The future of cancer treatment: immunomodulation, CARs and combination immunotherapy (original) (raw)
Coley, W. B. The treatment of inoperable sarcoma by bacterial toxins (the mixed toxins of the Streptococcus erysipelas and the Bacillus prodigiosus). Proc. R. Soc. Med.3, 1–48 (1910). CASPubMedPubMed Central Google Scholar
Robert, C. et al. Nivolumab in previously untreated melanoma without BRAF mutation. N. Engl. J. Med.372, 320–330 (2014). PubMed Google Scholar
Robert, C. et al. Pembrolizumab versus ipilimumab in advanced melanoma. N. Engl. J. Med.372, 2521–2532 (2015). CASPubMed Google Scholar
Hodi, F. S. et al. Improved survival with ipilimumab in patients with metastatic melanoma. N. Engl. J. Med.363, 711–723 (2010). CASPubMedPubMed Central Google Scholar
Kantoff, P. W. et al. Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N. Engl. J. Med.363, 411–422 (2010). CASPubMed Google Scholar
Rizvi, N. A. et al. Activity and safety of nivolumab, an anti-PD-1 immune checkpoint inhibitor, for patients with advanced, refractory squamous non-small-cell lung cancer (CheckMate 063): a phase 2, single-arm trial. Lancet. Oncol.16, 257–265 (2015). CASPubMedPubMed Central Google Scholar
Pedicord, V. A., Montalvo, W., Leiner, I. M. & Allison, J. P. Single dose of anti-CTLA-4 enhances CD8+ T-cell memory formation, function, and maintenance. Proc. Natl Acad. Sci. USA108, 266–271 (2011). CASPubMed Google Scholar
Schadendorf, D. et al. Pooled analysis of long-term survival data from phase II and phase III trials of ipilimumab in unresectable or metastatic melanoma. J. Clin. Oncol.33, 1889–1894 (2015). CASPubMedPubMed Central Google Scholar
Chapman, P. B., D'Angelo, S. P. & Wolchok, J. D. Rapid eradication of a bulky melanoma mass with one dose of immunotherapy. N. Engl. J. Med.372, 2073–2074 (2015). PubMed Google Scholar
Postow, M. A. et al. Nivolumab and ipilimumab versus ipilimumab in untreated melanoma. N. Engl. J. Med.372, 2006–2017 (2015). PubMedPubMed Central Google Scholar
Wilgenhof, S. et al. Single-center experience with ipilimumab in an expanded access program for patients with pretreated advanced melanoma. J. Immunother.36, 215–222 (2013). CASPubMed Google Scholar
Kitano, S. et al. Computational algorithm-driven evaluation of monocytic myeloid-derived suppressor cell frequency for prediction of clinical outcomes. Cancer Immunol. Res.2, 812–821 (2014). CASPubMedPubMed Central Google Scholar
Hannani, D. et al. Anticancer immunotherapy by CTLA-4 blockade: obligatory contribution of IL-2 receptors and negative prognostic impact of soluble CD25. Cell Res.25, 208–224 (2015). CASPubMedPubMed Central Google Scholar
Rizvi, N. A. et al. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science348, 124–128 (2015). CASPubMedPubMed Central Google Scholar
Snyder, A. et al. Genetic basis for clinical response to CTLA-4 blockade in melanoma. N. Engl. J. Med.371, 2189–2199 (2014). PubMedPubMed Central Google Scholar
Van Allen, E. M. et al. Genomic correlates of response to CTLA4 blockade in metastatic melanoma. Science350, 207–211 (2015). CASPubMedPubMed Central Google Scholar
Bonifaz, L. et al. Efficient targeting of protein antigen to the dendritic cell receptor DEC-205 in the steady state leads to antigen presentation on major histocompatibility complex class I products and peripheral CD8+ T cell tolerance. J. Exp. Med.196, 1627–1638 (2002). CASPubMedPubMed Central Google Scholar
Walunas, T. L. et al. CTLA-4 can function as a negative regulator of T cell activation. Immunity1, 405–413 (1994). CASPubMed Google Scholar
Krummel, M. F. & Allison, J. P. CD28 and CTLA-4 have opposing effects on the response of T cells to stimulation. J. Exp. Med.182, 459–465 (1995). CASPubMed Google Scholar
Tivol, E. A. et al. Loss of CTLA-4 leads to massive lymphoproliferation and fatal multiorgan tissue destruction, revealing a critical negative regulatory role of CTLA-4. Immunity3, 541–547 (1995). CASPubMed Google Scholar
Waterhouse, P. et al. Lymphoproliferative disorders with early lethality in mice deficient in Ctla-4. Science270, 985–988 (1995). CASPubMed Google Scholar
