- Weigel, P. H., Hascall, V. C. & Tammi, M. Hyaluronan synthases. J. Biol. Chem. 272, 13997–40000 (1997).
CAS PubMed Google Scholar
- Tammi, M. I., Day, A. J. & Turley, E. A. Hyaluronan and homeostasis: a balancing act. J. Biol. Chem. 277, 4581–4584 (2002).
CAS PubMed Google Scholar
- Csoka, A. B., Frost, G. I. & Stern, R. The six hyaluronidase-like genes in the human and mouse genomes. Matrix Biol. 20, 499–508 (2001).
CAS PubMed Google Scholar
- Balazs, E. A. & Denlinger, J. L. Clinical uses of hyaluronan. Ciba Found. Symp. 143, 265–280 (1989).
CAS PubMed Google Scholar
- Toole, B. P. Hyaluronan in morphogenesis. Semin. Cell. Dev. Biol. 12, 79–87 (2001).
CAS PubMed Google Scholar
- Kinzler, K. W. & Vogelstein, B. Landscaping the cancer terrain. Science 280, 1036–1037 (1998).
CAS PubMed Google Scholar
- Hanahan, D. & Weinberg, R. A. The hallmarks of cancer. Cell 100, 57–70 (2000).
CAS PubMed Google Scholar
- Turley, E. A., Noble, P. W. & Bourguignon, L. Y. Signaling properties of hyaluronan receptors. J. Biol. Chem. 277, 4589–4592 (2002).
CAS PubMed Google Scholar
- Bissell, M. J. & Radisky, D. Putting tumours in context. Nature Rev. Cancer 1, 46–54 (2001).
CAS Google Scholar
- Weaver, V. M. & Gilbert, P. Watch thy neighbor: cancer is a communal affair. J. Cell Sci. 117, 1287–1290 (2004).
CAS PubMed Google Scholar
- Knudson, W., Biswas, C., Li, X. Q., Nemec, R. E. & Toole, B. P. The role and regulation of tumour-associated hyaluronan. Ciba Found. Symp. 143, 150–159 (1989).
CAS PubMed Google Scholar
- Toole, B. P., Biswas, C. & Gross, J. Hyaluronate and invasiveness of the rabbit V2 carcinoma. Proc. Natl Acad. Sci. USA 76, 6299–6303 (1979). One of the earliest papers to show a relation between hyaluronan and invasive tumour growth. This and later papers (see also references 13–15) highlighted the stromal localization of hyaluronan and the effect of tumour–stroma interactions on hyaluronan production.
CAS PubMed PubMed Central Google Scholar
- Bertrand, P. et al. Hyaluronan (hyaluronic acid) and hyaluronectin in the extracellular matrix of human breast carcinomas: comparison between invasive and non-invasive areas. Int. J. Cancer 52, 1–6 (1992).
CAS PubMed Google Scholar
- Knudson, W., Biswas, C. & Toole, B. P. Interactions between human tumor cells and fibroblasts stimulate hyaluronate synthesis. Proc. Natl Acad. Sci. USA 81, 6767–6771 (1984).
CAS PubMed PubMed Central Google Scholar
- Asplund, T., Versnel, M. A., Laurent, T. C. & Heldin, P. Human mesothelioma cells produce factors that stimulate the production of hyaluronan by mesothelial cells and fibroblasts. Cancer Res. 53, 388–392 (1993).
CAS PubMed Google Scholar
- Kimata, K. et al. Increased synthesis of hyaluronic acid by mouse mammary carcinoma cell variants with high metastatic potential. Cancer Res. 43, 1347–1354 (1983).
CAS PubMed Google Scholar
- Zhang, L., Underhill, C. B. & Chen, L. Hyaluronan on the surface of tumor cells is correlated with metastatic behavior. Cancer Res. 55, 428–433 (1995).
CAS PubMed Google Scholar
- Calabro, A., Oken, M. M., Hascall, V. C. & Masellis, A. M. Characterization of hyaluronan synthase expression and hyaluronan synthesis in bone marrow mesenchymal progenitor cells: predominant expression of HAS1 mRNA and up-regulated hyaluronan synthesis in bone marrow cells derived from multiple myeloma patients. Blood 100, 2578–2585 (2002).
CAS PubMed Google Scholar
- Toole, B. P., Wight, T. N. & Tammi, M. Hyaluronan–cell interactions in cancer and vascular disease. J. Biol. Chem. 277, 4593–4596 (2002).
CAS PubMed Google Scholar
- Anttila, M. A. et al. High levels of stromal hyaluronan predict poor disease outcome in epithelial ovarian cancer. Cancer Res. 60, 150–155 (2000).
CAS PubMed Google Scholar
- Auvinen, P. et al. Hyaluronan in peritumoral stroma and malignant cells associates with breast cancer spreading andpredicts survival. Am. J. Pathol. 156, 529–536 (2000).
CAS PubMed PubMed Central Google Scholar
- Vignal, P., Meslet, M. R., Romeo, J. M. & Feuilhade, F. Sonographic morphology of infiltrating breast carcinoma: relationship with the shape of the hyaluronan extracellular matrix. J. Ultrasound Med. 21, 532–538 (2002).
PubMed Google Scholar
- Pirinen, R. et al. Prognostic value of hyaluronan expression in non-small-cell lung cancer: increased stromal expression indicates unfavorable outcome in patients with adenocarcinoma. Int. J. Cancer 95, 12–17 (2001).
CAS PubMed Google Scholar
- Posey, J. T. et al. Evaluation of the prognostic potential of hyaluronic acid and hyaluronidase (HYAL1) for prostate cancer. Cancer Res. 63, 2638–2644 (2003).
CAS PubMed Google Scholar
- Lipponen, P. et al. High stromal hyaluronan level is associated with poor differentiation and metastasis in prostate cancer. Eur. J. Cancer 37, 849–856 (2001).
CAS PubMed Google Scholar
- Lokeshwar, V. B. et al. Stromal and epithelial expression of tumor markers hyaluronic acid and HYAL1 hyaluronidase in prostate cancer. J. Biol. Chem. 276, 11922–11932 (2001).
