Organization and execution of the epithelial polarity programme (original) (raw)
Dickinson, D. J., Nelson, W. J. & Weis, W. I. A polarized epithelium organized by β- and α-catenin predates cadherin and metazoan origins. Science331, 1336–1339 (2011). An important contribution to our understanding of the evolution of epithelial tissues in animals. ArticleCASPubMedPubMed Central Google Scholar
Cereijido, M., Contreras, R. G. & Shoshani, L. Cell adhesion, polarity, and epithelia in the dawn of metazoans. Physiol. Rev.84, 1229–1262 (2004). ArticleCASPubMed Google Scholar
Magie, C. R. & Martindale, M. Q. Cell-cell adhesion in the cnidaria: insights into the evolution of tissue morphogenesis. Biol. Bull.214, 218–232 (2008). ArticlePubMed Google Scholar
Bryant, D. M. & Mostov, K. E. From cells to organs: building polarized tissue. Nature Rev. Mol. Cell Biol.9, 887–901 (2008). ArticleCAS Google Scholar
Sawyer, J. M. et al. Apical constriction: a cell shape change that can drive morphogenesis. Dev. Biol.341, 5–19 (2010). ArticleCASPubMed Google Scholar
Lechler, T. & Fuchs, E. Asymmetric cell divisions promote stratification and differentiation of mammalian skin. Nature437, 275–280 (2005). ArticlePubMedPubMed Central Google Scholar
Singla, V. & Reiter, J. F. The primary cilium as the cell's antenna: signaling at a sensory organelle. Science313, 629–633 (2006). ArticleCASPubMed Google Scholar
Lim, J. & Thiery, J. P. Epithelial-mesenchymal transitions: insights from development. Development139, 3471–3486 (2012). ArticleCASPubMed Google Scholar
McCaffrey, L. M. & Macara, I. G. Epithelial organization, cell polarity, and tumorigenesis. Trends Cell Biol.21, 727–735 (2011). ArticleCASPubMed Google Scholar
Muthuswamy, S. K. & Xue, B. Cell polarity as a regulator of cancer cell behavior plasticity. Annu. Rev. Cell Dev. Biol.28, 599–625 (2012). ArticleCASPubMedPubMed Central Google Scholar
Assemat, E., Bazellieres, E., Pallesi-Pocachard, E., Le Bivic, A. & Massey-Harroche, D. Polarity complex proteins. Biochim. Biophys. Acta1778, 614–630 (2008). ArticleCASPubMed Google Scholar
St Johnston, D. & Ahringer, J. Cell polarity in eggs and epithelia: parallels and diversity. Cell141, 757–774 (2010). ArticleCASPubMed Google Scholar
Tepass, U. The apical polarity protein network in Drosophila epithelial cells: regulation of polarity, junctions, morphogenesis, cell growth, and survival. Annu. Rev. Cell Dev. Biol.28, 655–685 (2012). ArticleCASPubMed Google Scholar
Mellman, I. & Nelson, W. J. Coordinated protein sorting, targeting and distribution in polarized cells. Nature Rev. Mol. Cell Biol.9, 833–845 (2008). ArticleCAS Google Scholar
Apodaca, G., Gallo, L. I. & Bryant, D. M. Role of membrane traffic in the generation of epithelial cell asymmetry. Nature Cell Biol.14, 1235–1243 (2012). ArticleCASPubMed Google Scholar
Rodriguez-Boulan, E., Kreitzer, G. & Musch, A. Organization of vesicular trafficking in epithelia. Nature Rev. Mol. Cell Biol.6, 233–247 (2005). ArticleCAS Google Scholar
Kemphues, K. J., Priess, J. R., Morton, D. G. & Cheng, N. S. Identification of genes required for cytoplasmic localization in early C. elegans embryos. Cell52, 311–320 (1988). Identification of PAR genes by an elegant screen. ArticleCASPubMed Google Scholar
Bilder, D., Schober, M. & Perrimon, N. Integrated activity of PDZ protein complexes regulates epithelial polarity. Nature Cell Biol.5, 53–58 (2003). The first description of genetic interactions between different groups of polarity genes. ArticleCASPubMed Google Scholar
Bilder, D., Li, M. & Perrimon, N. Cooperative regulation of cell polarity and growth by Drosophila tumor suppressors. Science289, 113–116 (2000). ArticleCASPubMed Google Scholar
Laprise, P. et al. Yurt, Coracle, Neurexin IV and the Na+,K+-ATPase form a novel group of epithelial polarity proteins. Nature459, 1141–1145 (2009). Describes the discovery of a new set of genes that is involved in epithelial polarity. ArticleCASPubMed Google Scholar
Jaffe, A. B. & Hall, A. Rho GTPases: biochemistry and biology. Annu. Rev. Cell Dev. Biol.21, 247–269 (2005). ArticleCASPubMed Google Scholar
Nobes, C. D. & Hall, A. Rho, rac, and cdc42 GTPases regulate the assembly of multimolecular focal complexes associated with actin stress fibers, lamellipodia, and filopodia. Cell81, 53–62 (1995). ArticleCASPubMed Google Scholar
Iden, S. & Collard, J. G. Crosstalk between small GTPases and polarity proteins in cell polarization. Nature Rev. Mol. Cell Biol.9, 846–859 (2008). ArticleCAS Google Scholar
Sander, E. E., ten Klooster, J. P., van Delft, S., van der Kammen, R. A. & Collard, J. G. Rac downregulates Rho activity: reciprocal balance between both GTPases determines cellular morphology and migratory behavior. J. Cell Biol.147, 1009–1022 (1999). ArticleCASPubMedPubMed Central Google Scholar
Di Paolo, G. & De Camilli, P. Phosphoinositides in cell regulation and membrane dynamics. Nature443, 651–657 (2006). ArticleCASPubMed Google Scholar
Gassama-Diagne, A. & Payrastre, B. Phosphoinositide signaling pathways: promising role as builders of epithelial cell polarity. Int. Rev. Cell. Mol. Biol.273, 313–343 (2009). ArticleCASPubMed Google Scholar
Krahn, M. P. & Wodarz, A. Phosphoinositide lipids and cell polarity: linking the plasma membrane to the cytocortex. Essays Biochem.53, 15–27 (2012). ArticleCASPubMed Google Scholar
Gassama-Diagne, A. et al. Phosphatidylinositol-3,4,5-trisphosphate regulates the formation of the basolateral plasma membrane in epithelial cells. Nature Cell Biol.8, 963–970 (2006). ArticleCASPubMed Google Scholar
Martin-Belmonte, F. et al. PTEN-mediated apical segregation of phosphoinositides controls epithelial morphogenesis through Cdc42. Cell128, 383–397 (2007). References 33 and 34 provide evidence that phospholipids can directly alter the identity of membrane domains. ArticleCASPubMedPubMed Central Google Scholar
von Stein, W., Ramrath, A., Grimm, A., Muller-Borg, M. & Wodarz, A. Direct association of Bazooka/PAR-3 with the lipid phosphatase PTEN reveals a link between the PAR/aPKC complex and phosphoinositide signaling. Development132, 1675–1686 (2005). ArticleCASPubMed Google Scholar
