From GTP and G proteins to TRPC channels: a personal account (original) (raw)
Butcher RW, Sneyd JG, Park CR, Sutherland EW Jr (1966) Effect of insulin on adenosine 3′,5′-monophosphate in the rat epididymal fat pad. J Biol Chem 241:1651–1653 CASPubMed Google Scholar
Birnbaumer L, Rodbell M (1969) Adenyl cyclase in fat cells. II hormone receptors. J Biol Chem 244:3477–3482 CASPubMed Google Scholar
Birnbaumer L, Pohl SL, Rodbell M (1969) Adenyl cyclase in fat cells. 1. Properties and the effects of adrenocorticotropin and fluoride. J Biol Chem 244:3468–3476 CASPubMed Google Scholar
Rodbell M, Krans HMJ, Pohl SL, Birnbaumer L (1971) The glucagon-sensitive adenyl cyclase system in plasma membranes of rat liver. IV. Effects of guanylnucleotides on binding of 125I-glucagon. J Biol Chem 246:1872–1876 CASPubMed Google Scholar
Rodbell M, Birnbaumer L, Pohl SL, Krans HMJ (1971) The glucagon-sensitive adenyl cyclase system in plasma membranes of rat liver. V an obligatory role of guanylnucleotides in glucagon action. J Biol Chem 246:1877–1882 CASPubMed Google Scholar
Birnbaumer L (1990) Transduction of receptor signal into modulation of effector activity by G proteins: the first 20 years or so. FASEB J 4:3178–3188 CASPubMed Google Scholar
Cassel D, Selinger Z (1977) Mechanism of adenylate cyclase activation by cholera toxin: inhibition of GTP hydrolysis at the regulatory site. Proc Natl Acad Sci U S A 74:3307–3311 ArticlePubMed CentralCASPubMed Google Scholar
Londos C, Salomon Y, Lin MC, Harwood JP, Schramm M, Wolff J, Rodbell M (1974) 5′-Guanylylimidodiphosphate, a potent activator of adenylate cyclase systems in eukaryotic cells. Proc Natl Acad Sci U S A 71:3087–3090 ArticlePubMed CentralCASPubMed Google Scholar
Pfeuffer T (1977) GTP-binding proteins in membranes and the control of adenylate cyclase activity. J Biol Chem 252:7224–7234 CASPubMed Google Scholar
Ross EM, Gilman AG (1977) Resolution of some components of adenylate cyclase necessary for catalytic activity. J Biol Chem 252:6966–6969 CASPubMed Google Scholar
Birnbaumer L (1973) Hormone-sensitive adenylyl cyclases. Useful models for studying hormone receptor functions in cell-free systems. Biochim Biophys Acta 300:129–158 ArticleCASPubMed Google Scholar
Hildebrandt JD, Sekura RD, Codina J, Iyengar R, Manclark CR, Birnbaumer L (1983) Stimulation and inhibition of adenylyl cyclases mediated by distinct regulatory proteins. Nature 302:706–709 ArticleCASPubMed Google Scholar
Jakobs KH, Saur W, Schultz G (1978) Inhibition of platelet adenylate cyclase by epinephrine requires GTP. FEBS Lett 85:167–170 ArticleCASPubMed Google Scholar
Londos C, Cooper DM, Schlegel W, Rodbell M (1978) Adenosine analogs inhibit adipocyte adenylate cyclase by a GTP-dependent process: basis for actions of adenosine and methylxanthines on cyclic AMP production and lipolysis. Proc Natl Acad Sci U S A 75:5362–5366 ArticlePubMed CentralCASPubMed Google Scholar
Katada T, Ui M (1982) Direct modification of the membrane adenylate cyclase system by islet-activating protein due to ADP-ribosylation of a membrane protein. Proc Natl Acad Sci U S A 79:3129–3133 ArticlePubMed CentralCASPubMed Google Scholar
Codina J, Hildebrandt J, Iyengar R, Birnbaumer L, Sekura RD, Manclark CR (1983) Pertussis toxin substrate, the putative Ni component of adenylyl cyclases, is an alpha beta heterodimer regulated by guanine nucleotide and magnesium. Proc Natl Acad Sci U S A 80:4276–4280 ArticlePubMed CentralCASPubMed Google Scholar