CAS PubMed Google Scholar
- Ropponen, K. et al. Tumor cell-associated hyaluronan as an unfavorable prognostic factor in colorectal cancer. Cancer Res. 58, 342–347 (1998).
CAS PubMed Google Scholar
- Setala, L. P. et al. Hyaluronan expression in gastric cancer cells is associated with local and nodal spread and reduced survival rate. Br. J. Cancer 79, 1133–1138 (1999).
CAS PubMed PubMed Central Google Scholar
- Masellis-Smith, A., Belch, A. R., Mant, M. J., Turley, E. A. & Pilarski, L. M. Hyaluronan-dependent motility of B cells and leukemic plasma cells in blood, but not of bone marrow plasma cells, in multiple myeloma: alternate use of receptor for hyaluronan-mediated motility (RHAMM) and CD44. Blood 87, 1891–1899 (1996).
CAS PubMed Google Scholar
- Crainie, M., Belch, A. R., Mant, M. J. & Pilarski, L. M. Overexpression of the receptor for hyaluronan-mediated motility (RHAMM) characterizes the malignant clone in multiple myeloma: identification of three distinct RHAMM variants. Blood 93, 1684–1696 (1999).
CAS PubMed Google Scholar
- Aziz, K. A., Till, K. J., Zuzel, M. & Cawley, J. C. Involvement of CD44–hyaluronan interaction in malignant cell homing and fibronectin synthesis in hairy cell leukemia. Blood 96, 3161–3167 (2000).
CAS PubMed Google Scholar
- Lokeshwar, V. B. et al. Bladder tumor markers for monitoring recurrence and screening comparison of hyaluronic acid-hyaluronidase and BTA-Stat tests. Cancer 95, 61–72 (2002).
PubMed Google Scholar
- Delpech, B. et al. Serum hyaluronan (hyaluronic acid) in breast cancer patients. Int. J. Cancer 46, 388–390 (1990).
CAS PubMed Google Scholar
- Franzmann, E. J. et al. Expression of tumor markers hyaluronic acid and hyaluronidase (HYAL1) in head and neck tumors. Int. J. Cancer 106, 438–445 (2003).
CAS PubMed Google Scholar
- Karjalainen, J. M. et al. Reduced level of CD44 and hyaluronan associated with unfavorable prognosis in clinical stage I cutaneous melanoma. Am. J. Pathol. 157, 957–965 (2000).
CAS PubMed PubMed Central Google Scholar
- Karvinen, S., Kosma, V. M., Tammi, M. I. & Tammi, R. Hyaluronan, CD44 and versican in epidermal keratinocyte tumours. Br. J. Dermatol. 148, 86–94 (2003).
CAS PubMed Google Scholar
- Kosaki, R., Watanabe, K. & Yamaguchi, Y. Overproduction of hyaluronan by expression of the hyaluronan synthase Has2 enhances anchorage-independent growth and tumorigenicity. Cancer Res. 59, 1141–1145 (1999). The first study showing that molecular manipulation of hyaluronan production affects tumour progression in an animal model. This study was followed by several important papers showing that upregulation of hyaluronan synthesis stimulates — and down-regulation inhibits — tumour progression (see also references 38–42).
CAS PubMed Google Scholar
- Itano, N., Sawai, T., Miyaishi, O. & Kimata, K. Relationship between hyaluronan production and metastatic potential of mouse mammary carcinoma cells. Cancer Res. 59, 2499–2504 (1999).
CAS PubMed Google Scholar
- Liu, N. et al. Hyaluronan synthase 3 overexpression promotes the growth of TSU prostate cancer cells. Cancer Res. 61, 5207–5214 (2001).
CAS PubMed Google Scholar
- Jacobson, A., Rahmanian, M., Rubin, K. & Heldin, P. Expression of hyaluronan synthase 2 or hyaluronidase 1 differentially affect the growth rate of transplantable colon carcinoma cell tumors. Int. J. Cancer 102, 212–219 (2002).
CAS PubMed Google Scholar
- Simpson, M. A., Wilson, C. M. & McCarthy, J. B. Inhibition of prostate tumor cell hyaluronan synthesis impairs subcutaneous growth and vascularization in immunocompromised mice. Am. J. Pathol. 161, 849–857 (2002).
CAS PubMed PubMed Central Google Scholar
- Itano, N. et al. Selective expression and functional characteristics of three mammalian hyaluronan synthases in oncogenic malignant transformation. J. Biol. Chem. 279, 18679–18687 (2004).
CAS PubMed Google Scholar
- Shuster, S., Frost, G. I., Csoka, A. B., Formby, B. & Stern, R. Hyaluronidase reduces human breast cancer xenografts in SCID mice. Int. J. Cancer 102, 192–197 (2002).
CAS PubMed Google Scholar
- Frost, G. I. et al. HYAL1LUCA-1, a candidate tumor suppressor gene on chromosome 3p21. 3, is inactivated in head and neck squamous cell carcinomas by aberrant splicing of pre-mRNA. Oncogene 19, 870–877 (2000).
CAS PubMed Google Scholar
- Novak, U., Stylli, S. S., Kaye, A. H. & Lepperdinger, G. Hyaluronidase-2 overexpression accelerates intracerebral but not subcutaneous tumor formation of murine astrocytoma cells. Cancer Res. 59, 6246–6250 (1999).
CAS PubMed Google Scholar
- Patel, S. et al. Hyaluronidase gene profiling and role of hyal-1 overexpression in an orthotopic model of prostate cancer. Int. J. Cancer 97, 416–424 (2002).
CAS PubMed Google Scholar
- Enegd, B. et al. Overexpression of hyaluronan synthase-2 reduces the tumorigenic potential of glioma cells lacking hyaluronidase activity. Neurosurgery 50, 1311–1318 (2002).
PubMed Google Scholar
- Hautmann, S. H. et al. Elevated tissue expression of hyaluronic acid and hyaluronidase validates the HA-HAase urine test for bladder cancer. J. Urol. 165, 2068–2074 (2001).
