogene 32(17):2220–2229. https://doi.org/10.1038/onc.2012.231
    Article PubMed CAS Google Scholar
  90. Liu X, Yang N, Figel SA, Wilson KE, Morrison CD, Gelman IH, Zhang J (2013) PTPN14 interacts with and negatively regulates the oncogenic function of YAP. Oncogene 32(10):1266–1273. https://doi.org/10.1038/onc.2012.147
    Article PubMed CAS Google Scholar
  91. Michaloglou C, Lehmann W, Martin T, Delaunay C, Hueber A, Barys L, Niu H, Billy E, Wartmann M, Ito M, Wilson CJ, Digan ME, Bauer A, Voshol H, Christofori G, Sellers WR, Hofmann F, Schmelzle T (2013) The tyrosine phosphatase PTPN14 is a negative regulator of YAP activity. PLoS One 8(4):e61916. https://doi.org/10.1371/journal.pone.0061916
    Article PubMed PubMed Central CAS Google Scholar
  92. Wang W, Huang J, Wang X, Yuan J, Li X, Feng L, Park JI, Chen J (2012) PTPN14 is required for the density-dependent control of YAP1. Genes Dev 26(17):1959–1971. https://doi.org/10.1101/gad.192955.112
    Article PubMed PubMed Central CAS Google Scholar
  93. Hodge RG, Ridley AJ (2016) Regulating Rho GTPases and their regulators. Nat Rev Mol Cell Biol 17(8):496–510. https://doi.org/10.1038/nrm.2016.67
    Article PubMed CAS Google Scholar
  94. Zhao B, Li L, Wang L, Wang CY, Yu J, Guan KL (2012) Cell detachment activates the Hippo pathway via cytoskeleton reorganization to induce anoikis. Genes Dev 26(1):54–68. https://doi.org/10.1101/gad.173435.111
    Article PubMed PubMed Central CAS Google Scholar
  95. Dupont S, Morsut L, Aragona M, Enzo E, Giulitti S, Cordenonsi M, Zanconato F, Le Digabel J, Forcato M, Bicciato S, Elvassore N, Piccolo S (2011) Role of YAP/TAZ in mechanotransduction. Nature 474(7350):179–183. https://doi.org/10.1038/nature10137
    Article PubMed CAS Google Scholar
  96. Yu FX, Zhao B, Panupinthu N, Jewell JL, Lian I, Wang LH, Zhao J, Yuan H, Tumaneng K, Li H, Fu XD, Mills GB, Guan KL (2012) Regulation of the Hippo-YAP pathway by G-protein-coupled receptor signaling. Cell 150(4):780–791. https://doi.org/10.1016/j.cell.2012.06.037
    Article PubMed PubMed Central CAS Google Scholar
  97. Wang Z, Liu P, Zhou X, Wang TX, Feng X, Sun YP, Xiong Y, Yuan HX, Guan KL (2017) Endothelin promotes colorectal tumorigenesis by activating YAP/TAZ. Cancer Res 77(9):2413–2423. https://doi.org/10.1158/0008-5472.Can-16-3229
    Article PubMed CAS Google Scholar
  98. Zhou X, Wang SY, Wang Z, Feng X, Liu P, Lv XB, Li FL, Yu FX, Sun YP, Yuan HX, Zhu HG, Xiong Y, Lei QY, Guan KL (2015) Estrogen regulates Hippo signaling via GPER in breast cancer. J Clin Investig 125(5):2123–2135. https://doi.org/10.1172/Jci79573
    Article PubMed PubMed Central Google Scholar
  99. Yu FX, Luo J, Mo JS, Liu GB, Kim YC, Meng ZP, Zhao L, Peyman G, Ouyang H, Jiang W, Zhao JG, Chen X, Zhang LF, Wang CY, Bastian BC, Zhang K, Guan KL (2014) Mutant Gq/11 promote uveal melanoma tumorigenesis by activating YAP. Cancer Cell 25(6):822–830. https://doi.org/10.1016/j.ccr.2014.04.017
    Article PubMed PubMed Central CAS Google Scholar
  100. Feng XD, Degese MS, Iglesias-Bartolome R, Vaque JP, Molinolo AA, Rodrigues M, Zaidi MR, Ksander BR, Merlino G, Sodhi A, Chen QM, Gutkind JS (2014) Hippo-independent activation of YAP by the GNAQ uveal melanoma oncogene through a trio-regulated Rho GTPase signaling circuitry. Cancer Cell 25(6):831–845. https://doi.org/10.1016/j.ccr.2014.04.016
    Article PubMed PubMed Central CAS Google Scholar