Birnbaumer L (1990) Transduction of receptor signal into modulation of effector activity by G proteins: the first 20 years or so. FASEB J 4:3178–3188 CASPubMed Google Scholar
Birnbaumer L (1993) A new look at receptor mediated activation of a G protein. In: Dickey B, Birnbaumer L (eds) GTPases in Biology, Handb Exp Pharm vol 108/I Springer pp. 31–38 Chapter 3
Hildebrandt JD, Codina J, Risinger R, Birnbaumer L (1984) Identification of a gamma subunit associated with the adenylyl cyclase regulatory proteins Ns and Ni. J Biol Chem 259:2039–2042 CASPubMed Google Scholar
Sunyer T, Codina J, Birnbaumer L (1984) GTP hydrolysis by pure Ni, the inhibitory regulatory component of adenylyl cyclases. J Biol Chem 259:15447–15451 CASPubMed Google Scholar
Pang IH, Sternweis PC (1989) Isolation of the alpha subunits of GTP-binding regulatory proteins by affinity chromatography with immobilized beta gamma subunits. Proc Natl Acad Sci U S A 86:7814–7818 ArticlePubMed CentralCASPubMed Google Scholar
Taylor SJ, Smith JA, Exton JH (1990) Purification from bovine liver membranes of a guanine nucleotide-dependent activator of phosphoinositide-specific phospholipase C. Immunologic identification as a novel G-protein alpha subunit. J Biol Chem 265:17150–17156 CASPubMed Google Scholar
Strathmann M, Simon MI (1990) G protein diversity: a distinct class of alpha subunits is present in vertebrates and invertebrates. Proc Natl Acad Sci U S A 87:9113–9117 ArticlePubMed CentralCASPubMed Google Scholar
Smrcka AV, Hepler JR, Brown KO, Sternweis PC (1992) Regulation of polyphosphoinositide-specific phospholipase C activity by purified Gq. Science 251:804–807 Article Google Scholar
Taylor SJ, Exton JH (1991) Two alpha subunits of the Gq class of G proteins stimulate phosphoinositide phospholipase C-beta 1 activity. FEBS Lett 286:214–216 ArticleCASPubMed Google Scholar
Wu DQ, Lee CH, Rhee SG, Simon MI (1992) Activation of phospholipase C by the alpha subunits of the Gq and G11 proteins in transfected Cos-7 cells. J Biol Chem 267:1811–1817 CASPubMed Google Scholar
Camps M, Hou C, Sidiropoulos D, Stock JB, Jakobs KH, Gierschik P (1992) Stimulation of phospholipase C by guanine-nucleotide-binding protein beta gamma subunits. Eur J Biochem 206:821–831 ArticleCASPubMed Google Scholar
Katz A, Wu D, Simon MI (1992) Subunits beta gamma of heterotrimeric G protein activate beta 2 isoform of phospholipase C. Nature 360:686–689 ArticleCASPubMed Google Scholar
Taussig R, Tang WJ, Hepler JR, Gilman AG (1994) Distinct patterns of bidirectional regulation of mammalian adenylyl cyclases. J Biol Chem 269:6093–6100 CASPubMed Google Scholar
Hescheler J, Rosenthal W, Trautwein W, Schultz G (1987) The GTP-binding protein, Go, regulates neuronal calcium channels. Nature 325:445–447 ArticleCASPubMed Google Scholar
Logothetis DE, Kurachi Y, Galper J, Neer EJ, Clapham DE (1987) The beta gamma subunits of GTP-binding proteins activate the muscarinic K+ channel in heart. Nature 325:321–326 ArticleCASPubMed Google Scholar
Birnbaumer L (2007) The discovery of signal transduction by G proteins: a personal account and an overview of the initial findings and contributions that led to our present understanding. Biochim Biophys Acta 1768:756–771 ArticlePubMed CentralCASPubMed Google Scholar
