Schmidt H, Schmidt H, Schmidt H et al (2007) HLA-DR15 haplotype and multiple sclerosis: a HuGE review. Am J Epidemiol 165:1097–1109. doi:10.1093/aje/kwk118 ArticlePubMed Google Scholar
International Multiple Sclerosis Genetics Consortium, Wellcome Trust Case Control Consortium 2, Sawcer S et al (2011) Genetic risk and a primary role for cell-mediated immune mechanisms in multiple sclerosis. Nature 476:214–219. doi:10.1038/nature10251 ArticleCAS Google Scholar
Siegal FP, Kadowaki N, Shodell M et al (1999) The nature of the principal type 1 interferon-producing cells in human blood. Science (New York, NY) 284:1835–1837 ArticleCAS Google Scholar
Cella M, Jarrossay D, Facchetti F et al (1999) Plasmacytoid monocytes migrate to inflamed lymph nodes and produce large amounts of type I interferon. Nat Med 5:919–923. doi:10.1038/11360 ArticleCASPubMed Google Scholar
Merad M, Sathe P, Helft J et al (2013) The dendritic cell lineage: ontogeny and function of dendritic cells and their subsets in the steady state and the inflamed setting. Annu Rev Immunol 31:563–604. doi:10.1146/annurev-immunol-020711-074950 ArticleCASPubMed Google Scholar
Hettinger J, Richards DM, Hansson J et al (2013) Origin of monocytes and macrophages in a committed progenitor. Nat Immunol 14:821–830. doi:10.1038/ni.2638 ArticleCASPubMed Google Scholar
Coombes JL, Siddiqui KRR, Arancibia-Cárcamo CV et al (2007) A functionally specialized population of mucosal CD103+ DCs induces Foxp3+ regulatory T cells via a TGF-beta and retinoic acid-dependent mechanism. J Exp Med 204:1757–1764. doi:10.1084/jem.20070590 ArticleCASPubMedPubMed Central Google Scholar
Satpathy AT, Briseño CG, Lee JS et al (2013) Notch2-dependent classical dendritic cells orchestrate intestinal immunity to attaching-and-effacing bacterial pathogens. Nat Immunol 14:937–948. doi:10.1038/ni.2679 ArticleCASPubMedPubMed Central Google Scholar
Schlitzer A, Sivakamasundari V, Chen J et al (2015) Identification of cDC1- and cDC2-committed DC progenitors reveals early lineage priming at the common DC progenitor stage in the bone marrow. Nat Immunol 16:718–728. doi:10.1038/ni.3200 ArticleCASPubMed Google Scholar
Gomez Perdiguero E, Klapproth K, Schulz C et al (2015) Tissue-resident macrophages originate from yolk-sac-derived erythro-myeloid progenitors. Nature 518:547–551. doi:10.1038/nature13989 ArticlePubMedCAS Google Scholar
Ahrens S, Zelenay S, Sancho D et al (2012) F-actin is an evolutionarily conserved damage-associated molecular pattern recognized by DNGR-1, a receptor for dead cells. Immunity 36:635–645. doi:10.1016/j.immuni.2012.03.008 ArticleCASPubMed Google Scholar
Iborra S, Izquierdo HM, Martínez-López M et al (2012) The DC receptor DNGR-1 mediates cross-priming of CTLs during vaccinia virus infection in mice. J Clin Invest 122:1628–1643. doi:10.1172/JCI60660 ArticleCASPubMedPubMed Central Google Scholar
Schraml BU, van Blijswijk J, Zelenay S et al (2013) Genetic tracing via DNGR-1 expression history defines dendritic cells as a hematopoietic lineage. Cell 154:843–858. doi:10.1016/j.cell.2013.07.014 ArticleCASPubMed Google Scholar
Meredith MM, Liu K, Darrasse-Jèze G et al (2012) Expression of the zinc finger transcription factor zDC (Zbtb46, Btbd4) defines the classical dendritic cell lineage. J Exp Med 209:1153–1165. doi:10.1084/jem.20112675 ArticleCASPubMedPubMed Central Google Scholar
Meredith MM, Liu K, Kamphorst AO et al (2012) Zinc finger transcription factor zDC is a negative regulator required to prevent activation of classical dendritic cells in the steady state. J Exp Med 209:1583–1593. doi:10.1084/jem.20121003 ArticleCASPubMedPubMed Central Google Scholar
International Multiple Sclerosis Genetics Consortium, Lill CM, Schjeide B-MM et al (2013) MANBA, CXCR5, SOX8, RPS6KB1 and ZBTB46 are genetic risk loci for multiple sclerosis. Brain 136:1778–1782. doi:10.1093/brain/awt101 ArticlePubMed Central Google Scholar