Matheu, M. P. et al. Imaging regulatory T cell dynamics and CTLA4-mediated suppression of T cell priming. Nat. Commun.6, 6219 (2015). CASPubMed Google Scholar
Wing, K. et al. CTLA-4 control over Foxp3+ regulatory T cell function. Science322, 271–275 (2008). CASPubMed Google Scholar
Takahashi, T. et al. Immunologic self-tolerance maintained by CD25+CD4+ regulatory T cells constitutively expressing cytotoxic T lymphocyte-associated antigen 4. J. Exp. Med.192, 303–310 (2000). CASPubMedPubMed Central Google Scholar
Read, S., Malmström, V. & Powrie, F. Cytotoxic T lymphocyte-associated antigen 4 plays an essential role in the function of CD25+CD4+ regulatory cells that control intestinal inflammation. J. Exp. Med.192, 295–302 (2000). CASPubMedPubMed Central Google Scholar
Simpson, T. R. et al. Fc-dependent depletion of tumor-infiltrating regulatory T cells co-defines the efficacy of anti-CTLA-4 therapy against melanoma. J. Exp. Med.210, 1695–1710 (2013). CASPubMedPubMed Central Google Scholar
Selby, M. J. et al. Anti-CTLA-4 antibodies of IgG2a isotype enhance antitumor activity through reduction of intratumoral regulatory T cells. Cancer Immunol. Res.1, 32–42 (2013). CASPubMed Google Scholar
Phan, G. Q. et al. Cancer regression and autoimmunity induced by cytotoxic T lymphocyte-associated antigen 4 blockade in patients with metastatic melanoma. Proc. Natl Acad. Sci. USA100, 8372–8377 (2003). CASPubMedPubMed Central Google Scholar
Gregor, P. D. et al. CTLA-4 blockade in combination with xenogeneic DNA vaccines enhances T-cell responses, tumor immunity and autoimmunity to self antigens in animal and cellular model systems. Vaccine22, 1700–1708 (2004). CASPubMed Google Scholar
Quezada, S. A. CTLA4 blockade and GM-CSF combination immunotherapy alters the intratumor balance of effector and regulatory T cells. J. Clin. Invest.116, 1935–1945 (2006). CASPubMedPubMed Central Google Scholar
Weber, J. S., Kähler, K. C. & Hauschild, A. Management of immune-related adverse events and kinetics of response with ipilimumab. J. Clin. Oncol.30, 2691–2697 (2012). CASPubMed Google Scholar
Wolchok, J. D. et al. Ipilimumab monotherapy in patients with pretreated advanced melanoma: a randomised, double-blind, multicentre, phase 2, dose-ranging study. Lancet. Oncol.11, 155–164 (2010). CASPubMed Google Scholar
Wolchok, J. D. et al. Guidelines for the evaluation of immune therapy activity in solid tumors: immune-related response criteria. Clin. Cancer Res.15, 7412–7420 (2009). CASPubMed Google Scholar
Eisenhauer, E. A. et al. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur. J. Cancer45, 228–247 (2009). CASPubMed Google Scholar
Yang, J. C. et al. Ipilimumab (anti-CTLA4 antibody) causes regression of metastatic renal cell cancer associated with enteritis and hypophysitis. J. Immunother.30, 825–830 (2007). CASPubMedPubMed Central Google Scholar
Royal, R. E. et al. Phase 2 trial of single agent Ipilimumab (anti-CTLA-4) for locally advanced or metastatic pancreatic adenocarcinoma. J. Immunother.33, 828–833 (2010). CASPubMedPubMed Central Google Scholar
Postow, M. A. et al. Immunologic correlates of the abscopal effect in a patient with melanoma. N. Engl. J. Med.366, 925–931 (2012). CASPubMedPubMed Central Google Scholar
Zamarin, D. et al. Localized oncolytic virotherapy overcomes systemic tumor resistance to immune checkpoint blockade immunotherapy. Sci. Transl. Med.6, 226ra32–226ra32 (2014). PubMedPubMed Central Google Scholar
Waitz, R., Fassò, M. & Allison, J. P. CTLA-4 blockade synergizes with cryoablation to mediate tumor rejection. Oncoimmunology1, 544–546 (2014). Google Scholar
Chemnitz, J. M. et al. SHP-1 and SHP-2 associate with immunoreceptor tyrosine-based switch motif of programmed death 1 upon primary human T cell stimulation, but only receptor ligation prevents T cell activation. J. Immunol.173, 945–954 (2004). CASPubMed Google Scholar
Parry, R. V. et al. CTLA-4 and PD-1 receptors inhibit T-cell activation by distinct mechanisms. Mol. Cell. Biol.25, 9543–9553 (2005). CASPubMedPubMed Central Google Scholar