Birnbaumer L (2007) Expansion of signal transduction by G proteins. The second 15 years or so: from 3 to 16 alpha subunits plus betagamma dimers. Biochim Biophys Acta 1768:772–793 ArticlePubMed CentralCASPubMed Google Scholar
Iyengar R, Birnbaumer L (1982) Hormone receptor modulates the regulatory component of adenylyl cyclase by reducing its requirement for Mg2+ and enhancing its extent of activation by guanine nucleotides. Proc Natl Acad Sci U S A 79:5179–5183 ArticlePubMed CentralCASPubMed Google Scholar
Raw AS, Coleman DE, Gilman AG, Sprang SR (1997) Structural and biochemical characterization of the GTPgammaS-, GDP.Pi-, and GDP-bound forms of a GTPase-deficient Gly42 →Val mutant of Gialpha1. Biochemistry 36:15660–15669 ArticleCASPubMed Google Scholar
Liao CF, Themmen AP, Joho R, Barberis C, Birnbaumer M, Birnbaumer L (1989) Molecular cloning and expression of a fifth muscarinic acetylcholine receptor. J Biol Chem 264:7328–7337 CASPubMed Google Scholar
Levy FO, Gudermann T, Birnbaumer M, Kaumann AJ, Birnbaumer L (1992) Molecular cloning of a human gene (S31) encoding a novel serotonin receptor mediating inhibition of adenylyl cyclase. FEBS Lett 296:201–206 ArticleCASPubMed Google Scholar
Levy FO, Gudermann T, Perez-Reyes E, Birnbaumer M, Kaumann AJ, Birnbaumer L (1992) Molecular cloning of a human serotonin receptor (S12) with a pharmacological profile resembling that of the 5-HT1D subtype. J Biol Chem 267:7553–7562 CASPubMed Google Scholar
Bjarnadóttir TK, Gloriam DE, Hellstrand SH, Kristiansson H, Fredriksson R, Schiöth HB (2006) Comprehensive repertoire and phylogenetic analysis of the G protein-coupled receptors in human and mouse. Genomics 88:263–273 ArticlePubMedCAS Google Scholar
Hokin MR, Hokin LE (1953) Enzyme secretion and the incorporation of P32 into phospholipides of pancreas slices. J Biol Chem 203:967–977 CASPubMed Google Scholar
Michell RH (1992) Inositol lipids in cellular signalling mechanisms. Trends Biochem Sci 17:274–276 ArticleCASPubMed Google Scholar
Streb H, Irvine RF, Berridge MJ, Schulz I (1983) Release of Ca2+ from a nonmitochondrial intracellular store in pancreatic acinar cells by inositol-1,4,5-trisphosphate. Nature 306:67–69 ArticleCASPubMed Google Scholar
Miyawaki A, Furuichi T, Maeda N, Mikoshiba K (1990) Expressed cerebellar-type inositol 1,4,5-trisphosphate receptor, P400, has calcium release activity in a fibroblast L cell line. Neuron 5:11–18 ArticleCASPubMed Google Scholar
Ross CA, Danoff SK, Schell MJ, Snyder SH, Ullrich A (1992) Three additional inositol 1,4,5-trisphosphate receptors: molecular cloning and differential localization in brain and peripheral tissues. Proc Natl Acad Sci U S A 89:4265–4269 ArticlePubMed CentralCASPubMed Google Scholar
Gudermann T, Birnbaumer M, Birnbaumer L (1992) Evidence for dual coupling of the murine luteinizing hormone receptor to adenylyl cyclase and phosphoinositide breakdown and Ca2+ mobilization. Studies with the cloned murine luteinizing hormone receptor expressed in L cells. J Biol Chem 267:4479–4488 CASPubMed Google Scholar
Zhu X, Gilbert S, Birnbaumer M, Birnbaumer L (1994) Dual signaling potential is common among Gs-coupled receptors and dependent on receptor density. Mol Pharmacol 46:460–469 CASPubMed Google Scholar
Grynkiewicz G, Poenie M, Tsien RY (1985) A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem 260:3440–3450 CASPubMed Google Scholar