CAS PubMed Google Scholar
- Liu, D. et al. Expression of hyaluronidase by tumor cells induces angiogenesis in vivo. Proc. Natl Acad. Sci. USA 93, 7832–7837 (1996).
CAS PubMed PubMed Central Google Scholar
- Delpech, B., Laquerriere, A., Maingonnat, C., Bertrand, P. & Freger, P. Hyaluronidase is more elevated in human brain metastases than in primary brain tumours. Anticancer Res. 22, 2423–2427 (2002).
PubMed Google Scholar
- Day, A. J. & Prestwich, G. D. Hyaluronan-binding proteins: tying up the giant. J. Biol. Chem. 277, 4585–4588 (2002).
CAS PubMed Google Scholar
- Stamenkovic, I., Amiot, M., Pesando, J. M. & Seed, B. A lymphocyte molecule implicated in lymph node homing is a member of the cartilage link protein family. Cell 56, 1057–1062 (1989).
CAS PubMed Google Scholar
- Aruffo, A., Stamenkovic, I., Melnick, M., Underhill, C. B. & Seed, B. CD44 is the principal cell surface receptor for hyaluronate. Cell 61, 1303–1313 (1990). Brings together past research on cell-surface receptors for hyaluronan and lymphocyte homing factors, identifying CD44 as an important hyaluronan receptor and part of the 'link module' family of hyaladherins.
CAS PubMed Google Scholar
- Ponta, H., Sherman, L. & Herrlich, P. CD44: from adhesion molecules to signalling regulators. Nature Rev. Mol. Cell Biol. 4, 33–45 (2003).
CAS Google Scholar
- Bourguignon, L. Y. CD44-mediated oncogenic signaling and cytoskeleton activation during mammary tumor progression. J. Mammary Gland Biol. Neoplasia 6, 287–297 (2001).
CAS PubMed Google Scholar
- Thorne, R. F., Legg, J. W. & Isacke, C. M. The role of the CD44 transmembrane and cytoplasmic domains in co-ordinating adhesive and signalling events. J. Cell Sci. 117, 373–380 (2004).
CAS PubMed Google Scholar
- Kaya, G., Rodriguez, I., Jorcano, J. L., Vassalli, P. & Stamenkovic, I. Selective suppression of CD44 in keratinocytes of mice bearing an antisense CD44 transgene driven by a tissue-specific promoter disrupts hyaluronate metabolism in the skin and impairs keratinocyte proliferation. Genes Dev. 11, 996–1007 (1997).
CAS PubMed Google Scholar
- Teder, P. et al. Resolution of lung inflammation by CD44. Science 296, 155–158 (2002).
CAS PubMed Google Scholar
- Yang, B., Yang, B. L., Savani, R. C. & Turley, E. A. Identification of a common hyaluronan binding motif in the hyaluronan binding proteins RHAMM, CD44 and link protein. EMBO J. 13, 286–296 (1994). The first identification of the hyaluronan-binding motif B(X 7 )B. This group was the first to clone and identify a major hyaluronan receptor, namely RHAMM.
PubMed PubMed Central Google Scholar
- Hall, C. L., Lange, L. A., Prober, D. A., Zhang, S. & Turley, E. A. pp60c-src is required for cell locomotion regulated by the hyaluronan receptor RHAMM. Oncogene 13, 2213–2224 (1996).
CAS PubMed Google Scholar
- Zhang, S. et al. The hyaluronan receptor RHAMM regulates extracellular-regulated kinase. J. Biol. Chem. 273, 11342–11348 (1998).
CAS PubMed Google Scholar
- Frisch, S. M. & Screaton, R. A. Anoikis mechanisms. Curr. Opin. Cell Biol. 13, 555–562 (2001).
CAS PubMed Google Scholar
- Li, Y. & Heldin, P. Hyaluronan production increases the malignant properties of mesothelioma cells. Br. J. Cancer 85, 600–607 (2001).
CAS PubMed PubMed Central Google Scholar
- Zoltan-Jones, A., Huang, L., Ghatak, S. & Toole, B. P. Elevated hyaluronan production induces mesenchymal and transformed properties in epithelial cells. J. Biol. Chem. 278, 45801–45810 (2003).
CAS PubMed Google Scholar
- Peterson, R. M., Yu, Q., Stamenkovic, I. & Toole, B. P. Perturbation of hyaluronan interactions by soluble CD44 inhibits growth of murine mammary carcinoma cells in ascites. Am. J. Pathol. 156, 2159–2167 (2000).
CAS PubMed PubMed Central Google Scholar
- Ghatak, S., Misra, S. & Toole, B. P. Hyaluronan oligosaccharides inhibit anchorage-independent growth of tumor cells by suppressing the phosphoinositide 3-kinase/Akt cell survival pathway. J. Biol. Chem. 277, 38013–38020 (2002).
CAS PubMed Google Scholar
- Sohara, Y. et al. Hyaluronan activates cell motility of v-Src-transformed cells via Ras- mitogen-activated protein kinase and phosphoinositide 3-kinase-Akt in a tumor-specific manner. Mol. Biol. Cell 12, 1859–1868 (2001).
CAS PubMed PubMed Central Google Scholar
- Itano, N. et al. Abnormal accumulation of hyaluronan matrix diminishes contact inhibition of cell growth and promotes cell migration. Proc. Natl Acad. Sci. USA 99, 3609–3614 (2002).
CAS PubMed PubMed Central Google Scholar
- Misra, S., Ghatak, S., Zoltan-Jones, A. & Toole, B. P. Regulation of multi-drug resistance in cancer cells by hyaluronan. J. Biol. Chem. 278, 25285–25288 (2003). The first demonstration that hyaluronan and EMMPRIN are important for multidrug resistance.
CAS PubMed Google Scholar
- Hall, C. L., Wang, C., Lange, L. A. & Turley, E. A. Hyaluronan and the hyaluronan receptor RHAMM promote focal adhesion turnover and transient tyrosine kinase activity. J. Cell Biol. 126, 575–588 (1994). One of a series of papers that show the importance of hyaluronan–RHAMM interactions in cell signalling (see also references 60, 61 and 79).