Croxford AL, Lanzinger M, Hartmann FJ et al (2015) The cytokine GM-CSF drives the inflammatory signature of CCR2(+) monocytes and licenses autoimmunity. Immunity 43:502–514. doi:10.1016/j.immuni.2015.08.010 ArticleCASPubMed Google Scholar
Ji Q, Castelli L, Goverman JM (2013) MHC class I-restricted myelin epitopes are cross-presented by tip-DCs that promote determinant spreading to CD8+ T cells. Nat Immunol 14:254–261. doi:10.1038/ni.2513 ArticleCASPubMedPubMed Central Google Scholar
Tamoutounour S, Tamoutounour S, Tamoutounour S et al (2012) CD64 distinguishes macrophages from dendritic cells in the gut and reveals the Th1-inducing role of mesenteric lymph node macrophages during colitis. Eur J Immunol 42:3150–3166. doi:10.1002/eji.201242847 ArticleCASPubMed Google Scholar
King IL, Kroenke MA, Segal BM (2010) GM-CSF-dependent, CD103+ dermal dendritic cells play a critical role in Th effector cell differentiation after subcutaneous immunization. J Exp Med 207:953–961. doi:10.1084/jem.20091844 ArticleCASPubMedPubMed Central Google Scholar
Berer K, Mues M, Koutrolos M et al (2011) Commensal microbiota and myelin autoantigen cooperate to trigger autoimmune demyelination. Nature 479:538–541. doi:10.1038/nature10554 ArticleCASPubMed Google Scholar
Van Zwam M, Huizinga R, Heijmans N et al (2009) Surgical excision of CNS-draining lymph nodes reduces relapse severity in chronic-relapsing experimental autoimmune encephalomyelitis. J Pathol 217:543–551. doi:10.1002/path.2476 ArticlePubMed Google Scholar
Furtado GC, Marcondes MCG, Latkowski J-A et al (2008) Swift entry of myelin-specific T lymphocytes into the central nervous system in spontaneous autoimmune encephalomyelitis. J Immunol 181:4648–4655 ArticleCASPubMedPubMed Central Google Scholar
Yogev N, Frommer F, Lukas D et al (2012) Dendritic cells ameliorate autoimmunity in the CNS by controlling the homeostasis of PD-1 receptor(+) regulatory T cells. Immunity 37:264–275. doi:10.1016/j.immuni.2012.05.025 ArticleCASPubMed Google Scholar
Van Zwam M, Huizinga R, Melief M-J et al (2009) Brain antigens in functionally distinct antigen-presenting cell populations in cervical lymph nodes in MS and EAE. J Mol Med 87:273–286. doi:10.1007/s00109-008-0421-4 ArticleCASPubMed Google Scholar
Jung S, Unutmaz D, Wong P et al (2002) In vivo depletion of CD11c + dendritic cells abrogates priming of CD8+ T cells by exogenous cell-associated antigens. Immunity 17:211–220 ArticleCASPubMedPubMed Central Google Scholar
Isaksson M, Lundgren BA, Ahlgren KM et al (2012) Conditional DC depletion does not affect priming of encephalitogenic Th cells in EAE. Eur J Immunol 42:2555–2563. doi:10.1002/eji.201142239 ArticleCASPubMed Google Scholar
Paterka M, Voss JO, Werr J et al (2016) Dendritic cells tip the balance towards induction of regulatory T cells upon priming in experimental autoimmune encephalomyelitis. J Autoimmun. doi:10.1016/j.jaut.2016.09.008 PubMed Google Scholar
Klein L, Hinterberger M, Wirnsberger G, Kyewski B (2009) Antigen presentation in the thymus for positive selection and central tolerance induction. Nat Rev Immunol 9:833–844. doi:10.1038/nri2669 ArticleCASPubMed Google Scholar
Loschko J, Schlitzer A, Dudziak D et al (2011) Antigen delivery to plasmacytoid dendritic cells via BST2 induces protective T cell-mediated immunity. J Immunol 186:6718–6725. doi:10.4049/jimmunol.1004029 ArticleCASPubMed Google Scholar
Hawiger D, Masilamani RF, Bettelli E et al (2004) Immunological unresponsiveness characterized by increased expression of CD5 on peripheral T cells induced by dendritic cells in vivo. Immunity 20:695–705. doi:10.1016/j.immuni.2004.05.002 ArticleCASPubMed Google Scholar
Lutz MB, Schuler G (2002) Immature, semi-mature and fully mature dendritic cells: which signals induce tolerance or immunity? Trends Immunol 23:445–449 ArticleCASPubMed Google Scholar