Zhang, H. et al. Apicobasal domain identities of expanding tubular membranes depend on glycosphingolipid biosynthesis. Nature Cell Biol.13, 1189–1201 (2011). ArticleCASPubMed Google Scholar
Simons, K. & Gerl, M. J. Revitalizing membrane rafts: new tools and insights. Nature Rev. Mol. Cell Biol.11, 688–699 (2010). ArticleCAS Google Scholar
Fairn, G. D., Hermansson, M., Somerharju, P. & Grinstein, S. Phosphatidylserine is polarized and required for proper Cdc42 localization and for development of cell polarity. Nature Cell Biol.13, 1424–1430 (2011). ArticleCASPubMed Google Scholar
Hao, Y. et al. Par3 controls epithelial spindle orientation by aPKC-mediated phosphorylation of apical Pins. Curr. Biol.20, 1809–1818 (2010). ArticleCASPubMedPubMed Central Google Scholar
Smith, C. A. et al. aPKC-mediated phosphorylation regulates asymmetric membrane localization of the cell fate determinant Numb. EMBO J.26, 468–480 (2007). ArticleCASPubMedPubMed Central Google Scholar
Peyre, E. et al. A lateral belt of cortical LGN and NuMA guides mitotic spindle movements and planar division in neuroepithelial cells. J. Cell Biol.193, 141–154 (2011). ArticleCASPubMedPubMed Central Google Scholar
Bergstralh, D. T., Lovegrove, H. E. & St Johnston, D. Discs large links spindle orientation to apical–basal polarity in Drosophila epithelia. Curr. Biol.23, 1707–1712 (2013). ArticleCASPubMedPubMed Central Google Scholar
Benton, R. & Johnston, D. S. Drosophila PAR-1 and 14-3-3 inhibit bazooka/PAR-3 to establish complementary cortical domains in polarized cells. Cell115, 691–704 (2003). One of the first papers to describe the concept of mutual exclusion by polarity proteins in different plasma membrane territories. ArticleCASPubMed Google Scholar
Hurov, J. B., Watkins, J. L. & Piwnica-Worms, H. Atypical PKC phosphorylates PAR-1 kinases to regulate localization and activity. Curr. Biol.14, 736–741 (2004). ArticleCASPubMed Google Scholar
Suzuki, A. et al. aPKC acts upstream of PAR-1b in both the establishment and maintenance of mammalian epithelial polarity. Curr. Biol.14, 1425–1435 (2004). ArticleCASPubMed Google Scholar
Kusakabe, M. & Nishida, E. The polarity-inducing kinase Par-1 controls Xenopus gastrulation in cooperation with 14-3-3 and aPKC. EMBO J.23, 4190–4201 (2004). ArticleCASPubMedPubMed Central Google Scholar
Yamanaka, T. et al. PAR-6 regulates aPKC activity in a novel way and mediates cell-cell contact-induced formation of the epithelial junctional complex. Genes Cells6, 721–731 (2001). ArticleCASPubMed Google Scholar
Graybill, C., Wee, B., Atwood, S. X. & Prehoda, K. E. Partitioning-defective protein 6 (Par-6) activates atypical protein kinase C (aPKC) by pseudosubstrate displacement. J. Biol. Chem.287, 21003–21011 (2012). ArticleCASPubMedPubMed Central Google Scholar
Qin, Y., Meisen, W. H., Hao, Y. & Macara, I. G. Tuba, a Cdc42 GEF, is required for polarized spindle orientation during epithelial cyst formation. J. Cell Biol.189, 661–669 (2010). ArticleCASPubMedPubMed Central Google Scholar
Zihni, C. et al. Dbl3 drives Cdc42 signaling at the apical margin to regulate junction position and apical differentiation. J. Cell Biol.204, 111–127 (2014). ArticleCASPubMedPubMed Central Google Scholar
Morais-de-Sa, E. Mirouse, V. & St Johnston, D. aPKC phosphorylation of Bazooka defines the apical/lateral border in Drosophila epithelial cells. Cell141, 509–523 (2010). ArticleCASPubMedPubMed Central Google Scholar
Krahn, M. P., Buckers, J., Kastrup, L. & Wodarz, A. Formation of a Bazooka-Stardust complex is essential for plasma membrane polarity in epithelia. J. Cell Biol.190, 751–760 (2010). ArticleCASPubMedPubMed Central Google Scholar
Traweger, A. et al. Protein phosphatase 1 regulates the phosphorylation state of the polarity scaffold Par-3. Proc. Natl Acad. Sci. USA105, 10402–10407 (2008). ArticlePubMedPubMed Central Google Scholar
McCaffrey, L. M., Montalbano, J., Mihai, C. & Macara, I. G. Loss of the Par3 polarity protein promotes breast tumorigenesis and metastasis. Cancer Cell22, 601–614 (2012). Evidence that polarity proteins are important tumour growth and invasion suppressors. ArticleCASPubMedPubMed Central Google Scholar
Wodarz, A., Hinz, U., Engelbert, M. & Knust, E. Expression of crumbs confers apical character on plasma membrane domains of ectodermal epithelia of Drosophila. Cell82, 67–76 (1995). ArticleCASPubMed Google Scholar
Chartier, F. J., Hardy, E. J. & Laprise, P. Crumbs controls epithelial integrity by inhibiting Rac1 and PI3K. J. Cell Sci.124, 3393–3398 (2011). ArticleCASPubMed Google Scholar
Pece, S., Chiariello, M., Murga, C. & Gutkind, J. S. Activation of the protein kinase Akt/PKB by the formation of E-cadherin-mediated cell-cell junctions. Evidence for the association of phosphatidylinositol 3-kinase with the E-cadherin adhesion complex. J. Biol. Chem.274, 19347–19351 (1999). ArticleCASPubMed Google Scholar
Ziomek, C. A. & Johnson, M. H. Cell surface interaction induces polarization of mouse 8-cell blastomeres at compaction. Cell21, 935–942 (1980). ArticleCASPubMed Google Scholar
Nelson, W. J. Remodeling epithelial cell organization: transitions between front-rear and apical–basal polarity. Cold Spring Harb. Perspect. Biol.1, a000513 (2009). ArticlePubMedPubMed Central Google Scholar
Mazumdar, A. & Mazumdar, M. How one becomes many: blastoderm cellularization in Drosophila melanogaster. Bioessays24, 1012–1022 (2002). ArticleCASPubMed Google Scholar
Wang, A. Z., Ojakian, G. K. & Nelson, W. J. Steps in the morphogenesis of a polarized epithelium. I. Uncoupling the roles of cell-cell and cell-substratum contact in establishing plasma membrane polarity in multicellular epithelial (MDCK) cysts. J. Cell Sci.95, 137–151 (1990). PubMed Google Scholar
Wang, A. Z., Ojakian, G. K. & Nelson, W. J. Steps in the morphogenesis of a polarized epithelium. II. Disassembly and assembly of plasma membrane domains during reversal of epithelial cell polarity in multicellular epithelial (MDCK) cysts. J. Cell Sci.95, 153–165 (1990). PubMed Google Scholar
O'Brien, L. E. et al. Rac1 orientates epithelial apical polarity through effects on basolateral laminin assembly. Nature Cell Biol.3, 831–838 (2001). ArticleCASPubMed Google Scholar