  101. Yu FX, Zhang Y, Park HW, Jewell JL, Chen Q, Deng Y, Pan D, Taylor SS, Lai ZC, Guan KL (2013) Protein kinase A activates the Hippo pathway to modulate cell proliferation and differentiation. Genes Dev 27(11):1223–1232. https://doi.org/10.1101/gad.219402.113
    Article PubMed PubMed Central CAS Google Scholar
  102. Kim M, Kim M, Lee S, Kuninaka S, Saya H, Lee H, Lee S, Lim DS (2013) cAMP/PKA signalling reinforces the LATS-YAP pathway to fully suppress YAP in response to actin cytoskeletal changes. EMBO J 32(11):1543–1555. https://doi.org/10.1038/emboj.2013.102
    Article PubMed PubMed Central CAS Google Scholar
  103. Fernandez BG, Gaspar P, Bras-Pereira C, Jezowska B, Rebelo SR, Janody F (2011) Actin-capping protein and the Hippo pathway regulate F-actin and tissue growth in Drosophila. Development 138(11):2337–2346. https://doi.org/10.1242/dev.063545
    Article PubMed CAS Google Scholar
  104. Sansores-Garcia L, Bossuyt W, Wada K, Yonemura S, Tao C, Sasaki H, Halder G (2011) Modulating F-actin organization induces organ growth by affecting the Hippo pathway. EMBO J 30(12):2325–2335. https://doi.org/10.1038/emboj.2011.157
    Article PubMed PubMed Central CAS Google Scholar
  105. Imajo M, Miyatake K, Iimura A, Miyamoto A, Nishida E (2012) A molecular mechanism that links Hippo signalling to the inhibition of Wnt/beta-catenin signalling. EMBO J 31(5):1109–1122. https://doi.org/10.1038/emboj.2011.487
    Article PubMed PubMed Central CAS Google Scholar
  106. Azzolin L, Panciera T, Soligo S, Enzo E, Bicciato S, Dupont S, Bresolin S, Frasson C, Basso G, Guzzardo V, Fassina A, Cordenonsi M, Piccolo S (2014) YAP/TAZ incorporation in the beta-catenin destruction complex orchestrates the Wnt response. Cell 158(1):157–170. https://doi.org/10.1016/j.cell.2014.06.013
    Article PubMed CAS Google Scholar
  107. Azzolin L, Zanconato F, Bresolin S, Forcato M, Basso G, Bicciato S, Cordenonsi M, Piccolo S (2012) Role of TAZ as mediator of Wnt signaling. Cell 151(7):1443–1456. https://doi.org/10.1016/j.cell.2012.11.027
    Article PubMed CAS Google Scholar
  108. Liang N, Zhang C, Dill P, Panasyuk G, Pion D, Koka V, Gallazzini M, Olson EN, Lam H, Henske EP, Dong Z, Apte U, Pallet N, Johnson RL, Terzi F, Kwiatkowski DJ, Scoazec JY, Martignoni G, Pende M (2014) Regulation of YAP by mTOR and autophagy reveals a therapeutic target of tuberous sclerosis complex. J Exp Med 211(11):2249–2263. https://doi.org/10.1084/jem.20140341
    Article PubMed PubMed Central Google Scholar
  109. Tumaneng K, Schlegelmilch K, Russell RC, Yimlamai D, Basnet H, Mahadevan N, Fitamant J, Bardeesy N, Camargo FD, Guan KL (2012) YAP mediates crosstalk between the Hippo and PI(3)K-TOR pathways by suppressing PTEN via miR-29. Nat Cell Biol 14(12):1322–1329. https://doi.org/10.1038/ncb2615
    Article PubMed PubMed Central CAS Google Scholar
  110. Hansen CG, Ng YL, Lam WL, Plouffe SW, Guan KL (2015) The Hippo pathway effectors YAP and TAZ promote cell growth by modulating amino acid signaling to mTORC1. Cell Res 25(12):1299–1313. https://doi.org/10.1038/cr.2015.140
    Article PubMed PubMed Central CAS Google Scholar
  111. Strassburger K, Tiebe M, Pinna F, Breuhahn K, Teleman AA (2012) Insulin/IGF signaling drives cell proliferation in part via Yorkie/YAP. Dev Biol 367(2):187–196. https://doi.org/10.1016/j.ydbio.2012.05.008
    Article PubMed CAS Google Scholar
  112. Sun G, Irvine KD (2013) Ajuba family proteins link JNK to Hippo signaling. Sci Signal 6(292):ra81. https://doi.org/10.1126/scisignal.2004324
    Article PubMed CAS Google Scholar