Park, J.-J. et al. B7-H1/CD80 interaction is required for the induction and maintenance of peripheral T-cell tolerance. Blood116, 1291–1298 (2010). CASPubMedPubMed Central Google Scholar
Paterson, A. M. et al. The programmed death-1 ligand 1:B7-1 pathway restrains diabetogenic effector T cells in vivo. J. Immunol.187, 1097–1105 (2011). CASPubMed Google Scholar
Nishimura, H. et al. Autoimmune dilated cardiomyopathy in PD-1 receptor-deficient mice. Science291, 319–322 (2001). CASPubMed Google Scholar
Nishimura, H. et al. Development of lupus-like autoimmune diseases by disruption of the PD-1 gene encoding an ITIM motif-carrying immunoreceptor. Immunity11, 141–151 (1999). CASPubMed Google Scholar
Okazaki, T. & Honjo, T. PD-1 and PD-1 ligands: from discovery to clinical application. Int. Immunol.19, 813–824 (2007). CASPubMed Google Scholar
Larkin, J. et al. Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. N. Engl. J. Med.373, 23–34 (2015). PubMedPubMed Central Google Scholar
Brahmer, J. et al. Nivolumab versus docetaxel in advanced squamous-cell non-small-cell lung cancer. N. Engl. J. Med.373, 123–134 (2015). CASPubMedPubMed Central Google Scholar
U.S. Food and Drug Administation. FDA expands approved use of Opdivo in advanced lung cancer. [online], (2014).
U.S. Food and Drug Administation. FDA approves Keytruda for advanced non-small cell lung cancer. [online], (2015).
Topalian, S. L. et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N. Engl. J. Med.366, 2443–2454 (2012). CASPubMedPubMed Central Google Scholar
Brahmer, J. R. et al. Nivolumab (anti-PD-1, BMS-936558, ONO-4538) in patients (pts) with advanced non-small-cell lung cancer (NSCLC): survival and clinical activity by subgroup analysis [abstract]. J. Clin. Oncol.32 (Suppl.), 8112 (2014). Google Scholar
Powles, T. et al. MPDL3280A (anti-PD-L1) treatment leads to clinical activity in metastatic bladder cancer. Nature515, 558–562 (2014). CASPubMed Google Scholar
Ansell, S. M. et al. PD-1 blockade with nivolumab in relapsed or refractory Hodgkin's lymphoma. N. Engl. J. Med.372, 311–319 (2014). PubMedPubMed Central Google Scholar
Brahmer, J. R. et al. Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N. Engl. J. Med.366, 2455–2465 (2012). CASPubMedPubMed Central Google Scholar
Huard, B. et al. Cellular expression and tissue distribution of the human LAG-3-encoded protein, an MHC class II ligand. Immunogenetics39, 213–217 (1994). CASPubMed Google Scholar
Huard, B. et al. CD4/major histocompatibility complex class II interaction analyzed with CD4- and lymphocyte activation gene-3 (LAG-3)–Ig fusion proteins. Eur. J. Immunol.25, 2718–2721 (1995). CASPubMed Google Scholar
Huang, C.-T. et al. Role of LAG-3 in regulatory T cells. Immunity21, 503–513 (2004). CASPubMed Google Scholar
Okamura, T. et al. CD4+CD25−LAG3+ regulatory T cells controlled by the transcription factor Egr-2. Proc. Natl Acad. Sci. USA106, 13974–13979 (2009). CASPubMedPubMed Central Google Scholar
Blackburn, S. D. et al. Coregulation of CD8+ T cell exhaustion by multiple inhibitory receptors during chronic viral infection. Nat. Immunol.10, 29–37 (2009). CASPubMed Google Scholar
Butler, N. S. et al. Therapeutic blockade of PD-L1 and LAG-3 rapidly clears established blood-stage Plasmodium infection. Nat. Immunol.13, 188–195 (2012). CAS Google Scholar
Woo, S.-R. et al. Immune inhibitory molecules LAG-3 and PD-1 synergistically regulate T-cell function to promote tumoral immune escape. Cancer Res.72, 917–927 (2012). CASPubMed Google Scholar
Triebel, F., Hacene, K. & Pichon, M.-F. A soluble lymphocyte activation gene-3 (sLAG-3) protein as a prognostic factor in human breast cancer expressing estrogen or progesterone receptors. Cancer Lett.235, 147–153 (2006). CASPubMed Google Scholar
Brignone, C. et al. A phase I pharmacokinetic and biological correlative study of IMP321, a novel MHC class II agonist, in patients with advanced renal cell carcinoma. Clin. Cancer Res.15, 6225–6231 (2009). CASPubMed Google Scholar
US National Library of Science. ClinicalTrials.gov[online], (2016).