Mascanfroni ID, Yeste A, Vieira SM et al (2013) IL-27 acts on DCs to suppress the T cell response and autoimmunity by inducing expression of the immunoregulatory molecule CD39. Nat Immunol 14:1054–1063. doi:10.1038/ni.2695 ArticleCASPubMedPubMed Central Google Scholar
Yamashima T (1988) Functional ultrastructure of cerebrospinal fluid drainage channels in human arachnoid villi. Neurosurgery 22:633–641 ArticleCASPubMed Google Scholar
Kido DK, Gomez DG, Pavese AM, Potts DG (1976) Human spinal arachnoid villi and granulations. Neuroradiology 11:221–228 ArticleCASPubMed Google Scholar
Kida S, Kida S, Pentazis A et al (1993) CSF drains directly from the subarachnoid space into nasal lymphatics in the rat. Anatomy, histology and immunological significance. Neuropathol Appl Neurobiol 19:480–488. doi:10.1111/j.1365-2990.1993.tb00476.x ArticleCASPubMed Google Scholar
Johnston M, Zakharov A, Papaiconomou C et al (2004) Evidence of connections between cerebrospinal fluid and nasal lymphatic vessels in humans, non-human primates and other mammalian species. Cerebrospinal Fluid Res 1:2. doi:10.1186/1743-8454-1-2 ArticlePubMedPubMed Central Google Scholar
Andres KH, Düring von M, Muszynski K, Schmidt RF (1987) Nerve fibres and their terminals of the dura mater encephali of the rat. Anat Embryol 175:289–301 ArticleCASPubMed Google Scholar
Furukawa M, Shimoda H, Kajiwara T et al (2008) Topographic study on nerve-associated lymphatic vessels in the murine craniofacial region by immunohistochemistry and electron microscopy. Biomed Res 29:289–296 ArticleCASPubMed Google Scholar
Brinker T, Lüdemann W, Berens von Rautenfeld D, Samii M (1997) Dynamic properties of lymphatic pathways for the absorption of cerebrospinal fluid. Acta Neuropathol 94:493–498 ArticleCASPubMed Google Scholar
Kaminski M, Bechmann I, Pohland M et al (2012) Migration of monocytes after intracerebral injection at entorhinal cortex lesion site. J Leukoc Biol 92:31–39. doi:10.1189/jlb.0511241 ArticleCASPubMed Google Scholar
Prodinger C, Bunse J, Krüger M et al (2011) CD11c-expressing cells reside in the juxtavascular parenchyma and extend processes into the glia limitans of the mouse nervous system. Acta Neuropathol 121:445–458. doi:10.1007/s00401-010-0774-y ArticleCASPubMed Google Scholar
Bulloch K, Miller MM, Gal-Toth J et al (2008) CD11c/EYFP transgene illuminates a discrete network of dendritic cells within the embryonic, neonatal, adult, and injured mouse brain. J Comp Neurol 508:687–710. doi:10.1002/cne.21668 ArticlePubMed Google Scholar
Anandasabapathy N, Victora GD, Meredith M et al (2011) Flt3L controls the development of radiosensitive dendritic cells in the meninges and choroid plexus of the steady-state mouse brain. J Exp Med 208:1695–1705. doi:10.1084/jem.20102657 ArticleCASPubMedPubMed Central Google Scholar
del Pilar MM, Cravens PD, Winger R et al (2008) Decrease in the numbers of dendritic cells and CD4+ T cells in cerebral perivascular spaces due to natalizumab. Arch Neurol 65:1596–1603. doi:10.1001/archneur.65.12.noc80051 Article Google Scholar
Jain P, Coisne C, Enzmann G et al (2010) Alpha4beta1 integrin mediates the recruitment of immature dendritic cells across the blood-brain barrier during experimental autoimmune encephalomyelitis. J Immunol 184:7196–7206. doi:10.4049/jimmunol.0901404 ArticleCASPubMedPubMed Central Google Scholar
Yednock TA, Cannon C, Fritz LC et al (1992) Prevention of experimental autoimmune encephalomyelitis by antibodies against alpha 4 beta 1 integrin. Nature 356:63–66. doi:10.1038/356063a0 ArticleCASPubMed Google Scholar
Polman CH, O'connor PW, Havrdova E et al (2006) A randomized, placebo-controlled trial of natalizumab for relapsing multiple sclerosis. N Engl J Med 354:899–910. doi:10.1056/NEJMoa044397 ArticleCASPubMed Google Scholar
Hickey WF, Kimura H (1988) Perivascular microglial cells of the CNS are bone marrow-derived and present antigen in vivo. Science (New York, NY) 239:290–292 ArticleCAS Google Scholar