  113. Tomlinson V, Gudmundsdottir K, Luong P, Leung KY, Knebel A, Basu S (2010) JNK phosphorylates Yes-associated protein (YAP) to regulate apoptosis. Cell Death Dis 1:e29. https://doi.org/10.1038/cddis.2010.7
    Article PubMed PubMed Central CAS Google Scholar
  114. Lee KK, Yonehara S (2012) Identification of mechanism that couples multisite phosphorylation of Yes-associated protein (YAP) with transcriptional coactivation and regulation of apoptosis. J Biol Chem 287(12):9568–9578. https://doi.org/10.1074/jbc.M111.296954
    Article PubMed PubMed Central CAS Google Scholar
  115. Lin KC, Moroishi T, Meng Z, Jeong HS, Plouffe SW, Sekido Y, Han J, Park HW, Guan KL (2017) Regulation of Hippo pathway transcription factor TEAD by p38 MAPK-induced cytoplasmic translocation. Nat Cell Biol 19(8):996–1002. https://doi.org/10.1038/ncb3581
    Article PubMed PubMed Central CAS Google Scholar
  116. Hong AW, Meng Z, Yuan HX, Plouffe SW, Moon S, Kim W, Jho EH, Guan KL (2017) Osmotic stress-induced phosphorylation by NLK at Ser128 activates YAP. EMBO Rep 18(1):72–86. https://doi.org/10.15252/embr.201642681
    Article PubMed CAS Google Scholar
  117. Moon S, Kim W, Kim S, Kim Y, Song Y, Bilousov O, Kim J, Lee T, Cha B, Kim M, Kim H, Katanaev VL, Jho EH (2017) Phosphorylation by NLK inhibits YAP-14-3-3-interactions and induces its nuclear localization. EMBO Rep 18(1):61–71. https://doi.org/10.15252/embr.201642683
    Article PubMed CAS Google Scholar
  118. Ganem NJ, Cornils H, Chiu SY, O’Rourke KP, Arnaud J, Yimlamai D, Thery M, Camargo FD, Pellman D (2014) Cytokinesis failure triggers hippo tumor suppressor pathway activation. Cell 158(4):833–848. https://doi.org/10.1016/j.cell.2014.06.029
    Article PubMed PubMed Central CAS Google Scholar
  119. Zhao B, Wei X, Li W, Udan RS, Yang Q, Kim J, Xie J, Ikenoue T, Yu J, Li L, Zheng P, Ye K, Chinnaiyan A, Halder G, Lai ZC, Guan KL (2007) Inactivation of YAP oncoprotein by the Hippo pathway is involved in cell contact inhibition and tissue growth control. Genes Dev 21(21):2747–2761. https://doi.org/10.1101/gad.1602907
    Article PubMed PubMed Central CAS Google Scholar
  120. Driscoll TP, Cosgrove BD, Heo SJ, Shurden ZE, Mauck RL (2015) Cytoskeletal to nuclear strain transfer regulates YAP signaling in mesenchymal stem cells. Biophys J 108(12):2783–2793. https://doi.org/10.1016/j.bpj.2015.05.010
    Article PubMed PubMed Central CAS Google Scholar
  121. Wada K, Itoga K, Okano T, Yonemura S, Sasaki H (2011) Hippo pathway regulation by cell morphology and stress fibers. Development 138(18):3907–3914. https://doi.org/10.1242/dev.070987
    Article PubMed CAS Google Scholar
  122. Aragona M, Panciera T, Manfrin A, Giulitti S, Michielin F, Elvassore N, Dupont S, Piccolo S (2013) A mechanical checkpoint controls multicellular growth through YAP/TAZ regulation by actin-processing factors. Cell 154(5):1047–1059. https://doi.org/10.1016/j.cell.2013.07.042
    Article PubMed CAS Google Scholar
  123. Codelia VA, Sun G, Irvine KD (2014) Regulation of YAP by mechanical strain through Jnk and Hippo signaling. Curr Biol 24(17):2012–2017. https://doi.org/10.1016/j.cub.2014.07.034
    Article PubMed PubMed Central CAS Google Scholar
  124. Kim MH, Kim J (2017) Role of YAP/TAZ transcriptional regulators in resistance to anti-cancer therapies. Cell Mol Life Sci 74(8):1457–1474. https://doi.org/10.1007/s00018-016-2412-x
    Article PubMed CAS Google Scholar