Jin, H.-T. et al. Cooperation of Tim-3 and PD-1 in CD8 T-cell exhaustion during chronic viral infection. Proc. Natl Acad. Sci. USA107, 14733–14738 (2010). CASPubMedPubMed Central Google Scholar
Zhu, C. et al. The Tim-3 ligand galectin-9 negatively regulates T helper type 1 immunity. Nat. Immunol.6, 1245–1252 (2005). CASPubMed Google Scholar
Chiba, S. et al. Tumor-infiltrating DCs suppress nucleic acid-mediated innate immune responses through interactions between the receptor TIM-3 and the alarmin HMGB1. Nat. Immunol.13, 832–842 (2012). CASPubMedPubMed Central Google Scholar
Nakayama, M. et al. Tim-3 mediates phagocytosis of apoptotic cells and cross-presentation. Blood113, 3821–3830 (2009). CASPubMed Google Scholar
Huang, Y.-H. et al. CEACAM1 regulates TIM-3-mediated tolerance and exhaustion. Nature517, 386–390 (2015). CASPubMed Google Scholar
Ngiow, S. F. et al. Anti-TIM3 antibody promotes T cell IFN-γ-mediated antitumor immunity and suppresses established tumors. Cancer Res.71, 3540–3551 (2011). CASPubMed Google Scholar
Sakuishi, K. et al. Targeting Tim-3 and PD-1 pathways to reverse T cell exhaustion and restore anti-tumor immunity. J. Exp. Med.207, 2187–2194 (2010). CASPubMedPubMed Central Google Scholar
Fourcade, J. et al. Upregulation of Tim-3 and PD-1 expression is associated with tumor antigen-specific CD8+ T cell dysfunction in melanoma patients. J. Exp. Med.207, 2175–2186 (2010). CASPubMedPubMed Central Google Scholar
Johnston, R. J. et al. The immunoreceptor TIGIT regulates antitumor and antiviral CD8+ T cell effector function. Cancer Cell26, 923–937 (2014). CASPubMed Google Scholar
Lozano, E., Dominguez-Villar, M., Kuchroo, V. & Hafler, D. A. The TIGIT/CD226 axis regulates human T cell function. J. Immunol.188, 3869–3875 (2012). CASPubMed Google Scholar
Kurtulus, S. et al. Mechanisms of TIGIT-driven immune suppression in cancer. J. Immunother. Cancer2, O13 (2014). PubMed Central Google Scholar
Khalil, D. N. et al. The new era of cancer immunotherapy: manipulating T-cell activity to overcome malignancy. Adv. Cancer Res.128, 1–68 (2015). CASPubMed Google Scholar
Bartkowiak, T. & Curran, M. A. 4-1BB agonists: multi-potent potentiators of tumor immunity. Front. Oncol.5, 117 (2015). PubMedPubMed Central Google Scholar
Lee, H.-W. et al. 4-1BB promotes the survival of CD8+ T lymphocytes by increasing expression of Bcl-xL and Bfl-1. J. Immunol.169, 4882–4888 (2002). PubMed Google Scholar
Stärck, L., Scholz, C., Dörken, B. & Daniel, P. T. Costimulation by CD137/4-1BB inhibits T cell apoptosis and induces Bcl-xL and c-FLIPshort via phosphatidylinositol 3-kinase and AKT/protein kinase B. Eur. J. Immunol.35, 1257–1266 (2005). PubMed Google Scholar
Shuford, W. W. et al. 4-1BB costimulatory signals preferentially induce CD8+ T cell proliferation and lead to the amplification in vivo of cytotoxic T cell responses. J. Exp. Med.186, 47–55 (1997). CASPubMedPubMed Central Google Scholar
Vinay, D. S. & Kwon, B. S. 4-1BB (CD137), an inducible costimulatory receptor, as a specific target for cancer therapy. BMB Rep.47, 122–129 (2014). PubMedPubMed Central Google Scholar