Greter M, Heppner FL, Lemos MP et al (2005) Dendritic cells permit immune invasion of the CNS in an animal model of multiple sclerosis. Nat Med 11:328–334. doi:10.1038/nm1197 ArticleCASPubMed Google Scholar
Hesske L, Vincenzetti C, Heikenwalder M et al (2010) Induction of inhibitory central nervous system-derived and stimulatory blood-derived dendritic cells suggests a dual role for granulocyte-macrophage colony-stimulating factor in central nervous system inflammation. Brain 133:1637–1654. doi:10.1093/brain/awq081 ArticlePubMed Google Scholar
Bartholomäus I, Kawakami N, Odoardi F et al (2009) Effector T cell interactions with meningeal vascular structures in nascent autoimmune CNS lesions. Nature 462:94–98. doi:10.1038/nature08478 ArticlePubMedCAS Google Scholar
Schläger C, Körner H, Krueger M et al (2016) Effector T-cell trafficking between the leptomeninges and the cerebrospinal fluid. Nature 530:349–353. doi:10.1038/nature16939 ArticlePubMedCAS Google Scholar
Mcmahon EJ, Bailey SL, Castenada CV et al (2005) Epitope spreading initiates in the CNS in two mouse models of multiple sclerosis. Nat Med 11:335–339. doi:10.1038/nm1202 ArticleCASPubMed Google Scholar
Ifergan I, Kebir H, Bernard M et al (2008) The blood-brain barrier induces differentiation of migrating monocytes into Th17-polarizing dendritic cells. Brain 131:785–799. doi:10.1093/brain/awm295 ArticlePubMed Google Scholar
Mildner A, Mack M, Schmidt H et al (2009) CCR2 + Ly-6Chi monocytes are crucial for the effector phase of autoimmunity in the central nervous system. Brain 132:2487–2500. doi:10.1093/brain/awp144 ArticlePubMed Google Scholar
Comabella M, Lunemann JD, Rio J et al (2009) A type I interferon signature in monocytes is associated with poor response to interferon-beta in multiple sclerosis. Brain 132:3353–3365. doi:10.1093/brain/awp228 ArticleCASPubMed Google Scholar
McRae BL, Semnani RT, Hayes MP, Van Seventer GA (1998) Type I IFNs inhibit human dendritic cell IL-12 production and Th1 cell development. J Immunol 160:4298–4304 CASPubMed Google Scholar
Biron CA (2001) Interferons alpha and beta as immune regulators—a new look. Immunity 14:661–664 ArticleCASPubMed Google Scholar
Longman RS, Braun D, Pellegrini S et al (2007) Dendritic-cell maturation alters intracellular signaling networks, enabling differential effects of IFN-alpha/beta on antigen cross-presentation. Blood 109:1113–1122. doi:10.1182/blood-2006-05-023465 ArticleCASPubMed Google Scholar
De Waal MR, Abrams J, Bennett B et al (1991) Interleukin 10(IL-10) inhibits cytokine synthesis by human monocytes: an autoregulatory role of IL-10 produced by monocytes. J Exp Med 174:1209–1220 Article Google Scholar
Hino A, Nariuchi H (1996) Negative feedback mechanism suppresses interleukin-12 production by antigen-presenting cells interacting with T helper 2 cells. Eur J Immunol 26:623–628. doi:10.1002/eji.1830260318 ArticleCASPubMed Google Scholar
Liu B-S, Janssen HLA, Boonstra A (2012) Type I and III interferons enhance IL-10R expression on human monocytes and macrophages, resulting in IL-10-mediated suppression of TLR-induced IL-12. Eur J Immunol 42:2431–2440. doi:10.1002/eji.201142360 ArticleCASPubMed Google Scholar
Stasiolek M, Bayas A, Kruse N et al (2006) Impaired maturation and altered regulatory function of plasmacytoid dendritic cells in multiple sclerosis. Brain 129:1293–1305. doi:10.1093/brain/awl043 ArticlePubMed Google Scholar
Lande R, Gafa V, Serafini B et al (2008) Plasmacytoid dendritic cells in multiple sclerosis: intracerebral recruitment and impaired maturation in response to interferon-beta. J Neuropathol Exp Neurol 67:388–401. doi:10.1097/NEN.0b013e31816fc975 ArticleCASPubMed Google Scholar
Weber MS, Prodhomme T, Youssef S et al (2007) Type II monocytes modulate T cell-mediated central nervous system autoimmune disease. Nat Med 13:935–943. doi:10.1038/nm1620 ArticleCASPubMed Google Scholar