  125. Zanconato F, Cordenonsi M, Piccolo S (2016) YAP/TAZ at the roots of cancer. Cancer Cell 29(6):783–803. https://doi.org/10.1016/j.ccell.2016.05.005
    Article PubMed CAS Google Scholar
  126. Camargo FD, Gokhale S, Johnnidis JB, Fu D, Bell GW, Jaenisch R, Brummelkamp TR (2007) YAP1 increases organ size and expands undifferentiated progenitor cells. Curr Biol 17(23):2054–2060. https://doi.org/10.1016/j.cub.2007.10.039
    Article PubMed CAS Google Scholar
  127. Lee JH, Kim TS, Yang TH, Koo BK, Oh SP, Lee KP, Oh HJ, Lee SH, Kong YY, Kim JM, Lim DS (2008) A crucial role of WW45 in developing epithelial tissues in the mouse. EMBO J 27(8):1231–1242. https://doi.org/10.1038/emboj.2008.63
    Article PubMed PubMed Central CAS Google Scholar
  128. Zhou D, Zhang Y, Wu H, Barry E, Yin Y, Lawrence E, Dawson D, Willis JE, Markowitz SD, Camargo FD, Avruch J (2011) Mst1 and Mst2 protein kinases restrain intestinal stem cell proliferation and colonic tumorigenesis by inhibition of Yes-associated protein (Yap) overabundance. Proc Natl Acad Sci USA 108(49):E1312–1320. https://doi.org/10.1073/pnas.1110428108
    Article PubMed PubMed Central Google Scholar
  129. Lee KP, Lee JH, Kim TS, Kim TH, Park HD, Byun JS, Kim MC, Jeong WI, Calvisi DF, Kim JM, Lim DS (2010) The Hippo-Salvador pathway restrains hepatic oval cell proliferation, liver size, and liver tumorigenesis. Proc Natl Acad Sci USA 107(18):8248–8253. https://doi.org/10.1073/pnas.0912203107
    Article PubMed PubMed Central CAS Google Scholar
  130. Cai J, Maitra A, Anders RA, Taketo MM, Pan D (2015) beta-Catenin destruction complex-independent regulation of Hippo-YAP signaling by APC in intestinal tumorigenesis. Genes Dev 29(14):1493–1506. https://doi.org/10.1101/gad.264515.115
    Article PubMed PubMed Central CAS Google Scholar
  131. Lin L, Sabnis AJ, Chan E, Olivas V, Cade L, Pazarentzos E, Asthana S, Neel D, Yan JJ, Lu X, Pham L, Wang MM, Karachaliou N, Cao MG, Manzano JL, Ramirez JL, Torres JM, Buttitta F, Rudin CM, Collisson EA, Algazi A, Robinson E, Osman I, Munoz-Couselo E, Cortes J, Frederick DT, Cooper ZA, McMahon M, Marchetti A, Rosell R, Flaherty KT, Wargo JA, Bivona TG (2015) The Hippo effector YAP promotes resistance to RAF- and MEK-targeted cancer therapies. Nat Genet 47(3):250–256. https://doi.org/10.1038/ng.3218
    Article PubMed PubMed Central CAS Google Scholar
  132. Lin KC, Park HW, Guan KL (2017) Regulation of the Hippo pathway transcription factor TEAD. Trends Biochem Sci 42(11):862–872. https://doi.org/10.1016/j.tibs.2017.09.003
    Article PubMed CAS Google Scholar
  133. Hirabayashi S, Cagan RL (2015) Salt-inducible kinases mediate nutrient-sensing to link dietary sugar and tumorigenesis in Drosophila. Elife 4:e08501. https://doi.org/10.7554/eLife.08501
    Article PubMed PubMed Central Google Scholar
  134. Ohsawa S, Sato Y, Enomoto M, Nakamura M, Betsumiya A, Igaki T (2012) Mitochondrial defect drives non-autonomous tumour progression through Hippo signalling in Drosophila. Nature 490(7421):547–551. https://doi.org/10.1038/nature11452
    Article PubMed CAS Google Scholar
  135. Vander Heiden MG, Cantley LC, Thompson CB (2009) Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324(5930):1029–1033. https://doi.org/10.1126/science.1160809
    Article PubMed PubMed Central CAS Google Scholar
  136. Pavlova NN, Thompson CB (2016) The emerging hallmarks of cancer metabolism. Cell Metab 23(1):27–47. https://doi.org/10.1016/j.cmet.2015.12.006
    Article PubMed PubMed Central CAS Google Scholar