Curran, M. A. et al. Combination CTLA-4 blockade and 4-1BB activation enhances tumor rejection by increasing T-cell infiltration, proliferation, and cytokine production. PLoS ONE6, e19499 (2011). CASPubMedPubMed Central Google Scholar
Uno, T. et al. Eradication of established tumors in mice by a combination antibody-based therapy. Nat. Med.12, 693–698 (2006). CASPubMed Google Scholar
Tirapu, I. et al. Improving efficacy of interleukin-12-transfected dendritic cells injected into murine colon cancer with anti-CD137 monoclonal antibodies and alloantigens. Int. J. Cancer110, 51–60 (2004). CASPubMed Google Scholar
Shi, W. & Siemann, D. W. Augmented antitumor effects of radiation therapy by 4-1BB antibody (BMS-469492) treatment. Anticancer Res.26, 3445–3453 (2006). CASPubMed Google Scholar
Molckovsky, A. & Siu, L. L. First-in-class, first-in-human phase I results of targeted agents: highlights of the 2008 American Society of Clinical Oncology meeting. J. Hematol. Oncol.1, 20 (2008). PubMedPubMed Central Google Scholar
Garber, K. Beyond ipilimumab: new approaches target the immunological synapse. J. Natl Cancer Inst.103, 1079–1082 (2011). CASPubMed Google Scholar
US National Library of Science. ClinicalTrials.gov[online], (2016).
James, A. M., Cohen, A. D. & Campbell, K. S. Combination immune therapies to enhance anti-tumor responses by NK cells. Front. Immunol.4, 481 (2013). Google Scholar
Schaer, D. A., Cohen, A. D. & Wolchok, J. D. Anti-GITR antibodies — potential clinical applications for tumor immunotherapy. Curr. Opin. Investig. Drugs11, 1378–1386 (2010). CASPubMed Google Scholar
Kanamaru, F. et al. Costimulation via glucocorticoid-induced TNF receptor in both conventional and CD25+ regulatory CD4+ T cells. J. Immunol.172, 7306–7314 (2004). CASPubMed Google Scholar
Ronchetti, S. et al. Glucocorticoid-induced TNFR-related protein lowers the threshold of CD28 costimulation in CD8+ T cells. J. Immunol.179, 5916–5926 (2007). CASPubMed Google Scholar
Valzasina, B. et al. Triggering of OX40 (CD134) on CD4+CD25+ T cells blocks their inhibitory activity: a novel regulatory role for OX40 and its comparison with GITR. Blood105, 2845–2851 (2005). CASPubMed Google Scholar
Mitsui, J. et al. Two distinct mechanisms of augmented antitumor activity by modulation of immunostimulatory/inhibitory signals. Clin. Cancer Res.16, 2781–2791 (2010). CASPubMed Google Scholar
Bulliard, Y. et al. Activating Fc γ receptors contribute to the antitumor activities of immunoregulatory receptor-targeting antibodies. J. Exp. Med.210, 1685–1693 (2013). CASPubMedPubMed Central Google Scholar
Cohen, A. D. et al. Agonist anti-GITR monoclonal antibody induces melanoma tumor immunity in mice by altering regulatory T cell stability and intra-tumor accumulation. PLoS ONE5, e10436 (2010). PubMedPubMed Central Google Scholar
Schaer, D. A. et al. GITR pathway activation abrogates tumor immune suppression through loss of regulatory T cell lineage stability. Cancer Immunol. Res.1, 320–331 (2013). CASPubMed Google Scholar
US National Library of Science. ClinicalTrials.gov[online], (2015).
US National Library of Science. ClinicalTrials.gov[online],(2015).