Liao CF, Schilling WP, Birnbaumer M, Birnbaumer L (1990) Cellular responses to stimulation of the M5 muscarinic acetylcholine receptor as seen in murine L cells. J Biol Chem 265:11273–11284 CASPubMed Google Scholar
Zhu X, Chu PB, Peyton M, Birnbaumer L (1995) Molecular cloning of a widely expressed human homologue for the Drosophila trp gene. FEBS Lett 373:193–198 ArticleCASPubMed Google Scholar
Zhu X, Jiang M, Peyton M, Boulay G, Hurst R, Stefani E, Birnbaumer L (1996) trp, a novel mammalian gene family essential for agonist-activated capacitative Ca2+ entry. Cell 85:661–671 ArticleCASPubMed Google Scholar
Okada T, Shimizu S, Wakamori M, Maeda A, Kurosaki T, Takada N, Imoto K, Mori Y (1998) Molecular cloning and functional characterization of a novel receptor-activated TRP Ca2+ channel from mouse brain. J Biol Chem 273:10279–10287 ArticleCASPubMed Google Scholar
Hoth M, Penner R (1992) Depletion of intracellular calcium stores activates a calcium current in mast cells. Nature 355:353–356 ArticleCASPubMed Google Scholar
Philipp S, Cavalié A, Freichel M, Wissenbach U, Zimmer S, Trost C, Marquart A, Murakami M, Flockerzi V (1996) A mammalian capacitative calcium entry channel homologous to drosophila TRP and TRPL. EMBO J 15:6166–6171 PubMed CentralCASPubMed Google Scholar
Philipp S, Hambrecht J, Braslavski L, Schroth G, Freichel M, Murakami M, Cavalié A, Flockerzi V (1998) A novel capacitative calcium entry channel expressed in excitable cells. EMBO J 17:4274–4282 ArticlePubMed CentralCASPubMed Google Scholar
Penna A, Demuro A, Yeromin AV, Zhang SL, Safrina O, Parker I, Cahalan MD (2008) The CRAC channel consists of a tetramer formed by Stim-induced dimerization of Orai dimers. Nature 456:116–120 ArticlePubMed CentralCASPubMed Google Scholar
Hou X, Pedi L, Diver MM, Long SB (2012) Crystal structure of the calcium release-activated calcium channel Orai. Science 338:1308–1313 ArticlePubMed CentralCASPubMed Google Scholar
Zitt C, Zobel A, Obukhov AG, Harteneck C, Kalkbrenner F, Lückhoff A, Schultz G (1996) Cloning and functional expression of a human Ca2+-permeable cation channel activated by calcium store depletion. Neuron 16:1189–1196 ArticleCASPubMed Google Scholar
Zeng W, Yuan JP, Kim MS, Choi YJ, Huang GN, Worley PF, Muallem S (2008) STIM1 gates TRPC channels, but not Orai1, by electrostatic interaction. Mol Cell 32:439–448 ArticlePubMed CentralCASPubMed Google Scholar
Shi J, Ju M, Abramowitz J, Large WA, Birnbaumer L, Albert AP (2012) TRPC1 proteins confer PKC and phosphoinositol activation on native heteromeric TRPC1/C5 channels in vascular smooth muscle: comparative study of wild-type and TRPC1-/- mice. FASEB J 26:409–419 ArticlePubMed CentralCASPubMed Google Scholar
Wu MM, Buchanan J, Luik RM, Lewis RS (2006) Ca2+ store depletion causes STIM1 to accumulate in ER regions closely associated with the plasma membrane. J Cell Biol 174:803–813 ArticlePubMed CentralCASPubMed Google Scholar
Luik RM, Wu MM, Buchanan J, Lewis RS (2006) The elementary unit of store-operated Ca2+ entry: local activation of CRAC channels by STIM1 at ER-plasma membrane junctions. J Cell Biol 174:815–825 ArticlePubMed CentralCASPubMed Google Scholar
Yuan JP, Zeng W, Dorwart MR, Choi YJ, Worley PF, Muallem S (2009) SOAR and the polybasic STIM1 domains gate and regulate Orai channels. Nat Cell Biol 11:337–343 ArticlePubMed CentralCASPubMed Google Scholar