  137. DeRan M, Yang J, Shen CH, Peters EC, Fitamant J, Chan P, Hsieh M, Zhu S, Asara JM, Zheng B, Bardeesy N, Liu J, Wu X (2014) Energy stress regulates hippo-YAP signaling involving AMPK-mediated regulation of angiomotin-like 1 protein. Cell Rep 9(2):495–503. https://doi.org/10.1016/j.celrep.2014.09.036
    Article PubMed PubMed Central CAS Google Scholar
  138. Mo JS, Meng Z, Kim YC, Park HW, Hansen CG, Kim S, Lim DS, Guan KL (2015) Cellular energy stress induces AMPK-mediated regulation of YAP and the Hippo pathway. Nat Cell Biol 17(4):500–510. https://doi.org/10.1038/ncb3111
    Article PubMed PubMed Central CAS Google Scholar
  139. Wang W, Xiao ZD, Li X, Aziz KE, Gan B, Johnson RL, Chen J (2015) AMPK modulates Hippo pathway activity to regulate energy homeostasis. Nat Cell Biol 17(4):490–499. https://doi.org/10.1038/ncb3113
    Article PubMed PubMed Central CAS Google Scholar
  140. Enzo E, Santinon G, Pocaterra A, Aragona M, Bresolin S, Forcato M, Grifoni D, Pession A, Zanconato F, Guzzo G, Bicciato S, Dupont S (2015) Aerobic glycolysis tunes YAP/TAZ transcriptional activity. EMBO J 34(10):1349–1370. https://doi.org/10.15252/embj.201490379
    Article PubMed PubMed Central CAS Google Scholar
  141. Gailite I, Aerne BL, Tapon N (2015) Differential control of Yorkie activity by LKB1/AMPK and the Hippo/Warts cascade in the central nervous system. Proc Natl Acad Sci USA 112(37):E5169–5178. https://doi.org/10.1073/pnas.1505512112
    Article PubMed PubMed Central CAS Google Scholar
  142. Wehr MC, Holder MV, Gailite I, Saunders RE, Maile TM, Ciirdaeva E, Instrell R, Jiang M, Howell M, Rossner MJ, Tapon N (2013) Salt-inducible kinases regulate growth through the Hippo signalling pathway in Drosophila. Nat Cell Biol 15(1):61–71. https://doi.org/10.1038/ncb2658
    Article PubMed PubMed Central CAS Google Scholar
  143. Peng C, Zhu Y, Zhang W, Liao Q, Chen Y, Zhao X, Guo Q, Shen P, Zhen B, Qian X, Yang D, Zhang JS, Xiao D, Qin W, Pei H (2017) Regulation of the Hippo-YAP pathway by glucose sensor O-GlcNAcylation. Mol Cell 68(3):591–604 e595. https://doi.org/10.1016/j.molcel.2017.10.010
    Article PubMed CAS Google Scholar
  144. Zhang X, Qiao Y, Wu Q, Chen Y, Zou S, Liu X, Zhu G, Zhao Y, Chen Y, Yu Y, Pan Q, Wang J, Sun F (2017) The essential role of YAP O-GlcNAcylation in high-glucose-stimulated liver tumorigenesis. Nat Commun 8:15280. https://doi.org/10.1038/ncomms15280
    Article PubMed PubMed Central CAS Google Scholar
  145. Sorrentino G, Ruggeri N, Specchia V, Cordenonsi M, Mano M, Dupont S, Manfrin A, Ingallina E, Sommaggio R, Piazza S, Rosato A, Piccolo S, Del Sal G (2014) Metabolic control of YAP and TAZ by the mevalonate pathway. Nat Cell Biol 16(4):357–366. https://doi.org/10.1038/ncb2936
    Article PubMed CAS Google Scholar
  146. Wang Z, Wu Y, Wang H, Zhang Y, Mei L, Fang X, Zhang X, Zhang F, Chen H, Liu Y, Jiang Y, Sun S, Zheng Y, Li N, Huang L (2014) Interplay of mevalonate and Hippo pathways regulates RHAMM transcription via YAP to modulate breast cancer cell motility. Proc Natl Acad Sci USA 111(1):E89–98. https://doi.org/10.1073/pnas.1319190110
    Article PubMed CAS Google Scholar
  147. Cox AG, Hwang KL, Brown KK, Evason K, Beltz S, Tsomides A, O’Connor K, Galli GG, Yimlamai D, Chhangawala S, Yuan M, Lien EC, Wucherpfennig J, Nissim S, Minami A, Cohen DE, Camargo FD, Asara JM, Houvras Y, Stainier DYR, Goessling W (2016) Yap reprograms glutamine metabolism to increase nucleotide biosynthesis and enable liver growth. Nat Cell Biol 18(8):886–896. https://doi.org/10.1038/ncb3389