Eliopoulos, A. G. & Young, L. S. The role of the CD40 pathway in the pathogenesis and treatment of cancer. Curr. Opin. Pharmacol.4, 360–367 (2004). CASPubMed Google Scholar
Van Kooten, C. & Banchereau, J. CD40–CD40 ligand. J. Leukoc. Biol.67, 2–17 (2000). CASPubMed Google Scholar
Kawabe, T. et al. The immune responses in CD40-deficient mice: impaired immunoglobulin class switching and germinal center formation. Immunity1, 167–178 (1994). CASPubMed Google Scholar
Burington, B. et al. CD40 pathway activation status predicts response to CD40 therapy in diffuse large B cell lymphoma. Sci. Transl. Med.3, 74ra22 (2011). PubMed Google Scholar
Beatty, G. L. et al. CD40 agonists alter tumor stroma and show efficacy against pancreatic carcinoma in mice and humans. Science331, 1612–1616 (2011). CASPubMedPubMed Central Google Scholar
Baumann, R. et al. Functional expression of CD134 by neutrophils. Eur. J. Immunol.34, 2268–2275 (2004). CASPubMed Google Scholar
Rogers, P. R. et al. OX40 promotes Bcl-xL and Bcl-2 expression and is essential for long-term survival of CD4 T cells. Immunity15, 445–455 (2001). CASPubMed Google Scholar
Arestides, R. S. S. et al. Costimulatory molecule OX40L is critical for both Th1 and Th2 responses in allergic inflammation. Eur. J. Immunol.32, 2874–2880 (2002). CASPubMed Google Scholar
Griseri, T., Asquith, M., Thompson, C. & Powrie, F. OX40 is required for regulatory T cell-mediated control of colitis. J. Exp. Med.207, 699–709 (2010). CASPubMedPubMed Central Google Scholar
Hirschhorn-Cymerman, D. et al. OX40 engagement and chemotherapy combination provides potent antitumor immunity with concomitant regulatory T cell apoptosis. J. Exp. Med.206, 1103–1116 (2009). CASPubMedPubMed Central Google Scholar
Pan, P.-Y. et al. OX40 ligation enhances primary and memory cytotoxic T lymphocyte responses in an immunotherapy for hepatic colon metastases. Mol. Ther.6, 528–536 (2002). CASPubMed Google Scholar
Curti, B. D. et al. OX40 is a potent immune-stimulating target in late-stage cancer patients. Cancer Res.73, 7189–7198 (2013). CASPubMedPubMed Central Google Scholar
US National Library of Science. ClinicalTrials.gov[online], (2015).
US National Library of Science. ClinicalTrials.gov[online], (2015).
US National Library of Science. ClinicalTrials.gov[online], (2015).
US National Library of Science. ClinicalTrials.gov[online], (2015).
Naidoo, J., Page, D. B. & Wolchok, J. D. Immune modulation for cancer therapy. Br. J. Cancer111, 2214–2219 (2014). CASPubMedPubMed Central Google Scholar
Gross, G., Waks, T. & Eshhar, Z. Expression of immunoglobulin-T-cell receptor chimeric molecules as functional receptors with antibody-type specificity. Proc. Natl Acad. Sci. USA86, 10024–10028 (1989). CASPubMedPubMed Central Google Scholar
Brentjens, R. J. et al. Eradication of systemic B-cell tumors by genetically targeted human T lymphocytes co-stimulated by CD80 and interleukin-15. Nat. Med.9, 279–286 (2003). CASPubMed Google Scholar
Brentjens, R. J. et al. Genetically targeted T cells eradicate systemic acute lymphoblastic leukemia xenografts. Clin. Cancer Res.13, 5426–5435 (2007). CASPubMed Google Scholar
Davila, M. L. et al. Efficacy and toxicity management of 19-28z CAR T cell therapy in B cell acute lymphoblastic leukemia. Sci. Transl. Med.6, 224ra25 (2014). PubMedPubMed Central Google Scholar
Imai, C. et al. Chimeric receptors with 4-1BB signaling capacity provoke potent cytotoxicity against acute lymphoblastic leukemia. Leukemia18, 676–684 (2004). CASPubMed Google Scholar
Maude, S. L. et al. Chimeric antigen receptor T cells for sustained remissions in leukemia. N. Engl. J. Med.371, 1507–1517 (2014). PubMedPubMed Central Google Scholar
Hombach, A. A. et al. OX40 costimulation by a chimeric antigen receptor abrogates CD28 and IL-2 induced IL-10 secretion by redirected CD4+ T cells. Oncoimmunology1, 458–466 (2012). PubMedPubMed Central Google Scholar
Guedan, S. et al. ICOS-based chimeric antigen receptors program bipolar TH17/TH1 cells. Blood124, 1070–1080 (2014). CASPubMedPubMed Central Google Scholar
US National Library of Science. ClinicalTrials.gov[online], (2015).