Bryant, D. M. et al. A molecular network for de novo generation of the apical surface and lumen. Nature Cell Biol.12, 1035–1045 (2010). Characterization of the mechanisms involved in the establishment of the apical–basal polarity axis and lumen in MDCK cysts. ArticleCASPubMed Google Scholar
Akhtar, N. & Streuli, C. H. An integrin-ILK-microtubule network orients cell polarity and lumen formation in glandular epithelium. Nature Cell Biol.15, 17–27 (2013). ArticleCASPubMed Google Scholar
Ozdamar, B. et al. Regulation of the polarity protein Par6 by TGFbeta receptors controls epithelial cell plasticity. Science307, 1603–1609 (2005). Discovery of a key mechanism in EMT. ArticleCASPubMed Google Scholar
Li, R. & Gundersen, G. G. Beyond polymer polarity: how the cytoskeleton builds a polarized cell. Nature Rev. Mol. Cell Biol.9, 860–873 (2008). ArticleCAS Google Scholar
Etienne-Manneville, S. Polarity proteins in migration and invasion. Oncogene27, 6970–6980 (2008). ArticleCASPubMed Google Scholar
Gomes, E. R., Jani, S. & Gundersen, G. G. Nuclear movement regulated by Cdc42, MRCK, myosin, and actin flow establishes MTOC polarization in migrating cells. Cell121, 451–463 (2005). ArticleCASPubMed Google Scholar
Etienne-Manneville, S. & Hall, A. Cdc42 regulates GSK-3β and adenomatous polyposis coli to control cell polarity. Nature421, 753–756 (2003). ArticleCASPubMed Google Scholar
Cohen, D., Brennwald, P. J., Rodriguez-Boulan, E. & Musch, A. Mammalian PAR-1 determines epithelial lumen polarity by organizing the microtubule cytoskeleton. J. Cell Biol.164, 717–727 (2004). ArticleCASPubMedPubMed Central Google Scholar
Lazaro-Dieguez, F. et al. Par1b links lumen polarity with LGN-NuMA positioning for distinct epithelial cell division phenotypes. J. Cell Biol.203, 251–264 (2013). ArticleCASPubMedPubMed Central Google Scholar
Vestweber, D., Gossler, A., Boller, K. & Kemler, R. Expression and distribution of cell adhesion molecule uvomorulin in mouse preimplantation embryos. Dev. Biol.124, 451–456 (1987). ArticleCASPubMed Google Scholar
Adams, C. L., Nelson, W. J. & Smith, S. J. Quantitative analysis of cadherin-catenin-actin reorganization during development of cell-cell adhesion. J. Cell Biol.135, 1899–1911 (1996). ArticleCASPubMed Google Scholar
Drees, F., Pokutta, S., Yamada, S., Nelson, W. J. & Weis, W. I. Alpha-catenin is a molecular switch that binds E-cadherin-beta-catenin and regulates actin-filament assembly. Cell123, 903–915 (2005). ArticleCASPubMedPubMed Central Google Scholar
Yamada, S., Pokutta, S., Drees, F., Weis, W. I. & Nelson, W. J. Deconstructing the cadherin-catenin-actin complex. Cell123, 889–901 (2005). References 78 and 79 propose an alternative to the 'standard' mechanism that links E-cadherin to the actin cytoskeleton. ArticleCASPubMedPubMed Central Google Scholar
McGill, M. A., McKinley, R. F. & Harris, T. J. Independent cadherin-catenin and Bazooka clusters interact to assemble adherens junctions. J. Cell Biol.185, 787–796 (2009). ArticleCASPubMedPubMed Central Google Scholar
Lock, J. G. & Stow, J. L. Rab11 in recycling endosomes regulates the sorting and basolateral transport of E-cadherin. Mol. Biol. Cell16, 1744–1755 (2005). ArticleCASPubMedPubMed Central Google Scholar
Leibfried, A., Fricke, R., Morgan, M. J., Bogdan, S. & Bellaiche, Y. Drosophila Cip4 and WASp define a branch of the Cdc42-Par6-aPKC pathway regulating E-cadherin endocytosis. Curr. Biol.18, 1639–1648 (2008). ArticleCASPubMed Google Scholar
Georgiou, M., Marinari, E., Burden, J. & Baum, B. Cdc42, Par6, and aPKC regulate Arp2/3-mediated endocytosis to control local adherens junction stability. Curr. Biol.18, 1631–1638 (2008). ArticleCASPubMed Google Scholar
Qin, Y., Capaldo, C., Gumbiner, B. M. & Macara, I. G. The mammalian Scribble polarity protein regulates epithelial cell adhesion and migration through E-cadherin. J. Cell Biol.171, 1061–1071 (2005). ArticleCASPubMedPubMed Central Google Scholar
Rajasekaran, A. K., Hojo, M., Huima, T. & Rodriguez-Boulan, E. Catenins and zonula occludens-1 form a complex during early stages in the assembly of tight junctions. J. Cell Biol.132, 451–463 (1996). ArticleCASPubMed Google Scholar
Chen, X. & Macara, I. G. Par-3 controls tight junction assembly through the Rac exchange factor Tiam1. Nature Cell Biol.7, 262–269 (2005). Describes a role for PAR3 in tight junction assembly. ArticleCASPubMed Google Scholar
Wang, Q., Chen, X. W. & Margolis, B. PALS1 regulates E-cadherin trafficking in mammalian epithelial cells. Mol. Biol. Cell18, 874–885 (2007). ArticlePubMedPubMed Central Google Scholar
Fogg, V. C., Liu, C. J. & Margolis, B. Multiple regions of Crumbs3 are required for tight junction formation in MCF10A cells. J. Cell Sci.118, 2859–2869 (2005). ArticleCASPubMed Google Scholar
Matter, K. & Balda, M. S. Biogenesis of tight junctions: the C-terminal domain of occludin mediates basolateral targeting. J. Cell Sci.111, 511–519 (1998). CASPubMed Google Scholar
Roeth, J. F., Sawyer, J. K., Wilner, D. A. & Peifer, M. Rab11 helps maintain apical crumbs and adherens junctions in the Drosophila embryonic ectoderm. PLoS ONE4, e7634 (2009). ArticleCASPubMedPubMed Central Google Scholar
Gumbiner, B. & Simons, K. The role of uvomorulin in the formation of epithelial occluding junctions. Ciba Found. Symp.125, 168–186 (1987). CASPubMed Google Scholar
Nejsum, L. N. & Nelson, W. J. A molecular mechanism directly linking E-cadherin adhesion to initiation of epithelial cell surface polarity. J. Cell Biol.178, 323–335 (2007). ArticleCASPubMedPubMed Central Google Scholar
Jenkins, P. M. et al. E-cadherin polarity is determined by a multifunction motif mediating lateral membrane retention through ankyrin-G and apical–lateral transcytosis through clathrin. J. Biol. Chem.288, 14018–14031 (2013). ArticleCASPubMedPubMed Central Google Scholar
Baas, A. F. et al. Complete polarization of single intestinal epithelial cells upon activation of LKB1 by STRAD. Cell116, 457–466 (2004). Provides evidence that polarization can occur in the absence of cell–cell contacts. ArticleCASPubMed Google Scholar