    Article PubMed PubMed Central CAS Google Scholar
  148. Guo X, Zhao Y, Yan H, Yang Y, Shen S, Dai X, Ji X, Ji F, Gong XG, Li L, Bai X, Feng XH, Liang T, Ji J, Chen L, Wang H, Zhao B (2017) Single tumor-initiating cells evade immune clearance by recruiting type II macrophages. Genes Dev 31(3):247–259. https://doi.org/10.1101/gad.294348.116
    Article PubMed PubMed Central CAS Google Scholar
  149. Wang G, Lu X, Dey P, Deng P, Wu CC, Jiang S, Fang Z, Zhao K, Konaparthi R, Hua S, Zhang J, Li-Ning-Tapia EM, Kapoor A, Wu CJ, Patel NB, Guo Z, Ramamoorthy V, Tieu TN, Heffernan T, Zhao D, Shang X, Khadka S, Hou P, Hu B, Jin EJ, Yao W, Pan X, Ding Z, Shi Y, Li L, Chang Q, Troncoso P, Logothetis CJ, McArthur MJ, Chin L, Wang YA, DePinho RA (2016) Targeting YAP-dependent MDSC infiltration impairs tumor progression. Cancer Discov 6(1):80–95. https://doi.org/10.1158/2159-8290.CD-15-0224
    Article PubMed CAS Google Scholar
  150. Liu B, Zheng Y, Yin F, Yu J, Silverman N, Pan D (2016) Toll receptor-mediated Hippo signaling controls innate immunity in Drosophila. Cell 164(3):406–419. https://doi.org/10.1016/j.cell.2015.12.029
    Article PubMed PubMed Central CAS Google Scholar
  151. Moroishi T, Hayashi T, Pan WW, Fujita Y, Holt MV, Qin J, Carson DA, Guan KL (2016) The Hippo pathway kinases LATS1/2 suppress cancer immunity. Cell 167(6):1525–1539 e1517. https://doi.org/10.1016/j.cell.2016.11.005
    Article PubMed PubMed Central CAS Google Scholar
  152. Meng F, Zhou R, Wu S, Zhang Q, Jin Q, Zhou Y, Plouffe SW, Liu S, Song H, Xia Z, Zhao B, Ye S, Feng XH, Guan KL, Zou J, Xu P (2016) Mst1 shuts off cytosolic antiviral defense through IRF3 phosphorylation. Genes Dev 30(9):1086–1100. https://doi.org/10.1101/gad.277533.116
    Article PubMed PubMed Central CAS Google Scholar
  153. Zhang Q, Meng F, Chen S, Plouffe SW, Wu S, Liu S, Li X, Zhou R, Wang J, Zhao B, Liu J, Qin J, Zou J, Feng XH, Guan KL, Xu P (2017) Hippo signalling governs cytosolic nucleic acid sensing through YAP/TAZ-mediated TBK1 blockade. Nat Cell Biol 19(4):362–374. https://doi.org/10.1038/ncb3496
    Article PubMed PubMed Central CAS Google Scholar
  154. Lee BS, Park DI, Lee DH, Lee JE, Yeo MK, Park YH, Lim DS, Choi W, Lee DH, Yoo G, Kim HB, Kang D, Moon JY, Jung SS, Kim JO, Cho SY, Park HS, Chung C (2017) Hippo effector YAP directly regulates the expression of PD-L1 transcripts in EGFR-TKI-resistant lung adenocarcinoma. Biochem Biophys Res Commun 491(2):493–499. https://doi.org/10.1016/j.bbrc.2017.07.007
    Article PubMed CAS Google Scholar
  155. Feng J, Yang H, Zhang Y, Wei H, Zhu Z, Zhu B, Yang M, Cao W, Wang L, Wu Z (2017) Tumor cell-derived lactate induces TAZ-dependent upregulation of PD-L1 through GPR81 in human lung cancer cells. Oncogene 36(42):5829–5839. https://doi.org/10.1038/onc.2017.188
    Article PubMed CAS Google Scholar
  156. Thaventhiran JE, Hoffmann A, Magiera L, de la Roche M, Lingel H, Brunner-Weinzierl M, Fearon DT (2012) Activation of the Hippo pathway by CTLA-4 regulates the expression of Blimp-1 in the CD8+ T cell. Proc Natl Acad Sci USA 109(33):E2223–2229. https://doi.org/10.1073/pnas.1209115109
    Article PubMed PubMed Central Google Scholar
  157. Geng J, Yu S, Zhao H, Sun X, Li X, Wang P, Xiong X, Hong L, Xie C, Gao J, Shi Y, Peng J, Johnson RL, Xiao N, Lu L, Han J, Zhou D, Chen L (2017) The transcriptional coactivator TAZ regulates reciprocal differentiation of TH17 cells and Treg cells. Nat Immunol 18(7):800–812. https://doi.org/10.1038/ni.3748