Pegram, H. J. et al. Tumor-targeted T cells modified tosecrete IL-12 eradicate systemic tumors without need for prior conditioning. Blood119, 4133–4141 (2012). CASPubMedPubMed Central Google Scholar
Zhao, Z. et al. Structural design of engineered costimulation determines tumor rejection kinetics and persistence of CAR T cells. Cancer Cell28, 415–428 (2015). CASPubMedPubMed Central Google Scholar
Curran, K. J. et al. Enhancing antitumor efficacy of chimeric antigen receptor T cells through constitutive CD40L expression. Mol. Ther.23, 769–778 (2015). CASPubMedPubMed Central Google Scholar
Lee, D. W. et al. T cells expressing CD19 chimeric antigen receptors for acute lymphoblastic leukaemia in children and young adults: a phase 1 dose-escalation trial. Lancet385, 517–528 (2014). PubMedPubMed Central Google Scholar
Fielding, A. K. et al. Outcome of 609 adults after relapse of acute lymphoblastic leukemia (ALL); an MRC UKALL12/ECOG 2993 study. Blood109, 944–950 (2007). CASPubMed Google Scholar
Pegram, H. J., Smith, E. L., Rafiq, S. & Brentjens, R. J. CAR therapy for hematological cancers: can success seen in the treatment of B-cell acute lymphoblastic leukemia be applied to other hematological malignancies? Immunotherapy7, 545–561 (2015). CASPubMed Google Scholar
Park, J. H. et al. CD19-Targeted 19-28z CAR modified autologous T cells induce high rates of complete remission and durable responses in adult patients with relapsed, refractory B-cell ALL. Blood124, 382 (2014). Google Scholar
Park, J. H. et al. Efficacy and safety of CD19-targeted 19-28z CAR modified T cells in adult patients with relapsed or refractory B-ALL. J. Clin. Oncol.33, 7010 (2015). Google Scholar
Grupp, S. A. et al. T cells engineered with a chimeric antigen receptor (CAR) targeting CD19 (CTL019) have long term persistence and induce durable remissions in children with relapsed, refractory ALL. Blood124, 380 (2014). Google Scholar
Grupp, S. A. Immunotherapy for childhood leukemia. Presented at the 2015 ASCO Annual Meeting (2015).
Lee, D. W. et al. Current concepts in the diagnosis and management of cytokine release syndrome. Blood124, 188–195 (2014). CASPubMedPubMed Central Google Scholar
Turtle, C. et al. Immunotherapy with CD19-specific chimeric antigen receptor (CAR)-modified T cells of defined subset composition. J. Clin. Oncol.33, 3006 (2015). Google Scholar
Kebriaei, P. et al. Adoptive therapy using sleeping beauty gene transfer system and artificial antigen presenting cells to manufacture T cells expressing CD19-specific chimeric antigen receptor. Blood124, 311 (2014). Google Scholar
Porter, D. L. et al. Randomized, phase II dose optimization study of chimeric antigen receptor modified T cells directed against CD19 (CTL019) in patients with relapsed, refractory CLL. Blood124, 1982 (2014). Google Scholar
Beatty, G. L. et al. Safety and antitumor activity of chimeric antigen receptor modified T cells in patients with chemotherapy refractory metastatic pancreatic cancer [abstract]. J. Clin. Oncol.33 (Suppl.), 3007 (2015). Google Scholar
Howlader, N. et al. SEER Cancer Statistics Review, 1975–2012. National Cancer Institute[online], (2015).