Kim MS, Zeng W, Yuan JP, Shin DM, Worley PF, Muallem S (2009) Native store-operated Ca2+ influx requires the channel function of Orai1 and TRPC1. J Biol Chem 284:9733–9741 ArticlePubMed CentralCASPubMed Google Scholar
Lee KP, Choi S, Hong JH, Ahuja M, Graham S, Ma R, So I, Shin DM, Muallem S, Yuan JP (2014) Molecular determinants mediating gating of transient receptor potential canonical (TRPC) channels by stromal interaction molecule 1 (STIM1). J Biol Chem 289:6372–6382 ArticlePubMed CentralCASPubMed Google Scholar
Asanov A, Sampieri A, Moreno C, Pacheco J, Salgado A, Sherry R, Vaca L (2015) Combined single channel and single molecule detection identifies subunit composition of STIM1-activated transient receptor potential canonical (TRPC) channels. Cell Calcium 57:1–13 ArticleCASPubMed Google Scholar
Liao Y, Erxleben C, Yildirim E, Abramowitz J, Armstrong DL, Birnbaumer L (2007) Orai proteins interact with TRPC channels and confer responsiveness to store depletion. Proc Natl Acad Sci U S A 104:4682–4687 ArticlePubMed CentralCASPubMed Google Scholar
Liao Y, Erxleben C, Abramowitz J, Flockerzi V, Zhu MX, Armstrong DL, Birnbaumer L (2008) Functional interactions among Orai1, TRPCs, and STIM1 suggest a STIM-regulated heteromeric Orai/TRPC model for SOCE/Icrac channels. Proc Natl Acad Sci U S A 105:2895–2900 ArticlePubMed CentralCASPubMed Google Scholar
Liao Y, Abramowitz J, Birnbaumer L (2014) The TRPC family of TRP channels: roles inferred (mostly) from knockout mice and relationship to ORAI proteins. Handb Exp Pharmacol 223:1055–1075 ArticleCASPubMed Google Scholar
Seth M, Zhang ZS, Mao L, Graham V, Burch J, Stiber J, Tsiokas L, Winn M, Abramowitz J, Rockman HA et al (2009) TRPC1 channels are critical for hypertrophic signaling in the heart. Circ Res 105:1023–1030 ArticlePubMed CentralCASPubMed Google Scholar
Liu X, Cheng KT, Bandyopadhyay BC, Pani B, Dietrich A, Paria BC, Swaim WD, Beech D, Yildrim E, Singh BB et al (2007) Attenuation of store-operated Ca2+ current impairs salivary gland fluid secretion in TRPC1(-/-) mice. Proc Natl Acad Sci U S A 104:17542–17547 ArticlePubMed CentralCASPubMed Google Scholar
Selvaraj S, Sun Y, Watt JA, Wang S, Lei S, Birnbaumer L, Singh BB (2012) Neurotoxin-induced ER stress in mouse dopaminergic neurons involves downregulation of TRPC1 and inhibition of AKT/mTOR signaling. J Clin Invest 122:1354–1367 ArticlePubMed CentralCASPubMed Google Scholar
Yildirim E, Carey MA, Card JW, Dietrich A, Flake GP, Zhang Y, Bradbury JA, Rebolloso Y, Germolec DR, Morgan DL et al (2012) Severely blunted allergen-induced pulmonary Th2-cell response and lung hyperresponsiveness in type 1 transient receptor potential channel (TRPC1)-deficient mice. Am J Physiol Lung Cell Mol Physiol 303:L539–L549 ArticlePubMed CentralCASPubMed Google Scholar
Zanou N, Shapovalov G, Louis M, Tajeddine N, Gallo C, Van Schoor M, Anguish I, Cao ML, Schakman O, Dietrich A et al (2009) Role of TRPC1 channel in skeletal muscle function. Am J Physiol Cell Physiol 298:C149–C162 ArticlePubMed CentralPubMedCAS Google Scholar
Stowers L, Holy TE, Meister M, Dulac C, Koentges G (2002) Loss of sex discrimination and male-male aggression in mice deficient for TRP2. Science 295:1493–1500 ArticleCASPubMed Google Scholar
Liman ER, Innan H (2003) Relaxed selective pressure on an essential component of pheromone transduction in primate evolution. Proc Natl Acad Sci U S A 100:3328–3332 ArticlePubMed CentralCASPubMed Google Scholar