Buendia, B., Bre, M. H., Griffiths, G. & Karsenti, E. Cytoskeletal control of centrioles movement during the establishment of polarity in Madin-Darby canine kidney cells. J. Cell Biol.110, 1123–1135 (1990). ArticleCASPubMed Google Scholar
Bre, M. H., Kreis, T. E. & Karsenti, E. Control of microtubule nucleation and stability in Madin-Darby canine kidney cells: the occurrence of noncentrosomal, stable detyrosinated microtubules. J. Cell Biol.105, 1283–1296 (1987). ArticleCASPubMed Google Scholar
Oriolo, A. S., Wald, F. A., Canessa, G. & Salas, P. J. GCP6 binds to intermediate filaments: a novel function of keratins in the organization of microtubules in epithelial cells. Mol. Biol. Cell18, 781–794 (2007). ArticleCASPubMedPubMed Central Google Scholar
Meng, W., Mushika, Y., Ichii, T. & Takeichi, M. Anchorage of microtubule minus ends to adherens junctions regulates epithelial cell-cell contacts. Cell135, 948–959 (2008). ArticleCASPubMed Google Scholar
Chausovsky, A., Bershadsky, A. D. & Borisy, G. G. Cadherin-mediated regulation of microtubule dynamics. Nature Cell Biol.2, 797–804 (2000). ArticleCASPubMed Google Scholar
Jaulin, F. & Kreitzer, G. KIF17 stabilizes microtubules and contributes to epithelial morphogenesis by acting at MT plus ends with EB1 and APC. J. Cell Biol.190, 443–460 (2010). ArticleCASPubMedPubMed Central Google Scholar
Reilein, A. & Nelson, W. J. APC is a component of an organizing template for cortical microtubule networks. Nature Cell Biol.7, 463–473 (2005). ArticleCASPubMed Google Scholar
Bacallao, R. et al. The subcellular organization of Madin-Darby canine kidney cells during the formation of a polarized epithelium. J. Cell Biol.109, 2817–2832 (1989). ArticleCASPubMed Google Scholar
Gilbert, T., Le Bivic, A., Quaroni, A. & Rodriguez-Boulan, E. Microtubular organization and its involvement in the biogenetic pathways of plasma membrane proteins in Caco-2 intestinal epithelial cells. J. Cell Biol.113, 275–288 (1991). ArticleCASPubMed Google Scholar
Jaulin, F., Xue, X., Rodriguez-Boulan, E. & Kreitzer, G. Polarization-dependent selective transport to the apical membrane by KIF5B in MDCK cells. Dev. Cell13, 511–522 (2007). ArticleCASPubMedPubMed Central Google Scholar
Perez Bay, A. E. et al. The kinesin KIF16B mediates apical transcytosis of transferrin receptor in AP-1B-deficient epithelia. EMBO J.32, 2125–2139 (2013). ArticleCASPubMedPubMed Central Google Scholar
Efimov, A. et al. Asymmetric CLASP-dependent nucleation of noncentrosomal microtubules at the _trans_-Golgi network. Dev. Cell12, 917–930 (2007). ArticleCASPubMedPubMed Central Google Scholar
Weisz, O. A. & Rodriguez-Boulan, E. Apical trafficking in epithelial cells: signals, clusters and motors. J. Cell Sci.122, 4253–4266 (2009). ArticleCASPubMedPubMed Central Google Scholar
Nance, J. PAR proteins and the establishment of cell polarity during C. elegans development. Bioessays27, 126–135 (2005). ArticleCASPubMed Google Scholar
Shulman, J. M., Benton, R. & St Johnston, D. The Drosophila homolog of C. elegans PAR-1 organizes the oocyte cytoskeleton and directs oskar mRNA localization to the posterior pole. Cell101, 377–388 (2000). ArticleCASPubMed Google Scholar
Tepass, U. FERM proteins in animal morphogenesis. Curr. Opin. Genet. Dev.19, 357–367 (2009). ArticleCASPubMed Google Scholar
ten Klooster, J. P. et al. Mst4 and Ezrin induce brush borders downstream of the Lkb1/Strad/Mo25 polarization complex. Dev. Cell16, 551–562 (2009). ArticleCASPubMed Google Scholar
Hebert, A. M., DuBoff, B., Casaletto, J. B., Gladden, A. B. & McClatchey, A. I. Merlin/ERM proteins establish cortical asymmetry and centrosome position. Genes Dev.26, 2709–2723 (2012). ArticleCASPubMedPubMed Central Google Scholar
Viswanatha, R., Ohouo, P. Y., Smolka, M. B. & Bretscher, A. Local phosphocycling mediated by LOK/SLK restricts ezrin function to the apical aspect of epithelial cells. J. Cell Biol.199, 969–984 (2012). ArticleCASPubMedPubMed Central Google Scholar
Nelson, W. J., Drees, F. & Yamada, S. Interaction of cadherin with the actin cytoskeleton. Novartis Found. Symp.269, 159–168; discussion 168 77, 223–230 (2005). CASPubMed Google Scholar
Erickson, J. W., Zhang, C., Kahn, R. A., Evans, T. & Cerione, R. A. Mammalian Cdc42 is a brefeldin A-sensitive component of the Golgi apparatus. J. Biol. Chem.271, 26850–26854 (1996). ArticleCASPubMed Google Scholar
Kroschewski, R., Hall, A. & Mellman, I. Cdc42 controls secretory and endocytic transport to the basolateral plasma membrane of MDCK cells. Nature Cell Biol.1, 8–13 (1999). ArticleCASPubMed Google Scholar
Musch, A., Cohen, D., Kreitzer, G. & Rodriguez-Boulan, E. cdc42 regulates the exit of apical and basolateral proteins from the _trans_-Golgi network. EMBO J.20, 2171–2179 (2001). ArticleCASPubMedPubMed Central Google Scholar
Salvarezza, S. B. et al. LIM kinase 1 and cofilin regulate actin filament population required for dynamin-dependent apical carrier fission from the _trans_-Golgi network. Mol. Biol. Cell20, 438–451 (2009). ArticleCASPubMedPubMed Central Google Scholar
Hediger, M. A. et al. The ABCs of solute carriers: physiological, pathological and therapeutic implications of human membrane transport proteinsIntroduction. Pflugers Arch.447, 465–468 (2004). ArticleCASPubMed Google Scholar
Scheiffele, P., Peranen, J. & Simons, K. N-glycans as apical sorting signals in epithelial cells. Nature378, 96–98 (1995). ArticleCASPubMed Google Scholar
Yeaman, C. et al. The O-glycosylated stalk domain is required for apical sorting of neurotrophin receptors in polarized MDCK cells. J. Cell Biol.139, 929–940 (1997). References 122 and 123 describe the role ofN- andO-glycans as apical sorting signals. ArticleCASPubMedPubMed Central Google Scholar
Scheiffele, P., Roth, M. G. & Simons, K. Interaction of influenza virus hemagglutinin with sphingolipid-cholesterol membrane rafts via its transmembrane domain. EMBO J.16, 5501–5508 (1997). ArticleCASPubMedPubMed Central Google Scholar
Lisanti, M., Caras, I. P., Davitz, M. A. & Rodriguez-Boulan, E. A glycophospholipid membrane anchor acts as an apical targeting signal in polarized epithelial cells. J. Cell Biol.109, 2145–2156 (1989). ArticleCASPubMed Google Scholar