    Article PubMed CAS Google Scholar
  158. Zhou D, Medoff BD, Chen L, Li L, Zhang XF, Praskova M, Liu M, Landry A, Blumberg RS, Boussiotis VA, Xavier R, Avruch J (2008) The Nore1B/Mst1 complex restrains antigen receptor-induced proliferation of naive T cells. Proc Natl Acad Sci USA 105(51):20321–20326. https://doi.org/10.1073/pnas.0810773105
    Article PubMed PubMed Central Google Scholar
  159. Li C, Bi Y, Li Y, Yang H, Yu Q, Wang J, Wang Y, Su H, Jia A, Hu Y, Han L, Zhang J, Li S, Tao W, Liu G (2017) Dendritic cell MST1 inhibits Th17 differentiation. Nat Commun 8:14275. https://doi.org/10.1038/ncomms14275
    Article PubMed PubMed Central CAS Google Scholar
  160. Jansson L, Larsson J (2012) Normal hematopoietic stem cell function in mice with enforced expression of the Hippo signaling effector YAP1. PLoS One 7(2):e32013. https://doi.org/10.1371/journal.pone.0032013
    Article PubMed PubMed Central CAS Google Scholar
  161. Liu-Chittenden Y, Huang B, Shim JS, Chen Q, Lee SJ, Anders RA, Liu JO, Pan D (2012) Genetic and pharmacological disruption of the TEAD-YAP complex suppresses the oncogenic activity of YAP. Genes Dev 26(12):1300–1305. https://doi.org/10.1101/gad.192856.112
    Article PubMed PubMed Central CAS Google Scholar
  162. Dasari VR, Mazack V, Feng W, Nash J, Carey DJ, Gogoi R (2017) Verteporfin exhibits YAP-independent anti-proliferative and cytotoxic effects in endometrial cancer cells. Oncotarget 8(17):28628–28640. https://doi.org/10.18632/oncotarget.15614
    Article PubMed PubMed Central Google Scholar
  163. Chen HH, Mullett SJ, Stewart AF (2004) Vgl-4, a novel member of the vestigial-like family of transcription cofactors, regulates alpha1-adrenergic activation of gene expression in cardiac myocytes. J Biol Chem 279(29):30800–30806. https://doi.org/10.1074/jbc.M400154200
    Article PubMed CAS Google Scholar
  164. Jiao S, Li C, Hao Q, Miao H, Zhang L, Li L, Zhou Z (2017) VGLL4 targets a TCF4–TEAD4 complex to coregulate Wnt and Hippo signalling in colorectal cancer. Nat Commun 8:14058. https://doi.org/10.1038/ncomms14058
    Article PubMed PubMed Central CAS Google Scholar
  165. Zhou Z, Hu T, Xu Z, Lin Z, Zhang Z, Feng T, Zhu L, Rong Y, Shen H, Luk JM, Zhang X, Qin N (2015) Targeting Hippo pathway by specific interruption of YAP–TEAD interaction using cyclic YAP-like peptides. FASEB J 29(2):724–732. https://doi.org/10.1096/fj.14-262980
    Article PubMed CAS Google Scholar
  166. Pobbati AV, Han X, Hung AW, Weiguang S, Huda N, Chen GY, Kang C, Chia CS, Luo X, Hong W, Poulsen A (2015) Targeting the central pocket in human transcription factor TEAD as a potential cancer therapeutic strategy. Structure 23(11):2076–2086. https://doi.org/10.1016/j.str.2015.09.009
    Article PubMed PubMed Central CAS Google Scholar
  167. Chan P, Han X, Zheng B, DeRan M, Yu J, Jarugumilli GK, Deng H, Pan D, Luo X, Wu X (2016) Autopalmitoylation of TEAD proteins regulates transcriptional output of the Hippo pathway. Nat Chem Biol 12(4):282–289. https://doi.org/10.1038/nchembio.2036
    Article PubMed PubMed Central CAS Google Scholar
  168. Noland CL, Gierke S, Schnier PD, Murray J, Sandoval WN, Sagolla M, Dey A, Hannoush RN, Fairbrother WJ, Cunningham CN (2016) Palmitoylation of TEAD transcription factors is required for their stability and function in Hippo pathway signaling. Structure 24(1):179–186. https://doi.org/10.1016/j.str.2015.11.005
    Article PubMed CAS Google Scholar