CAS PubMed Google Scholar
- Fujita, Y. et al. CD44 signaling through focal adhesion kinase and its anti-apoptotic effect. FEBS Lett. 528, 101–108 (2002).
CAS PubMed Google Scholar
- Bourguignon, L. Y., Singleton, P. A., Zhu, H. & Diedrich, F. Hyaluronan-mediated CD44 interaction with RhoGEF and Rho kinase promotes Grb2-associated binder-1 phosphorylation and phosphatidylinositol 3-kinase signaling leading to cytokine (macrophage-colony stimulating factor) production and breast tumor progression. J. Biol. Chem. 278, 29420–29434 (2003).
CAS PubMed Google Scholar
- Mabuchi, S. et al. Inhibition of phosphorylation of BAD and Raf-1 by Akt sensitizes human ovarian cancer cells to paclitaxel. J. Biol. Chem. 277, 33490–33500 (2002).
CAS PubMed Google Scholar
- Lesley, J., Hascall, V. C., Tammi, M. & Hyman, R. Hyaluronan binding by cell surface CD44. J. Biol. Chem. 275, 26967–26975 (2000).
CAS PubMed Google Scholar
- Bartolazzi, A., Peach, R., Aruffo, A. & Stamenkovic, I. Interaction between CD44 and hyaluronate is directly implicated in the regulation of tumor development. J. Exp. Med. 180, 53–66 (1994). One of the first papers in a series showing that soluble hyaluronan-binding decoys inhibit several aspects of tumour progression. Together, these papers convincingly showed the importance of hyaluronan–tumour-cell interactions in tumour progression (see also references 65, 76–81, 139 and 140)
CAS PubMed Google Scholar
- Yu, Q., Toole, B. P. & Stamenkovic, I. Induction of apoptosis of metastatic mammary carcinoma cells in vivo by disruption of tumor cell surface CD44 function. J. Exp. Med. 186, 1985–1996 (1997).
CAS PubMed PubMed Central Google Scholar
- Ahrens, T. et al. Soluble CD44 inhibits melanoma tumor growth by blocking cell surface CD44 binding to hyaluronic acid. Oncogene 20, 3399–3408 (2001).
CAS PubMed Google Scholar
- Liu, N. et al. Metastatin: a hyaluronan-binding complex from cartilage that inhibits tumor growth. Cancer Res. 61, 1022–1028 (2001).
CAS PubMed Google Scholar
- Mohapatra, S., Yang, X., Wright, J. A., Turley, E. A. & Greenberg, A. H. Soluble hyaluronan receptor RHAMM induces mitotic arrest by suppressing Cdc2 and cyclin B1 expression. J. Exp. Med. 183, 1663–1668 (1996).
CAS PubMed Google Scholar
- Ward, J. A., Huang, L., Guo, H., Ghatak, S. & Toole, B. P. Perturbation of hyaluronan interactions inhibits malignant properties of glioma cells. Am. J. Pathol. 162, 1403–1409 (2003).
CAS PubMed PubMed Central Google Scholar
- Liu, N. et al. Hyaluronan-binding peptide can inhibit tumor growth by interacting with Bcl-2. Int. J. Cancer 109, 49–57 (2004).
CAS PubMed Google Scholar
- Evanko, S. P. & Wight, T. N. Intracellular localization of hyaluronan in proliferating cells. J. Histochem. Cytochem. 47, 1331–1342 (1999).
CAS PubMed Google Scholar
- Collis, L. et al. Rapid hyaluronan uptake is associated with enhanced motility: implications for an intracellular mode of action. FEBS Lett. 440, 444–449 (1998).
CAS PubMed Google Scholar
- Assmann, V., Jenkinson, D., Marshall, J. F. & Hart, I. R. The intracellular hyaluronan receptor RHAMM/IHABP interacts with microtubules and actin filaments. J. Cell. Sci. 112, 3943–3954 (1999).
CAS PubMed Google Scholar
- Maxwell, C. A. et al. RHAMM is a centrosomal protein that interacts with dynein and maintains spindle pole stability. Mol. Biol. Cell 14, 2262–2276 (2003).
CAS PubMed PubMed Central Google Scholar
- Grammatikakis, N. et al. A novel glycosaminoglycan-binding protein is the vertebrate homologue of the cell cycle control protein, Cdc37. J. Biol. Chem. 270, 16198–16205 (1995).
CAS PubMed Google Scholar
- Pratt, W. B., Silverstein, A. M. & Galigniana, M. D. A model for the cytoplasmic trafficking of signalling proteins involving the hsp90-binding immunophilins and p50cdc37. Cell Signal. 11, 839–351 (1999).
CAS PubMed Google Scholar
- Blagosklonny, M. V. Hsp-90-associated oncoproteins: multiple targets of geldanamycin and its analogs. Leukemia 16, 455–462 (2002).
CAS PubMed Google Scholar
- Huang, L., Grammatikakis, N., Yoneda, M., Banerjee, S. D. & Toole, B. P. Molecular characterization of a novel intracellular hyaluronan-binding protein. J. Biol. Chem. 275, 29829–29839 (2000).
CAS PubMed Google Scholar
- Meenakshi, J., Anupama, Goswami, S. K. & Datta, K. Constitutive expression of hyaluronan binding protein 1 (HABP1/p32/gC1qR) in normal fibroblast cells perturbs its growth characteristics and induces apoptosis. Biochem. Biophys. Res. Commun. 300, 686–693 (2003).
CAS PubMed Google Scholar
- Citri, A., Skaria, K. B. & Yarden, Y. The deaf and the dumb: the biology of ErbB-2 and ErbB-3. Exp. Cell Res. 284, 54–65 (2003).
CAS PubMed Google Scholar
- Arteaga, C. L., Moulder, S. L. & Yakes, F. M. HER (erbB) tyrosine kinase inhibitors in the treatment of breast cancer. Semin. Oncol. 29, 4–10 (2002).