Powell, S. K., Cunningham, B. A., Edelman, G. M. & Rodriguez-Boulan, E. Transmembrane and GPI anchored forms of NCAM are targeted to opposite domains of a polarized epithelial cell. Nature353, 76–77 (1991). ArticleCASPubMed Google Scholar
Sung, C. H. & Tai, A. W. Rhodopsin trafficking and its role in retinal dystrophies. Int. Rev. Cytol.195, 215–267 (2000). ArticleCASPubMed Google Scholar
Tai, A. W., Chuang, J. Z., Bode, C., Wolfrum, U. & Sung, C. H. Rhodopsin's carboxy-terminal cytoplasmic tail acts as a membrane receptor for cytoplasmic dynein by binding to the dynein light chain Tctex-1. Cell97, 877–887 (1999). ArticleCASPubMed Google Scholar
Tai, A. W., Chuang, J. Z. & Sung, C. H. Cytoplasmic dynein regulation by subunit heterogeneity and its role in apical transport. J. Cell Biol.153, 1499–1509 (2001). ArticleCASPubMedPubMed Central Google Scholar
Takeda, T., Yamazaki, H. & Farquhar, M. G. Identification of an apical sorting determinant in the cytoplasmic tail of megalin. Am. J. Physiol. Cell Physiol.284, C1105–c1113 (2003). ArticleCASPubMed Google Scholar
Marzolo, M. P. et al. Differential distribution of low-density lipoprotein-receptor-related protein (LRP) and megalin in polarized epithelial cells is determined by their cytoplasmic domains. Traffic4, 273–288 (2003). ArticleCASPubMed Google Scholar
Stechly, L. et al. Galectin-4-regulated delivery of glycoproteins to the brush border membrane of enterocyte-like cells. Traffic10, 438–450 (2009). ArticleCASPubMed Google Scholar
Mishra, R., Grzybek, M., Niki, T., Hirashima, M. & Simons, K. Galectin-9 trafficking regulates apical–basal polarity in Madin-Darby canine kidney epithelial cells. Proc. Natl Acad. Sci. USA107, 17633–17638 (2010). References 132 and 133 Identify a role of galectins in apical trafficking, thus consolidating the concept of glycans as apical sorting signals. ArticlePubMedPubMed Central Google Scholar
Puertollano, R. et al. The MAL proteolipid is necessary for normal apical transport and accurate sorting of the influenza virus hemagglutinin in Madin-Darby canine kidney cells. J. Cell Biol.145, 141–151 (1999). ArticleCASPubMedPubMed Central Google Scholar
Paladino, S. et al. Protein oligomerization modulates raft partitioning and apical sorting of GPI-anchored proteins. J. Cell Biol.167, 699–709 (2004). ArticleCASPubMedPubMed Central Google Scholar
Hannan, L. A., Lisanti, M. P., Rodriguez-Boulan, E. & Edidin, M. Correctly sorted molecules of a GPI-anchored protein are clustered and immobile when they arrive at the apical surface of MDCK cells. J. Cell Biol.120, 353–358 (1993). ArticleCASPubMed Google Scholar
Schuck, S. & Simons, K. Polarized sorting in epithelial cells: raft clustering and the biogenesis of the apical membrane. J. Cell Sci.117, 5955–5964 (2004). ArticleCASPubMed Google Scholar
Cheong, K. H., Zacchetti, D., Schneeberger, E. E. & Simons, K. VIP17/MAL, a lipid raft-associated protein, is involved in apical transport in MDCK cells. Proc. Natl Acad. Sci. USA96, 6241–6248 (1999). ArticleCASPubMedPubMed Central Google Scholar
Gonzalez, A. & Rodriguez-Boulan, E. Clathrin and AP1B: key roles in basolateral trafficking through trans-endosomal routes. FEBS Lett.583, 3784–3795 (2009). ArticleCASPubMedPubMed Central Google Scholar
Bonifacino, J. S. & Traub, L. M. Signals for sorting of transmembrane proteins to endosomes and lysosomes. Annu. Rev. Biochem.72, 395–447 (2003). ArticleCASPubMed Google Scholar
Deborde, S. et al. Clathrin is a key regulator of basolateral polarity. Nature452, 719–723 (2008). Reports a major role of clathrin in basolateral trafficking. ArticleCASPubMedPubMed Central Google Scholar
Carvajal-Gonzalez, J. M. et al. Basolateral sorting of the coxsackie and adenovirus receptor through interaction of a canonical YXXPhi motif with the clathrin adaptors AP-1A and AP-1B. Proc. Natl Acad. Sci. USA109, 3820–3825 (2012). ArticlePubMedPubMed Central Google Scholar
Ohno, H. et al. Mu1B, a novel adaptor medium chain expressed in polarized epithelial cells. FEBS Lett.449, 215–220 (1999). ArticleCASPubMed Google Scholar
Folsch, H., Ohno, H., Bonifacino, J. S. & Mellman, I. A novel clathrin adaptor complex mediates basolateral targeting in polarized epithelial cells. Cell99, 189–198 (1999). References 143 and 144 report the discovery of the first basolateral sorting adaptor. ArticleCASPubMed Google Scholar
Rodriguez-Boulan, E., Perez-Bay, A., Schreiner, R. & Gravotta, D. Response: the “tail” of the twin adaptors. Dev. Cell27, 247–248 (2013). ArticleCASPubMedPubMed Central Google Scholar
Guo, X. et al. The adaptor protein-1 mu1B subunit expands the repertoire of basolateral sorting signal recognition in epithelial cells. Dev. Cell27, 353–366 (2013). ArticleCASPubMedPubMed Central Google Scholar
Gan, Y., McGraw, T. E. & Rodriguez-Boulan, E. The epithelial-specific adaptor AP1B mediates post-endocytic recycling to the basolateral membrane. Nature Cell Biol.4, 605–609 (2002). ArticleCASPubMed Google Scholar
Cancino, J. et al. Antibody to AP1B adaptor blocks biosynthetic and recycling routes of basolateral proteins at recycling endosomes. Mol. Biol. Cell18, 4872–4884 (2007). ArticleCASPubMedPubMed Central Google Scholar
Gravotta, D. et al. AP1B sorts basolateral proteins in recycling and biosynthetic routes of MDCK cells. Proc. Natl Acad. Sci. USA104, 1564–1569 (2007). ArticleCASPubMedPubMed Central Google Scholar
Koivisto, U. M., Hubbard, A. L. & Mellman, I. A novel cellular phenotype for familial hypercholesterolemia due to a defect in polarized targeting of LDL receptor. Cell105, 575–585 (2001). ArticleCASPubMed Google Scholar
Diaz, F. et al. Clathrin adaptor AP1B controls adenovirus infectivity of epithelial cells. Proc. Natl Acad. Sci. USA106, 11143–11148 (2009). ArticlePubMedPubMed Central Google Scholar
Schreiner, R. et al. The absence of a clathrin adapter confers unique polarity essential to proximal tubule function. Kidney Int.78, 382–388 (2010). ArticleCASPubMedPubMed Central Google Scholar