  169. Rosenbluh J, Nijhawan D, Cox AG, Li X, Neal JT, Schafer EJ, Zack TI, Wang X, Tsherniak A, Schinzel AC, Shao DD, Schumacher SE, Weir BA, Vazquez F, Cowley GS, Root DE, Mesirov JP, Beroukhim R, Kuo CJ, Goessling W, Hahn WC (2012) beta-Catenin-driven cancers require a YAP1 transcriptional complex for survival and tumorigenesis. Cell 151(7):1457–1473. https://doi.org/10.1016/j.cell.2012.11.026
    Article PubMed PubMed Central CAS Google Scholar
  170. Mi W, Lin Q, Childress C, Sudol M, Robishaw J, Berlot CH, Shabahang M, Yang W (2015) Geranylgeranylation signals to the Hippo pathway for breast cancer cell proliferation and migration. Oncogene 34(24):3095–3106. https://doi.org/10.1038/onc.2014.251
    Article PubMed CAS Google Scholar
  171. Mo JS, Yu FX, Gong R, Brown JH, Guan KL (2012) Regulation of the Hippo-YAP pathway by protease-activated receptors (PARs). Genes Dev 26(19):2138–2143. https://doi.org/10.1101/gad.197582.112
    Article PubMed PubMed Central CAS Google Scholar
  172. Kim NG, Gumbiner BM (2015) Adhesion to fibronectin regulates Hippo signaling via the FAK-Src-PI3K pathway. J Cell Biol 210(3):503–515. https://doi.org/10.1083/jcb.201501025
    Article PubMed PubMed Central CAS Google Scholar
  173. Huang SM, Mishina YM, Liu S, Cheung A, Stegmeier F, Michaud GA, Charlat O, Wiellette E, Zhang Y, Wiessner S, Hild M, Shi X, Wilson CJ, Mickanin C, Myer V, Fazal A, Tomlinson R, Serluca F, Shao W, Cheng H, Shultz M, Rau C, Schirle M, Schlegl J, Ghidelli S, Fawell S, Lu C, Curtis D, Kirschner MW, Lengauer C, Finan PM, Tallarico JA, Bouwmeester T, Porter JA, Bauer A, Cong F (2009) Tankyrase inhibition stabilizes axin and antagonizes Wnt signalling. Nature 461(7264):614–620. https://doi.org/10.1038/nature08356
    Article PubMed CAS Google Scholar
  174. Troilo A, Benson EK, Esposito D, Garibsingh RA, Reddy EP, Mungamuri SK, Aaronson SA (2016) Angiomotin stabilization by tankyrase inhibitors antagonizes constitutive TEAD-dependent transcription and proliferation of human tumor cells with Hippo pathway core component mutations. Oncotarget 7(20):28765–28782. https://doi.org/10.18632/oncotarget.9117
    Article PubMed PubMed Central Google Scholar
  175. Wang W, Li N, Li X, Tran MK, Han X, Chen J (2015) Tankyrase inhibitors target YAP by stabilizing angiomotin family proteins. Cell Rep 13(3):524–532. https://doi.org/10.1016/j.celrep.2015.09.014
    Article PubMed PubMed Central CAS Google Scholar
  176. Serrano I, McDonald PC, Lock F, Muller WJ, Dedhar S (2013) Inactivation of the Hippo tumour suppressor pathway by integrin-linked kinase. Nat Commun 4:2976. https://doi.org/10.1038/ncomms3976
    Article PubMed PubMed Central CAS Google Scholar
  177. Bao Y, Nakagawa K, Yang Z, Ikeda M, Withanage K, Ishigami-Yuasa M, Okuno Y, Hata S, Nishina H, Hata Y (2011) A cell-based assay to screen stimulators of the Hippo pathway reveals the inhibitory effect of dobutamine on the YAP-dependent gene transcription. J Biochem 150(2):199–208. https://doi.org/10.1093/jb/mvr063
    Article PubMed CAS Google Scholar
  178. Fan F, He Z, Kong LL, Chen Q, Yuan Q, Zhang S, Ye J, Liu H, Sun X, Geng J, Yuan L, Hong L, Xiao C, Zhang W, Sun X, Li Y, Wang P, Huang L, Wu X, Ji Z, Wu Q, Xia NS, Gray NS, Chen L, Yun CH, Deng X, Zhou D (2016) Pharmacological targeting of kinases MST1 and MST2 augments tissue repair and regeneration. Sci Transl Med 8(352):352ra108. https://doi.org/10.1126/scitranslmed.aaf2304
    Article PubMed CAS Google Scholar

Download references