CAS PubMed Google Scholar
- Camenisch, T. D. et al. Disruption of hyaluronan synthase-2 abrogates normal cardiac morphogenesis and hyaluronan-mediated transformation of epithelium to mesenchyme. J. Clin. Invest. 106, 349–360 (2000). Analysis of the Has2 –null mouse, showing that hyaluronan is essential for EMT during endocardial-cushion development. This and reference 94 also showed that hyaluronan is required for ERBB2/ERBB3 and RAS signalling during this transition.
CAS PubMed PubMed Central Google Scholar
- Camenisch, T. D., Schroeder, J. A., Bradley, J., Klewer, S. E. & McDonald, J. A. Heart-valve mesenchyme formation is dependent on hyaluronan-augmented activation of ErbB2-ErbB3 receptors. Nature Med. 8, 850–855 (2002).
CAS PubMed Google Scholar
- Bourguignon, L. Y. et al. Hyaluronan promotes CD44v3–Vav2 interaction with Grb2–p185HER2 and induces Rac1 and Ras signaling during ovarian tumor cell migration and growth. J. Biol. Chem. 276, 48679–48692 (2001). Showed that the hyaluronan–CD44 interaction promotes ERBB2 signalling. One of a series of papers from this laboratory showing the importance of this interaction in signal transduction (see also references 72, 98, 126, 144 and 181).
CAS PubMed Google Scholar
- Wobus, M. et al. CD44 associates with EGFR and erbB2 in metastasizing mammary carcinoma cells. Appl. Immunohistochem. Mol. Morphol. 10, 34–39 (2002).
CAS PubMed Google Scholar
- Tsatas, D., Kanagasundaram, V., Kaye, A. & Novak, U. EGF receptor modifies cellular responses to hyaluronan in glioblastoma cell lines. J. Clin. Neurosci. 9, 282–288 (2002).
CAS PubMed Google Scholar
- Bourguignon, L. Y., Singleton, P. A., Zhu, H. & Zhou, B. Hyaluronan promotes signaling interaction between CD44 and the transforming growth factor-β receptor I in metastatic breast tumor cells. J. Biol. Chem. 277, 39703–39712 (2002).
CAS PubMed Google Scholar
- Orian-Rousseau, V., Chen, L., Sleeman, J. P., Herrlich, P. & Ponta, H. CD44 is required for two consecutive steps in HGF/c-Met signaling. Genes Dev. 16, 3074–3086 (2002).
CAS PubMed PubMed Central Google Scholar
- Kamikura, D. M., Khoury, H., Maroun, C., Naujokas, M. A. & Park, M. Enhanced transformation by a plasma membrane-associated met oncoprotein: activation of a phosphoinositide 3′-kinase-dependent autocrine loop involving hyaluronic acid and CD44. Mol. Cell. Biol. 20, 3482–3496 (2000).
CAS PubMed PubMed Central Google Scholar
- Gottesman, M. M., Fojo, T. & Bates, S. E. Multidrug resistance in cancer: role of ATP-dependent transporters. Nature Rev. Cancer 2, 48–58 (2002).
CAS Google Scholar
- Makin, G. & Dive, C. Apoptosis and cancer chemotherapy. Trends Cell Biol. 11, S22–S26 (2001).
CAS PubMed Google Scholar
- O'Gorman, D. M. & Cotter, T. G. Molecular signals in anti-apoptotic survival pathways. Leukemia 15, 21–34 (2001).
CAS PubMed Google Scholar
- Baumgartner, G., Gomar-Hoss, C., Sakr, L., Ulsperger, E. & Wogritsch, C. The impact of extracellular matrix on the chemoresistance of solid tumors — experimental and clinical results of hyaluronidase as additive to cytostatic chemotherapy. Cancer Lett. 131, 85–99 (1998).
CAS PubMed Google Scholar
- St. Croix, B. et al. Reversal by hyaluronidase of adhesion-dependent multicellular drug resistance in mammary carcinoma cells. J. Natl Cancer Inst. 88, 1285–1296 (1996).
CAS Google Scholar
- St. Croix, B., Man, S. & Kerbel, R. S. Reversal of intrinsic and acquired forms of drug resistance by hyaluronidase treatment of solid tumors. Cancer Lett. 131, 35–44 (1998).
CAS PubMed Google Scholar
- Desoize, B. & Jardillier, J. Multicellular resistance: a paradigm for clinical resistance? Crit. Rev. Oncol. Hematol. 36, 193–207 (2000).
CAS PubMed Google Scholar
- Vincent, T., Molina, L., Espert, L. & Mechti, N. Hyaluronan, a major non-protein glycosaminoglycan component of the extracellular matrix in human bone marrow, mediates dexamethasone resistance in multiple myeloma. Br. J. Haematol. 121, 259–269 (2003).
CAS PubMed Google Scholar
- Underhill, C. B. & Toole, B. P. Receptors for hyaluronate on the surface of parent and virus- transformed cell lines: binding and aggregation studies. Exp. Cell Res. 131, 419–423 (1981).
CAS PubMed Google Scholar
- Misra, S., Ujhazy, P., Varticovski, L. & Arias, I. M. Phosphoinositide 3-kinase lipid products regulate ATP-dependent transport by sister of P-glycoprotein and multidrug resistance associated protein 2 in bile canalicular membrane vesicles. Proc. Natl Acad. Sci. USA 96, 5814–5819 (1999).
CAS PubMed PubMed Central Google Scholar
- Prehm, P. & Schumacher, U. Inhibition of hyaluronan export from human fibroblasts by inhibitors of multidrug resistance transporters. Biochem. Pharmacol. (in the press).
- Biswas, C. et al. The human tumor cell-derived collagenase stimulatory factor (renamed EMMPRIN) is a member of the immunoglobulin superfamily. Cancer Res. 55, 434–439 (1995).
CAS PubMed Google Scholar
- Marieb, E. et al. Emmprin promotes anchorage-independent growth in human mammary carcinoma cells by stimulating hyaluronan production. Cancer Res. 64, 1229–1232 (2004).
CAS PubMed Google Scholar
- Toole, B. P. Emmprin (CD147), a cell surface regulator of matrix metalloproteinase production and function. Curr. Top. Dev. Biol. 54, 371–389 (2003).