Hartmann J, Dragicevic E, Adelsberger H, Henning HA, Sumser M, Abramowitz J, Blum R, Dietrich A, Freichel M, Flockerzi V et al (2008) TRPC3 channels are required for synaptic transmission and motor coordination. Neuron 59:392–398 ArticlePubMed CentralCASPubMed Google Scholar
Suresh Babu S, Wojtowicz A, Freichel M, Birnbaumer L, Hecker M, Cattaruzza M (2012) Mechanism of stretch-induced activation of the mechanotransducer zyxin in vascular endothelial cells. Sci Signal 5:ra91 PubMed Google Scholar
Tano JY, Smedlund K, Lee R, Abramowitz J, Birnbaumer L, Vazquez G (2011) Impairment of survival signaling and efferocytosis in TRPC3-deficient macrophages. Biochem Biophys Res Commun 410:643–647 ArticleCASPubMed Google Scholar
Senadheera S, Kim Y, Grayson TH, Toemoe S, Kochukov MY, Abramowitz J, Housley GD, Bertrand RL, Chadha PS, Bertrand PP et al (2012) Cardiovasc Res 95:439–447 ArticlePubMed CentralCASPubMed Google Scholar
Kim MS, Lee KP, Yang D, Shin DM, Abramowitz J, Kiyonaka S, Birnbaumer L, Mori Y, Muallem S (2011) Genetic and pharmacologic inhibition of the Ca2+ influx channel TRPC3 protects secretory epithelia from Ca2+-dependent toxicity. Gastroenterology 140:2107–2115 ArticlePubMed CentralCASPubMed Google Scholar
Freichel M, Suh SH, Pfeifer A, Schweig U, Trost C, Weissgerber P, Biel M, Philipp S, Freise D, Droogmans G et al (2001) Lack of an endothelial store-operated Ca2+ current impairs agonist-dependent vasorelaxation in TRP4-/- mice. Nat Cell Biol 3:121–127 ArticleCASPubMed Google Scholar
Munsch T, Freichel M, Flockerzi V, Pape HC (2003) Contribution of transient receptor potential channels to the control of GABA release from dendrites. Proc Natl Acad Sci U S A 100:16065–16070 ArticlePubMed CentralCASPubMed Google Scholar
Tai C, Hines DJ, Choi HB, MacVicar BA (2011) Plasma membrane insertion of TRPC5 channels contributes to the cholinergic plateau potential in hippocampal CA1 pyramidal neurons. Hippocampus 21:958–967 CASPubMed Google Scholar
Zimmermann K, Lennerz JK, Hein A, Link AS, Kaczmarek JS, Delling M, Uysal S, Pfeifer JD, Riccio A, Clapham DE (2011) Transient receptor potential cation channel, subfamily C, member 5 (TRPC5) is a cold-transducer in the peripheral nervous system. Proc Natl Acad Sci U S A 108:18114–18119 ArticlePubMed CentralCASPubMed Google Scholar
Welsh DG, Morielli AD, Nelson MT, Brayden JE (2003) Transient receptor potential channels regulate myogenic tone of resistance arteries. Circ Res 90:248–250 Article Google Scholar
Dietrich A, Mederos y Schnitzler M, Gollasch M, Gross V, Storch U, Dubrovska G, Obst M, Yildirim E, Salanova B, Kalwa H et al (2005) Increased vascular smooth muscle contractility in TRPC6-/- mice. Mol Cell Biol 25:6980–6989 ArticlePubMed CentralCASPubMed Google Scholar
Eckel J, Lavin PJ, Finch EA, Mukerji N, Burch J, Gbadegesin R, Wu G, Bowling B, Byrd A, Hall G et al (2001) TRPC6 enhances angiotensin II-induced albuminuria. J Am Soc Nephrol 22:526–535 ArticleCAS Google Scholar
Davis J, Burr AR, Davis G, Birnbaumer L, Molkentin JD (2012) A novel TRPC6-dependent pathway for myofibroblast transdifferentiation and wound healing in vivo. Dev Cell 23:705–715 ArticlePubMed CentralCASPubMed Google Scholar
Tauseef M, Knezevic N, Chava KR, Smith M, Sukriti S, Gianaris S, Obukhov AG, Vogel SM, Schraufnagel SE, Dietrich A et al (2012) Cation channel TRPC6 activation of TLR4 in endothelial cells mediates sepsis-induced acute lung injury. J Exp Med 209:1953–1968 ArticlePubMed CentralCASPubMed Google Scholar