Farias, G. G. et al. Signal-mediated, AP-1/clathrin-dependent sorting of transmembrane receptors to the somatodendritic domain of hippocampal neurons. Neuron75, 810–823 (2012). ArticleCASPubMedPubMed Central Google Scholar
Odorizzi, G. & Trowbridge, I. S. Structural requirements for basolateral sorting of the human transferrin receptor in the biosynthetic and endocytic pathways of Madin-Darby canine kidney cells. J. Cell Biol.137, 1255–1264 (1997). ArticleCASPubMedPubMed Central Google Scholar
Deora, A. A. et al. The basolateral targeting signal of CD147 (EMMPRIN) consists of a single leucine and is not recognized by retinal pigment epithelium. Mol. Biol. Cell15, 4148–4165 (2004). ArticleCASPubMedPubMed Central Google Scholar
Simmen, T., Honing, S., Icking, A., Tikkanen, R. & Hunziker, W. AP-4 binds basolateral signals and participates in basolateral sorting in epithelial MDCK cells. Nature Cell Biol.4, 154–159 (2002). ArticleCASPubMed Google Scholar
Nishimura, N., Plutner, H., Hahn, K. & Balch, W. E. The delta subunit of AP-3 is required for efficient transport of VSV-G from the _trans_-Golgi network to the cell surface. Proc. Natl Acad. Sci. USA99, 6755–6760 (2002). ArticleCASPubMedPubMed Central Google Scholar
Kang, R. S. & Folsch, H. ARH cooperates with AP-1B in the exocytosis of LDLR in polarized epithelial cells. J. Cell Biol.193, 51–60 (2011). ArticleCASPubMedPubMed Central Google Scholar
Li, C. et al. Naked2 acts as a cargo recognition and targeting protein to ensure proper delivery and fusion of TGF-α containing exocytic vesicles at the lower lateral membrane of polarized MDCK cells. Mol. Biol. Cell18, 3081–3093 (2007). ArticlePubMedPubMed Central Google Scholar
Yeaman, C. et al. Protein kinase D regulates basolateral membrane protein exit from _trans_-Golgi network. Nature Cell Biol.6, 106–112 (2004). ArticleCASPubMed Google Scholar
Bonazzi, M. et al. CtBP3/BARS drives membrane fission in dynamin-independent transport pathways. Nature Cell Biol.7, 570–580 (2005). ArticleCASPubMed Google Scholar
Thunauer, R. et al. Four-dimensional live imaging of apical biosynthetic trafficking reveals a post-Golgi sorting role of apical endosomal intermediates. Proc. Natl Acad. Sci. USAhttp://dx.doi.org/10.1073/pnas.1304168111 (2014).
Lafont, F., Burkhardt, J. K. & Simons, K. Involvement of microtubule motors in basolateral and apical transport in kidney cells. Nature372, 801–803 (1994). ArticleCASPubMed Google Scholar
Noda, Y. et al. KIFC3, a microtubule minus end-directed motor for the apical transport of annexin XIIIb-associated Triton-insoluble membranes. J. Cell Biol.155, 77–88 (2001). ArticleCASPubMedPubMed Central Google Scholar
Xue, X., Jaulin, F., Espenel, C. & Kreitzer, G. PH-domain-dependent selective transport of p75 by kinesin-3 family motors in non-polarized MDCK cells. J. Cell Sci.123, 1732–1741 (2010). References 101 and 167 show that the same apical plasma membrane protein may be carried by different kinesin motors in non-polarized and in polarized epithelial cells. ArticleCASPubMedPubMed Central Google Scholar
Musch, A., Cohen, D. & Rodriguez-Boulan, E. Myosin II is involved in the production of constitutive transport vesicles from the TGN. J. Cell Biol.138, 291–306 (1997). ArticleCASPubMedPubMed Central Google Scholar
Au, J. S., Puri, C., Ihrke, G., Kendrick-Jones, J. & Buss, F. Myosin VI is required for sorting of AP-1B-dependent cargo to the basolateral domain in polarized MDCK cells. J. Cell Biol.177, 103–114 (2007). ArticleCASPubMedPubMed Central Google Scholar
Roland, J. T. et al. Rab GTPase-Myo5B complexes control membrane recycling and epithelial polarization. Proc. Natl Acad. Sci. USA108, 2789–2794 (2011). ArticlePubMedPubMed Central Google Scholar
Ruemmele, F. M. et al. Loss-of-function of MYO5B is the main cause of microvillus inclusion disease: 15 novel mutations and a CaCo-2 RNAi cell model. Hum. Mutat.31, 544–551 (2010). ArticleCASPubMed Google Scholar
Grindstaff, K. K. et al. Sec6/8 complex is recruited to cell-cell contacts and specifies transport vesicle delivery to the basal-lateral membrane in epithelial cells. Cell93, 731–740 (1998). ArticleCASPubMed Google Scholar
Oztan, A. et al. Exocyst requirement for endocytic traffic directed toward the apical and basolateral poles of polarized MDCK cells. Mol. Biol. Cell18, 3978–3992 (2007). References 172 and 173 report the involvement of the exocyst in apical and basolateral trafficking. ArticleCASPubMedPubMed Central Google Scholar
Kreitzer, G. et al. Three-dimensional analysis of post-Golgi carrier exocytosis in epithelial cells. Nature Cell Biol.5, 126–136 (2003). ArticleCASPubMed Google Scholar
Sharma, N., Low, S. H., Misra, S., Pallavi, B. & Weimbs, T. Apical targeting of syntaxin 3 is essential for epithelial cell polarity. J. Cell Biol.173, 937–948 (2006). ArticleCASPubMedPubMed Central Google Scholar
Reales, E., Sharma, N., Low, S. H., Folsch, H. & Weimbs, T. Basolateral sorting of syntaxin 4 is dependent on its N-terminal domain and the AP1B clathrin adaptor, and required for the epithelial cell polarity. PLoS ONE6, e21181 (2011). ArticleCASPubMedPubMed Central Google Scholar
Zerial, M. & McBride, H. Rab proteins as membrane organizers. Nature Rev. Mol. Cell Biol.2, 107–117 (2001). ArticleCAS Google Scholar
Hutagalung, A. H. & Novick, P. J. Role of Rab GTPases in membrane traffic and cell physiology. Physiol. Rev.91, 119–149 (2011). ArticleCASPubMed Google Scholar
Zeigerer, A. et al. Rab5 is necessary for the biogenesis of the endolysosomal system in vivo. Nature485, 465–470 (2012). RAB5 as a master endosomal organizer. ArticleCASPubMed Google Scholar
Balklava, Z., Pant, S., Fares, H. & Grant, B. D. Genome-wide analysis identifies a general requirement for polarity proteins in endocytic traffic. Nature Cell Biol.9, 1066–1073 (2007). Screen reveals a link between polarity proteins and vesicle traffic. ArticleCASPubMed Google Scholar
Winter, J. F. et al. Caenorhabditis elegans screen reveals role of PAR-5 in RAB-11-recycling endosome positioning and apicobasal cell polarity. Nature Cell Biol.14, 666–676 (2012). ArticleCASPubMed Google Scholar