CAS PubMed Google Scholar
- Yang, J. M. et al. Overexpression of extracellular matrix metalloproteinase inducer in multidrug resistant cancer cells. Mol. Cancer Res. 1, 420–427 (2003).
CAS PubMed Google Scholar
- Zucker, S. et al. Tumorigenic potential of extracellular matrix metalloproteinase inducer (EMMPRIN). Am. J. Path. 158, 1921–1928 (2001).
CAS PubMed PubMed Central Google Scholar
- Klein, C. A. et al. Combined transcriptome and genome analysis of single micrometastatic cells. Nature Biotechnol. 20, 387–392 (2002).
CAS Google Scholar
- Harada, N. et al. Introduction of antisense CD44S cDNA down-regulates expression of overall CD44 isoforms and inhibits tumor growth and metastasis in highly metastatic colon carcinoma cells. Int. J. Cancer 91, 67–75 (2001).
CAS PubMed Google Scholar
- Weber, G. F. et al. Absence of the CD44 gene prevents sarcoma metastasis. Cancer Res. 62, 2281–2286 (2002).
CAS PubMed Google Scholar
- Sleeman, J. P. et al. Hyaluronate-independent metastatic behavior of CD44 variant-expressing pancreatic carcinoma cells. Cancer Res. 56, 3134–3141 (1996).
CAS PubMed Google Scholar
- Gao, A. C., Lou, W., Sleeman, J. P. & Isaacs, J. T. Metastasis suppression by the standard CD44 isoform does not require the binding of prostate cancer cells to hyaluronate. Cancer Res. 58, 2350–2352 (1998).
CAS PubMed Google Scholar
- Chambers, A. F., Groom, A. C. & MacDonald, I. C. Dissemination and growth of cancer cells in metastatic sites. Nature Rev. Cancer 2, 563–572 (2002).
CAS Google Scholar
- Simpson, M. A. et al. Manipulation of hyaluronan synthase expression in prostate adenocarcinoma cells alters pericellular matrix retention and adhesion to bone marrow endothelial cells. J. Biol. Chem. 277, 10050–10057 (2002).
CAS PubMed Google Scholar
- Lokeshwar, V. B. & Selzer, M. G. Differences in hyaluronic acid-mediated functions and signaling in arterial, microvessel, and vein-derived human endothelial cells. J. Biol. Chem. 275, 27641–27649 (2000).
CAS PubMed Google Scholar
- Savani, R. C. et al. Differential involvement of the hyaluronan (HA) receptors CD44 and receptor for HA-mediated motility in endothelial cell function and angiogenesis. J. Biol. Chem. 276, 36770–36778 (2001).
CAS PubMed Google Scholar
- Singleton, P. A. & Bourguignon, L. Y. CD44v10 interaction with Rho-kinase (ROK) activates inositol 1,4,5-triphosphate (IP3) receptor-mediated Ca2+ signaling during hyaluronan (HA)-induced endothelial cell migration. Cell Motil. Cytoskeleton 53, 293–316 (2002).
CAS PubMed Google Scholar
- Williams, C. S. et al. Absence of lymphangiogenesis and intratumoural lymph vessels in human metastatic breast cancer. J. Pathol. 200, 195–206 (2003).
CAS PubMed Google Scholar
- Evanko, S. P., Angello, J. C. & Wight, T. N. Formation of hyaluronan- and versican-rich pericellular matrix is required for proliferation and migration of vascular smooth muscle cells. Arterioscler. Thromb. Vasc. Biol. 19, 1004–1013 (1999).
CAS PubMed Google Scholar
- Hayen, W., Goebeler, M., Kumar, S., Riessen, R. & Nehls, V. Hyaluronan stimulates tumor cell migration by modulating the fibrin fiber architecture. J. Cell Sci. 112, 2241–2251 (1999).
CAS PubMed Google Scholar
- Koochekpour, S., Pilkington, G. J. & Merzak, A. Hyaluronic acid/CD44H interaction induces cell detachment and stimulates migration and invasion of human glioma cells in vitro. Int. J. Cancer 63, 450–454 (1995).
CAS PubMed Google Scholar
- Okada, H., Yoshida, J., Sokabe, M., Wakabayashi, T. & Hagiwara, M. Suppression of CD44 expression decreases migration and invasion of human glioma cells. Int. J. Cancer 66, 255–260 (1996).
CAS PubMed Google Scholar
- Monaghan, M. et al. Epidermal growth factor up-regulates CD44-dependent astrocytoma invasion in vitro. J. Pathol. 192, 519–525 (2000).
CAS PubMed Google Scholar
- Akiyama, Y. et al. Hyaluronate receptors mediating glioma cell migration and proliferation. J. Neurooncol. 53, 115–127 (2001).
CAS PubMed Google Scholar
- Chambers, A. F. & Matrisian, L. M. Changing views of the role of matrix metalloproteinases in metastasis. J. Natl Cancer Inst. 89, 1260–1270 (1997).
CAS PubMed Google Scholar
- Egeblad, M. & Werb, Z. New functions for the matrix metalloproteinases in cancer progression. Nature Rev. Cancer 2, 161–174 (2002).
CAS Google Scholar
- Park, M. J. et al. PTEN suppresses hyaluronic acid-induced matrix metalloproteinase-9 expression in U87MG glioblastoma cells through focal adhesion kinase dephosphorylation. Cancer Res. 62, 6318–6322 (2002).
CAS PubMed Google Scholar
- Zhang, Y. et al. Hyaluronan–CD44s signaling regulates matrix metalloproteinase-2 secretion in a human lung carcinoma cell line QG90. Cancer Res. 62, 3962–3965 (2002).
CAS PubMed Google Scholar
- Bourguignon, L. Y. et al. CD44v(3,8-10) is involved in cytoskeleton-mediated tumor cell migration and matrix metalloproteinase (MMP-9) association in metastatic breast cancer cells. J. Cell Physiol. 176, 206–215 (1998).
CAS PubMed Google Scholar
- Yu, Q. & Stamenkovic, I. Localization of matrix metalloproteinase 9 to the cell surface provides a mechanism for CD44-mediated tumor invasion. Genes Dev. 13, 35–48 (1999).