Weissmann N, Sydykov A, Kalwa H, Storch U, Fuchs B, Mederos y Schnitzler M, Brandes RP, Grimminger F, Meissner M, Freichel M et al (2012) Activation of TRPC6 channels is essential for lung ischaemia-reperfusion induced oedema in mice. Nat Commun 3:649 ArticlePubMed CentralPubMedCAS Google Scholar
Phelan KD, Shwe UT, Abramowitz J, Birnbaumer L, Zheng F (2014) Critical role of canonical transient receptor potential channel 7 in initiation of seizures. Proc Natl Acad Sci U S A 111:11533–11538 ArticlePubMed CentralCASPubMed Google Scholar
Phelan KD, Mock MM, Kretz O, Shwe UT, Kozhemyakin M, Greenfield LJ, Dietrich A, Birnbaumer L, Freichel M, Flockerzi V et al (2012) Heteromeric canonical transient receptor potential 1 and 4 channels play a critical role in epileptiform burst firing and seizure-induced neurodegeneration. Mol Pharmacol 81:384–392 ArticlePubMed CentralCASPubMed Google Scholar
Camacho Londoño JE, Tian Q, Hammer K, Schröder L, Camacho Londoño J, Reil JC, He T, Oberhofer M, Mannebach S, Mathar I et al (2015) A background Ca2+ entry pathway mediated by TRPC1/TRPC4 is critical for development of pathological cardiac remodelling. Eur Heart J Jun 11
Stroh O, Freichel M, Kretz O, Birnbaumer L, Hartmann J, Egger V (2012) NMDA receptor-dependent synaptic activation of TRPC channels in olfactory bulb granule cells. J Neurosci 32:5737–5746 ArticlePubMed CentralCASPubMed Google Scholar
Xue T, Do MT, Riccio A, Jiang Z, Hsieh J, Wang HC, Merbs SL, Welsbie DS, Yoshioka T, Weissgerber P et al (2011) Melanopsin signalling in mammalian iris and retina. Nature 479:67–73 ArticlePubMed CentralCASPubMed Google Scholar
Quick K, Zhao J, Eijkelkamp N, Linley JE, Rugiero F, Cox JJ, Raouf R, Gringhuis M, Sexton JE, Abramowitz J et al (2012) TRPC3 and TRPC6 are essential for normal mechanotransduction in subsets of sensory neurons and cochlear hair cells. Open Biol 2:120068 ArticlePubMed CentralPubMedCAS Google Scholar
Harper MT, Camacho Londoño JE, Quick K, Camacho Londoño J, Flockerz V, Philipp S, Birnbaumer L, Freichel M, Poole AW (2013) Transient receptor potential channels function as a coincidence signal detector mediating phosphatidylserine exposure. Sci Signal 6:ra80 Google Scholar
Onohara N, Nishida M, Inoue R, Kobayashi H, Sumimoto H, Sato Y, Mori Y, Nagao T, Kurose H (2006) TRPC3 and TRPC6 are essential for angiotensin II-induced cardiac hypertrophy. EMBO J 25:5305–5316 ArticlePubMed CentralCASPubMed Google Scholar
Seo K, Rainer PP, Shalkey Hahn V, Lee DI, Jo SH, Andersen A, Liu T, Xu X, Willette RN, Lepore JJ et al (2014) Combined TRPC3 and TRPC6 blockade by selective small-molecule or genetic deletion inhibits pathological cardiac hypertrophy. Proc Natl Acad Sci U S A 111:1551–1556 ArticlePubMed CentralCASPubMed Google Scholar
Tsvilovskyy VV, Zholos AV, Aberle T, Philipp SE, Dietrich A, Zhu MX, Birnbaumer L, Freichel M, Flockerzi V (2009) Deletion of TRPC4 and TRPC6 in mice impairs smooth muscle contraction and intestinal motility in vivo. Gastroenterology 137:1415–1424 ArticlePubMed CentralPubMedCAS Google Scholar
Cheng KT, Liu X, Ong HL, Swaim W, Ambudkar IS (2011) Local Ca2+ entry via Orai1 regulates plasma membrane recruitment of TRPC1 and controls cytosolic Ca2+ signals required for specific cell functions. PLoS Biol 9:e1001025 ArticlePubMed CentralCASPubMed Google Scholar