Harris, K. P. & Tepass, U. Cdc42 and Par proteins stabilize dynamic adherens junctions in the Drosophila neuroectoderm through regulation of apical endocytosis. J. Cell Biol.183, 1129–1143 (2008). ArticleCASPubMedPubMed Central Google Scholar
Zuo, X., Guo, W. & Lipschutz, J. H. The exocyst protein Sec10 is necessary for primary ciliogenesis and cystogenesis in vitro. Mol. Biol. Cell20, 2522–2529 (2009). ArticleCASPubMedPubMed Central Google Scholar
Galvez-Santisteban, M. et al. Synaptotagmin-like proteins control the formation of a single apical membrane domain in epithelial cells. Nature Cell Biol.14, 838–849 (2012). ArticleCASPubMed Google Scholar
Meder, D., Shevchenko, A., Simons, K. & Fullekrug, J. Gp135/podocalyxin and NHERF-2 participate in the formation of a preapical domain during polarization of MDCK cells. J. Cell Biol.168, 303–313 (2005). ArticleCASPubMedPubMed Central Google Scholar
Blankenship, J. T., Fuller, M. T. & Zallen, J. A. The Drosophila homolog of the Exo84 exocyst subunit promotes apical epithelial identity. J. Cell Sci.120, 3099–3110 (2007). ArticleCASPubMed Google Scholar
Fletcher, G. C., Lucas, E. P., Brain, R., Tournier, A. & Thompson, B. J. Positive feedback and mutual antagonism combine to polarize Crumbs in the Drosophila follicle cell epithelium. Curr. Biol.22, 1116–1122 (2012). ArticleCASPubMed Google Scholar
Pocha, S. M., Wassmer, T., Niehage, C., Hoflack, B. & Knust, E. Retromer controls epithelial cell polarity by trafficking the apical determinant Crumbs. Curr. Biol.21, 1111–1117 (2011). ArticleCASPubMed Google Scholar
Grusche, F. A., Richardson, H. E. & Harvey, K. F. Upstream regulation of the hippo size control pathway. Curr. Biol.20, R574–582 (2010). ArticleCASPubMed Google Scholar
Pedersen, L. B. & Rosenbaum, J. L. Intraflagellar transport (IFT) role in ciliary assembly, resorption and signalling. Curr. Top. Dev. Biol.85, 23–61 (2008). ArticleCASPubMed Google Scholar
Hu, Q. et al. A septin diffusion barrier at the base of the primary cilium maintains ciliary membrane protein distribution. Science329, 436–439 (2010). ArticleCASPubMedPubMed Central Google Scholar
Kee, H. L. et al. A size-exclusion permeability barrier and nucleoporins characterize a ciliary pore complex that regulates transport into cilia. Nature Cell Biol.14, 431–437 (2012). References 191 and 192 identify key protein complexes that control ciliary access. ArticleCASPubMed Google Scholar
Wong, S. Y. & Reiter, J. F. The primary cilium at the crossroads of mammalian hedgehog signaling. Curr. Top. Dev. Biol.85, 225–260 (2008). ArticleCASPubMedPubMed Central Google Scholar
Ding, B. S. et al. Inductive angiocrine signals from sinusoidal endothelium are required for liver regeneration. Nature468, 310–315 (2010). ArticleCASPubMedPubMed Central Google Scholar
Ding, B. S. et al. Endothelial-derived angiocrine signals induce and sustain regenerative lung alveolarization. Cell147, 539–553 (2011). References 194 and 195 identify regulatory roles of endothelial cells in epithelial regeneration. ArticleCASPubMedPubMed Central Google Scholar
Nasonkin, I. O. et al. Conditional knockdown of DNA methyltransferase 1 reveals a key role of retinal pigment epithelium integrity in photoreceptor outer segment morphogenesis. Development140, 1330–1341 (2013). ArticleCASPubMedPubMed Central Google Scholar
Ezratty, E. J. et al. A role for the primary cilium in Notch signaling and epidermal differentiation during skin development. Cell145, 1129–1141 (2011). ArticleCASPubMedPubMed Central Google Scholar
Pruliere, G., Cosson, J., Chevalier, S., Sardet, C. & Chenevert, J. Atypical protein kinase C controls sea urchin ciliogenesis. Mol. Biol. Cell22, 2042–2053 (2011). ArticleCASPubMedPubMed Central Google Scholar
Fan, S. et al. Polarity proteins control ciliogenesis via kinesin motor interactions. Curr. Biol.14, 1451–1461 (2004). ArticleCASPubMed Google Scholar
Atwood, S. X., Li, M., Lee, A., Tang, J. Y. & Oro, A. E. GLI activation by atypical protein kinase C iota/lambda regulates the growth of basal cell carcinomas. Nature494, 484–488 (2013). ArticleCASPubMedPubMed Central Google Scholar
Delous, M. et al. Nephrocystin-1 and nephrocystin-4 are required for epithelial morphogenesis and associate with PALS1/PATJ and Par6. Hum. Mol. Genet.18, 4711–4723 (2009). ArticleCASPubMedPubMed Central Google Scholar
Fogelgren, B. et al. The exocyst protein Sec10 interacts with Polycystin-2 and knockdown causes PKD-phenotypes. PLoS Genet.7, e1001361 (2011). ArticleCASPubMedPubMed Central Google Scholar
Perret, E., Lakkaraju, A., Deborde, S., Schreiner, R. & Rodriguez-Boulan, E. Evolving endosomes: how many varieties and why? Curr. Opin. Cell Biol.17, 423–434 (2005). ArticleCASPubMed Google Scholar
Wang, E. et al. Apical and basolateral endocytic pathways of MDCK cells meet in acidic common endosomes distinct from a nearly-neutral apical recycling endosome. Traffic1, 480–493 (2000). ArticleCASPubMed Google Scholar
Brown, P. S. et al. Definition of distinct compartments in polarized Madin-Darby canine kidney (MDCK) cells for membrane-volume sorting, polarized sorting and apical recycling. Traffic1, 124–140 (2000). ArticleCASPubMed Google Scholar
Parton, R. G., Prydz, K., Bomsel, M., Simons, K. & Griffiths, G. Meeting of the apical and basolateral endocytic pathways of the Madin-Darby canine kidney cell in late endosomes. J. Cell Biol.109, 3259–3272 (1989). ArticleCASPubMed Google Scholar
Lakkaraju, A. & Rodriguez-Boulan, E. Itinerant exosomes: emerging roles in cell and tissue polarity. Trends Cell Biol.18, 199–209 (2008). ArticleCASPubMedPubMed Central Google Scholar
Futter, C. E., Connolly, C. N., Cutler, D. F. & Hopkins, C. R. Newly synthesized transferrin receptors can be detected in the endosome before they appear on the cell surface. J. Biol. Chem.270, 10999–11003 (1995). ArticleCASPubMed Google Scholar
Ang, A. L. et al. Recycling endosomes can serve as intermediates during transport from the Golgi to the plasma membrane of MDCK cells. J. Cell Biol.167, 531–543 (2004). ArticleCASPubMedPubMed Central Google Scholar
Cresawn, K. O. et al. Differential involvement of endocytic compartments in the biosynthetic traffic of apical proteins. EMBO J.26, 3737–3748 (2007). ArticleCASPubMedPubMed Central Google Scholar