CAS PubMed PubMed Central Google Scholar
- Yu, Q. & Stamenkovic, I. Cell surface-localized matrix metalloproteinase-9 proteolytically activates TGF-β and promotes tumor invasion and angiogenesis. Genes Dev. 14, 163–176 (2000).
PubMed PubMed Central Google Scholar
- Mori, H. et al. CD44 directs membrane-type 1 matrix metalloproteinase to lamellipodia by associating with its hemopexin-like domain. EMBO J. 21, 3949–3959 (2002).
CAS PubMed PubMed Central Google Scholar
- Okamoto, I. et al. CD44 cleavage induced by a membrane-associated metalloprotease plays a critical role in tumor cell migration. Oncogene 18, 1435–1446 (1999).
CAS PubMed Google Scholar
- Kajita, M. et al. Membrane-type 1 matrix metalloproteinase cleaves CD44 and promotes cell migration. J. Cell Biol. 153, 893–904 (2001).
CAS PubMed PubMed Central Google Scholar
- Bourguignon, L. Y., Singleton, P. A., Diedrich, F., Stern, R. & Gilad, E. CD44 interaction with Na+–H+ exchanger (NHE1) creates acidic microenvironments leading to hyaluronidase-2 and cathepsin B activation and breast tumor cell invasion. J. Biol. Chem. 16 April 2004 (doi:10.1074/jbc.m311838200).
- Zhu, D. & Bourguignon, L. Y. Interaction between CD44 and the repeat domain of ankyrin promotes hyaluronic acid-mediated ovarian tumor cell migration. J. Cell Physiol. 183, 182–195 (2000).
CAS PubMed Google Scholar
- Legg, J. W., Lewis, C. A., Parsons, M., Ng, T. & Isacke, C. M. A novel PKC-regulated mechanism controls CD44 ezrin association and directional cell motility. Nature Cell Biol. 4, 399–407 (2002). One of a series of papers showing the importance of ezrin–CD44 interactions in cell motility.
CAS PubMed Google Scholar
- Thiery, J. P. Epithelial–mesenchymal transitions in tumour progression. Nature Rev. Cancer 2, 442–454 (2002).
CAS Google Scholar
- Xu, Y. & Yu, Q. E-cadherin negatively regulates CD44–hyaluronan interaction and CD44-mediated tumor invasion and branching morphogenesis. J. Biol. Chem. 278, 8661–8668 (2003).
CAS PubMed Google Scholar
- Nelson, W. J. & Nusse, R. Convergence of Wnt, β-catenin, and cadherin pathways. Science 303, 1483–1487 (2004).
CAS PubMed PubMed Central Google Scholar
- Tolg, C., Poon, R., Fodde, R., Turley, E. A. & Alman, B. A. Genetic deletion of receptor for hyaluronan-mediated motility (Rhamm) attenuates the formation of aggressive fibromatosis (desmoid tumor). Oncogene 22, 6873–6882 (2003).
CAS PubMed Google Scholar
- West, D. C. & Kumar, S. Hyaluronan and angiogenesis. Ciba Found. Symp. 143, 187–201 (1989).
CAS PubMed Google Scholar
- Delpech, B. et al. Hyaluronan digestion and synthesis in an experimental model of metastatic tumour. Histochem. J. 33, 553–558 (2001).
CAS PubMed Google Scholar
- Deguine, V. et al. Free radical depolymerization of hyaluronan by Maillard reaction products: role in liquefaction of aging vitreous. Int. J. Biol. Macromol. 22, 17–22 (1998).
CAS PubMed Google Scholar
- Yamazaki, K. et al. Reactive oxygen species depolymerize hyaluronan: involvement of the hydroxyl radical. Pathophysiology 9, 215–220 (2003).
CAS PubMed Google Scholar
- West, D. C., Hampson, I. N., Arnold, F. & Kumar, S. Angiogenesis induced by degradation products of hyaluronic acid. Science 228, 1324–1326 (1985). The first of a series of papers showing that hyaluronan breakdown products stimulate angiogenesis (see also references 156–162).
CAS PubMed Google Scholar
- West, D. C. & Kumar, S. The effect of hyaluronate and its oligosaccharides on endothelial cell proliferation and monolayer integrity. Exp. Cell Res. 183, 179–196 (1989).
CAS PubMed Google Scholar
- Sattar, A. et al. Application of angiogenic oligosaccharides of hyaluronan increases blood vessel numbers in rat skin. J. Invest. Dermatol. 103, 576–579 (1994).
CAS PubMed Google Scholar
- Lees, V. C., Fan, T. P. & West, D. C. Angiogenesis in a delayed revascularization model is accelerated by angiogenic oligosaccharides of hyaluronan. Lab. Invest. 73, 259–266 (1995).
CAS PubMed Google Scholar
- Montesano, R., Kumar, S., Orci, L. & Pepper, M. S. Synergistic effect of hyaluronan oligosaccharides and vascular endothelial growth factor on angiogenesis in vitro. Lab. Invest. 75, 249–262 (1996).
CAS PubMed Google Scholar
- Rahmanian, M. & Heldin, P. Testicular hyaluronidase induces tubular structures of endothelial cells grown in three-dimensional collagen gel through a CD44-mediated mechanism. Int. J. Cancer 97, 601–607 (2002).
CAS PubMed Google Scholar
- Slevin, M., Kumar, S. & Gaffney, J. Angiogenic oligosaccharides of hyaluronan induce multiple signaling pathways affecting vascular endothelial cell mitogenic and wound healing responses. J. Biol. Chem. 277, 41046–41059 (2002).
CAS PubMed Google Scholar
- Trochon, V. et al. Evidence of involvement of CD44 in endothelial cell proliferation, migration and angiogenesis in vitro. Int. J. Cancer 66, 664–668 (1996).
CAS PubMed Google Scholar
- Murai, T. et al. Engagement of CD44 promotes Rac activation and CD44 cleavage during tumor cell migration. J. Biol. Chem. 279, 4541–4550 (2004).