Wuest SC, Edwan JH, Martin JF et al (2011) A role for interleukin-2 trans-presentation in dendritic cell-mediated T cell activation in humans, as revealed by daclizumab therapy. Nat Med 17:604–609. doi:10.1038/nm.2365 ArticleCASPubMedPubMed Central Google Scholar
Schneider-Hohendorf T, Rossaint J, Mohan H et al (2014) VLA-4 blockade promotes differential routes into human CNS involving PSGL-1 rolling of T cells and MCAM-adhesion of TH17 cells. J Exp Med 211:1833–1846. doi:10.1084/jem.20140540 ArticleCASPubMedPubMed Central Google Scholar
Stüve O, Marra CM, Jerome KR et al (2006) Immune surveillance in multiple sclerosis patients treated with natalizumab. Ann Neurol 59:743–747. doi:10.1002/ana.20858 ArticlePubMedCAS Google Scholar
Baschant U, Frappart L, Rauchhaus U et al (2011) Glucocorticoid therapy of antigen-induced arthritis depends on the dimerized glucocorticoid receptor in T cells. Proc Natl Acad Sci U S A 108:19317–19322. doi:10.1073/pnas.1105857108 ArticleCASPubMedPubMed Central Google Scholar
Ohnmacht C, Pullner A, King SBS et al (2009) Constitutive ablation of dendritic cells breaks self-tolerance of CD4 T cells and results in spontaneous fatal autoimmunity. J Exp Med 206:549–559. doi:10.1084/jem.20082394 ArticleCASPubMedPubMed Central Google Scholar
Swiecki M, Wang Y, Riboldi E et al (2014) Cell depletion in mice that express diphtheria toxin receptor under the control of SiglecH encompasses more than plasmacytoid dendritic cells. J Immunol 192:4409–4416. doi:10.4049/jimmunol.1303135 ArticleCASPubMedPubMed Central Google Scholar
Clausen BE, Burkhardt C, Reith W et al (1999) Conditional gene targeting in macrophages and granulocytes using LysMcre mice. Transgenic Res 8:265–277 ArticleCASPubMed Google Scholar
Curtin JF, King GD, Barcia C et al (2006) Fms-like tyrosine kinase 3 ligand recruits plasmacytoid dendritic cells to the brain. J Immunol 176:3566–3577 ArticleCASPubMedPubMed Central Google Scholar
Bailey-Bucktrout SL, Caulkins SC, Goings G et al (2008) Cutting edge: central nervous system plasmacytoid dendritic cells regulate the severity of relapsing experimental autoimmune encephalomyelitis. J Immunol 180:6457–6461 ArticleCASPubMedPubMed Central Google Scholar
Galicia-Rosas G, Pikor N, Schwartz JA et al (2012) A sphingosine-1-phosphate receptor 1-directed agonist reduces central nervous system inflammation in a plasmacytoid dendritic cell-dependent manner. J Immunol 189:3700–3706. doi:10.4049/jimmunol.1102261 ArticleCASPubMed Google Scholar
Quintana E, Fernández A, Velasco P et al (2015) DNGR-1(+) dendritic cells are located in meningeal membrane and choroid plexus of the noninjured brain. Glia 63:2231–2248. doi:10.1002/glia.22889 ArticlePubMed Google Scholar
Dando SJ, Naranjo Golborne C, Chinnery HR et al (2016) A case of mistaken identity: CD11c-eYFP(+) cells in the normal mouse brain parenchyma and neural retina display the phenotype of microglia, not dendritic cells. Glia 64:1331–1349. doi:10.1002/glia.23005 ArticlePubMed Google Scholar
D’Agostino PM, Kwak C, Vecchiarelli HA et al (2012) Viral-induced encephalitis initiates distinct and functional CD103+ CD11b+ brain dendritic cell populations within the olfactory bulb. Proc Natl Acad Sci U S A 109:6175–6180. doi:10.1073/pnas.1203941109 ArticlePubMedPubMed Central Google Scholar
Magliozzi R, Howell O, Vora A et al (2007) Meningeal B-cell follicles in secondary progressive multiple sclerosis associate with early onset of disease and severe cortical pathology. Brain 130:1089–1104. doi:10.1093/brain/awm038 ArticlePubMed Google Scholar
Pikor NB, Astarita JL, Summers-Deluca L et al (2015) Integration of Th17- and Lymphotoxin-derived signals initiates meningeal-resident stromal cell remodeling to propagate neuroinflammation. Immunity 43:1160–1173. doi:10.1016/j.immuni.2015.11.010 ArticleCASPubMed Google Scholar