Buendia, B., Antony, C., Verde, F., Bornens, M. & Karsenti, E. A centrosomal antigen localized on intermediate filaments and mitotic spindle poles. J. Cell Sci.97, 259–271 (1990). PubMed Google Scholar
Musch, A. et al. Mammalian homolog of Drosophila tumor suppressor lethal (2) giant larvae interacts with basolateral exocytic machinery in Madin-Darby canine kidney cells. Mol. Biol. Cell13, 158–168 (2002). ArticleCASPubMed Google Scholar
Lu, H. & Bilder, D. Endocytic control of epithelial polarity and proliferation in Drosophila. Nature Cell Biol.7, 1232–1239 (2005). ArticleCASPubMed Google Scholar
Yamada, S. & Nelson, W. J. Localized zones of Rho and Rac activities drive initiation and expansion of epithelial cell-cell adhesion. J. Cell Biol.178, 517–527 (2007). ArticleCASPubMedPubMed Central Google Scholar
Ivanov, A. I., Hunt, D., Utech, M., Nusrat, A. & Parkos, C. A. Differential roles for actin polymerization and a myosin II motor in assembly of the epithelial apical junctional complex. Mol. Biol. Cell16, 2636–2650 (2005). ArticleCASPubMedPubMed Central Google Scholar
Burkhardt, J. K., Echeverri, C. J., Nilsson, T. & Vallee, R. B. Overexpression of the dynamitin (p50) subunit of the dynactin complex disrupts dynein-dependent maintenance of membrane organelle distribution. J. Cell Biol.139, 469–484 (1997). ArticleCASPubMedPubMed Central Google Scholar
Hoepfner, S. et al. Modulation of receptor recycling and degradation by the endosomal kinesin KIF16B. Cell121, 437–450 (2005). ArticleCASPubMed Google Scholar
Delevoye, C. et al. AP-1 and KIF13A coordinate endosomal sorting and positioning during melanosome biogenesis. J. Cell Biol.187, 247–264 (2009). ArticleCASPubMedPubMed Central Google Scholar
Palazzo, A. F., Cook, T. A., Alberts, A. S. & Gundersen, G. G. mDia mediates Rho-regulated formation and orientation of stable microtubules. Nature Cell Biol.3, 723–729 (2001). ArticleCASPubMed Google Scholar
Ridley, A. J., Paterson, H. F., Johnston, C. L., Diekmann, D. & Hall, A. The small GTP-binding protein rac regulates growth factor-induced membrane ruffling. Cell70, 401–410 (1992). ArticleCASPubMed Google Scholar
Waterman-Storer, C. M., Worthylake, R. A., Liu, B. P., Burridge, K. & Salmon, E. D. Microtubule growth activates Rac1 to promote lamellipodial protrusion in fibroblasts. Nature Cell Biol.1, 45–50 (1999). ArticleCASPubMed Google Scholar
Sheff, D. R., Daro, E. A., Hull, M. & Mellman, I. The receptor recycling pathway contains two distinct populations of early endosomes with different sorting functions. J. Cell Biol.145, 123–139 (1999). ArticleCASPubMedPubMed Central Google Scholar
Bucci, C. et al. Rab5a is a common component of the apical and basolateral endocytic machinery in polarized epithelial cells. Proc. Natl Acad. Sci. USA91, 5061–5065 (1994). ArticleCASPubMedPubMed Central Google Scholar
Miserey-Lenkei, S. et al. Rab and actomyosin-dependent fission of transport vesicles at the Golgi complex. Nature Cell Biol.12, 645–654 (2010). ArticleCASPubMed Google Scholar
Huber, L. A. et al. Rab8, a small GTPase involved in vesicular traffic between the TGN and the basolateral plasma membrane. J. Cell Biol.123, 35–45 (1993). ArticleCASPubMed Google Scholar
Ang, A. L., Folsch, H., Koivisto, U. M., Pypaert, M. & Mellman, I. The Rab8 GTPase selectively regulates AP-1B-dependent basolateral transport in polarized Madin-Darby canine kidney cells. J. Cell Biol.163, 339–350 (2003). ArticleCASPubMedPubMed Central Google Scholar
Kaplan, O. I. et al. The AP-1 clathrin adaptor facilitates cilium formation and functions with RAB-8 in C. elegans ciliary membrane transport. J. Cell Sci.123, 3966–3977 (2010). ArticleCASPubMedPubMed Central Google Scholar
Moritz, O. L. et al. Mutant rab8 Impairs docking and fusion of rhodopsin-bearing post-Golgi membranes and causes cell death of transgenic Xenopus rods. Mol. Biol. Cell12, 2341–2351 (2001). ArticleCASPubMedPubMed Central Google Scholar
Schuck, S. et al. Rab10 is involved in basolateral transport in polarized Madin-Darby canine kidney cells. Traffic8, 47–60 (2007). ArticleCASPubMed Google Scholar
Casanova, J. E. et al. Association of Rab25 and Rab11a with the apical recycling system of polarized Madin-Darby canine kidney cells. Mol. Biol. Cell10, 47–61 (1999). ArticleCASPubMedPubMed Central Google Scholar
Leung, S. M., Ruiz, W. G. & Apodaca, G. Sorting of membrane and fluid at the apical pole of polarized Madin-Darby canine kidney cells. Mol. Biol. Cell11, 2131–2150 (2000). ArticleCASPubMedPubMed Central Google Scholar
Su, T. et al. A kinase cascade leading to Rab11-FIP5 controls transcytosis of the polymeric immunoglobulin receptor. Nature Cell Biol.12, 1143–1153 (2010). ArticleCASPubMed Google Scholar
Nokes, R. L., Fields, I. C., Collins, R. N. & Folsch, H. Rab13 regulates membrane trafficking between TGN and recycling endosomes in polarized epithelial cells. J. Cell Biol.182, 845–853 (2008). ArticleCASPubMedPubMed Central Google Scholar
Hunziker, W. & Peters, P. J. Rab17 localizes to recycling endosomes and regulates receptor-mediated transcytosis in epithelial cells. J. Biol. Chem.273, 15734–15741 (1998). ArticleCASPubMed Google Scholar
Zacchi, P. et al. Rab17 regulates membrane trafficking through apical recycling endosomes in polarized epithelial cells. J. Cell Biol.140, 1039–1053 (1998). ArticleCASPubMedPubMed Central Google Scholar
Tzaban, S. et al. The recycling and transcytotic pathways for IgG transport by FcRn are distinct and display an inherent polarity. J. Cell Biol.185, 673–684 (2009). ArticleCASPubMedPubMed Central Google Scholar
Chih, B. et al. A ciliopathy complex at the transition zone protects the cilia as a privileged membrane domain. Nature Cell Biol.14, 61–72 (2011). ArticleCASPubMed Google Scholar
Ostrowski, M. et al. Rab27a and Rab27b control different steps of the exosome secretion pathway. Nature Cell Biol.12, 19–30 (2010). ArticleCASPubMed Google Scholar
Mikawa, T., Poh, A. M., Kelly, K. A., Ishii, Y. & Reese, D. E. Induction and patterning of the primitive streak, an organizing center of gastrulation in the amniote. Dev Dyn.229, 422–32 (2004). ArticlePubMed Google Scholar