CAS PubMed Google Scholar
- Zeng, C., Toole, B. P., Kinney, S. D., Kuo, J. W. & Stamenkovic, I. Inhibition of tumor growth in vivo by hyaluronan oligomers. Int. J. Cancer 77, 396–401 (1998).
CAS PubMed Google Scholar
- Radisky, D. C. & Bissell, M. J. Respect thy neighbor! Science 303, 775–777 (2004).
CAS PubMed Google Scholar
- Liu, D., Aguirre-Ghiso, J., Estrada, Y. & Ossowski, L. EGFR is a transducer of the urokinase receptor initiated signal that is required for in vivo growth of a human carcinoma. Cancer Cell 1, 445–457 (2002).
CAS PubMed Google Scholar
- Hollingsworth, M. A. & Swanson, B. J. Mucins in cancer: protection and control of the cell surface. Nature Rev. Cancer 4, 45–60 (2004).
CAS Google Scholar
- Pilarski, L. M. et al. Potential role for hyaluronan and the hyaluronan receptor RHAMM in mobilization and trafficking of hematopoietic progenitor cells. Blood 93, 2918–2927 (1999).
CAS PubMed Google Scholar
- Nilsson, S. K. et al. Hyaluronan is synthesized by primitive hemopoietic cells, participates in their lodgment at the endosteum following transplantation, and is involved in the regulation of their proliferation and differentiation in vitro. Blood 101, 856–862 (2003).
CAS PubMed Google Scholar
- Al-Hajj, M., Wicha, M. S., Benito-Hernandez, A., Morrison, S. J. & Clarke, M. F. Prospective identification of tumorigenic breast cancer cells. Proc. Natl Acad. Sci. USA 100, 3983–3988 (2003).
CAS PubMed PubMed Central Google Scholar
- Toole, B. P. & Trelstad, R. L. Hyaluronate production and removal during corneal development in the chick. Dev. Biol. 26, 28–35 (1971).
CAS PubMed Google Scholar
- Guo, H., Zucker, S., Gordon, M. K., Toole, B. P. & Biswas, C. Stimulation of matrix metalloproteinase production by recombinant extracellular matrix metalloproteinase inducer from transfected Chinese hamster ovary cells. J. Biol. Chem. 272, 24–27 (1997).
CAS PubMed Google Scholar
- Caudroy, S. et al. Emmprin-mediated MMP regulation in tumor and endothelial cells. Clin. Exp. Metastasis 19, 697–702 (2002).
CAS PubMed Google Scholar
- Sun, J. & Hemler, M. E. Regulation of MMP-1 and MMP-2 production through CD147/extracellular matrix metalloproteinase inducer interactions. Cancer Res. 61, 2276–2281 (2001).
CAS PubMed Google Scholar
- Tang, Y., Kesavan, P., Nakada, M. T. & Yan, L. Tumor–stroma interaction: positive feedback regulation of extracellular matrix metalloproteinase inducer (EMMPRIN) expression and matrix metalloproteinase-dependent generation of soluble EMMPRIN. Mol. Cancer Res. 2, 73–80 (2004).
CAS PubMed Google Scholar
- Knudson, W., Bartnik, E. & Knudson, C. B. Assembly of pericellular matrices by COS-7 cells transfected with CD44 lymphocyte-homing receptor genes. Proc. Natl Acad. Sci. USA 90, 4003–4007 (1993).
CAS PubMed PubMed Central Google Scholar
- Lee, G. M., Johnstone, B., Jacobson, K. & Caterson, B. The dynamic structure of the pericellular matrix on living cells. J. Cell Biol. 123, 1899–1907 (1993).
CAS PubMed Google Scholar
- Heldin, P. & Pertoft, H. Synthesis and assembly of the hyaluronan-containing coats around normal human mesothelial cells. Exp. Cell Res. 208, 422–429 (1993).
CAS PubMed Google Scholar
- Spicer, A. P. & McDonald, J. A. Characterization and molecular evolution of a vertebrate hyaluronan synthase gene family. J. Biol. Chem. 273, 1923–1932 (1998).
CAS PubMed Google Scholar
- Munster, P. N., Marchion, D. C., Basso, A. D. & Rosen, N. Degradation of HER2 by ansamycins induces growth arrest and apoptosis in cells with HER2 overexpression via a HER3, phosphatidylinositol 3′- kinase-AKT-dependent pathway. Cancer Res. 62, 3132–3137 (2002).
CAS PubMed Google Scholar
- Singleton, P. A. & Bourguignon, L. Y. CD44 interaction with ankyrin and IP3 receptor in lipid rafts promotes hyaluronan-mediated Ca2+ signaling leading to nitric oxide production and endothelial cell adhesion and proliferation. Exp. Cell Res. 295, 102–118 (2004).
CAS PubMed Google Scholar
- Nakamura, N. et al. Forkhead transcription factors are critical effectors of cell death and cell cycle arrest downstream of PTEN. Mol. Cell. Biol. 20, 8969–8982 (2000).
CAS PubMed PubMed Central Google Scholar
- Yamada, K. M. & Araki, M. Tumor suppressor PTEN: modulator of cell signaling, growth, migration and apoptosis. J. Cell Sci. 114, 2375–2382 (2001).
CAS PubMed Google Scholar
- Menashi, S. et al. Regulation of extracellular matrix metalloproteinase inducer and matrix metalloproteinase expression by amphiregulin in transformed human breast epithelial cells. Cancer Res. 63, 7575–7580 (2003).
CAS PubMed Google Scholar
- Hascall, V. C. & Laurent, T. Hyaluronan: structure and physical properties. Science of hyaluronan today [online] <http://www.glycoforum.gr.jp/science/hyaluronan/HA01/HA01E.html> (1997).
- Toole, B. P. in Proteoglycans: Structure, Biology and Molecular Interactions (ed. Iozzo, R.) 61–92 (Marcel Dekker, New York, 2000).
Google Scholar
- Toole, B. P. Hyaluronan in morphogenesis and tissue remodelling. Science of hyaluronan today [online] <http://www.glycoforum.gr.jp/science/hyaluronan/HA08/HA08E.html> (1998).