Aspinall, R. & Andrew, D. Thymic involution in aging. J. Clin. Immunol.20, 250–256 (2000). CASPubMed Google Scholar
Goronzy, J. J., Li, G., Yu, M. & Weyand, C. M. Signaling pathways in aged T cells — a reflection of T cell differentiation, cell senescence and host environment. Semin. Immunol.24, 365–372 (2012). CASPubMedPubMed Central Google Scholar
Croft, M. Co-stimulatory members of the TNFR family: keys to effective T-cell immunity? Nat. Rev. Immunol.3, 609–620 (2003). CASPubMed Google Scholar
Brentjens, R. J. et al. Safety and persistence of adoptively transferred autologous CD19-targeted T cells in patients with relapsed or chemotherapy refractory B-cell leukemias. Blood118, 4817–4828 (2011). CASPubMedPubMed Central Google Scholar
Park, J. H. et al. Impact of the conditioning chemotherapy on outcomes in adoptive T cell therapy: results from a phase I clinical trial of autologous CD19-targeted T cells for patients with relapsed CLL. Blood120, 1797 (2012). Google Scholar
Ramos, C. et al. Clinical responses in patients infused with T lymphocytes redirected to target κ-light immunoglobulin chain. Blood122, 506 (2013). Google Scholar
Hahn, T. et al. The role of cytotoxic therapy with hematopoietic stem cell transplantation in the therapy of acute lymphoblastic leukemia in adults: an evidence-based review. Biol. Blood Marrow Transplant.12, 1–30 (2006). CASPubMed Google Scholar
Eapen, M. et al. Outcomes after HLA-matched sibling transplantation or chemotherapy in children with B-precursor acute lymphoblastic leukemia in a second remission: a collaborative study of the Children's Oncology Group and the Center for International Blood and Marrow Transplant Research. Blood107, 4961–4967 (2006). CASPubMedPubMed Central Google Scholar
Porter, D. L. et al. Chimeric antigen receptor-modified T cells in chronic lymphoid leukemia. N. Engl. J. Med.365, 725–733 (2011). CASPubMedPubMed Central Google Scholar
Porter, D. L. et al. Chimeric antigen receptor T cells persist and induce sustained remissions in relapsed refractory chronic lymphocytic leukemia. Sci. Transl. Med.7, 303ra139 (2015). PubMedPubMed Central Google Scholar
Christopoulos, P. et al. Definition and characterization of the systemic T-cell dysregulation in untreated indolent B-cell lymphoma and very early CLL. Blood117, 3836–3846 (2011). CASPubMed Google Scholar
Riches, J. C. et al. T cells from CLL patients exhibit features of T-cell exhaustion but retain capacity for cytokine production. Blood121, 1612–1621 (2013). CASPubMedPubMed Central Google Scholar
McClanahan, F. et al. Mechanisms of PD-L1/PD-1 mediated CD8 T-cell dysfunction in the context of aging-related immune defects in the Eμ-TCL1 CLL mouse model. Blood126, 212–221 (2015). CASPubMedPubMed Central Google Scholar
D'Arena, G. et al. Regulatory T-cell number is increased in chronic lymphocytic leukemia patients and correlates with progressive disease. Leuk. Res.35, 363–368 (2011). PubMed Google Scholar
Jitschin, R. et al. CLL-cells induce IDOhi CD14+HLA-DRlo myeloid-derived suppressor cells that inhibit T-cell responses and promote TRegs . Blood124, 750–760 (2014). CASPubMed Google Scholar
Boissard, F. et al. Nurse like cells: chronic lymphocytic leukemia associated macrophages. Leuk. Lymphoma56, 1570–1572 (2015). CASPubMed Google Scholar
Burger, J. A. et al. Blood-derived nurse-like cells protect chronic lymphocytic leukemia B cells from spontaneous apoptosis through stromal cell-derived factor-1. Blood96, 2655–2663 (2000). CASPubMed Google Scholar
Saulep-Easton, D. et al. The BAFF receptor TACI controls IL-10 production by regulatory B cells and CLL B cells. Leukemia30, 163–172 (2015). PubMedPubMed Central Google Scholar
Kochenderfer, J. N. et al. Chemotherapy-refractory diffuse large B-cell lymphoma and indolent B-cell malignancies can be effectively treated with autologous T cells expressing an anti-CD19 chimeric antigen receptor. J. Clin. Oncol.33, 540–549 (2014). PubMedPubMed Central Google Scholar
Schuster, S. J. et al. Phase IIa trial of chimeric antigen receptor modified T cells directed against CD19 (CTL019) in patients with relapsed or refractory CD19+ lymphomas. J. Clin. Oncol.33, 8516 (2015). Google Scholar
Sauter, C. S. et al. Phase I trial of 19-28z chimeric antigen receptor modified T cells (19-28z CAR-T) post-high dose therapy and autologous stem cell transplant (HDT-ASCT) for relapsed and refractory (rel/ref) aggressive B-cell non-Hodgkin lymphoma (B-NHL). J. Clin. Oncol.33, 8515 (2015). Google Scholar
Savoldo, B. et al. CD28 costimulation improves expansion and persistence of chimeric antigen receptor-modified T cells in lymphoma patients. J. Clin. Invest.121, 1822–1826 (2011). CASPubMedPubMed Central Google Scholar
Maude, S. L., Barrett, D., Teachey, D. T. & Grupp, S. A. Managing cytokine release syndrome associated with novel T cell-engaging therapies. Cancer J.20, 119–122 (2014). CASPubMedPubMed Central Google Scholar
Frey, N. V. et al. Refractory cytokine release syndrome in recipients of chimeric antigen receptor (CAR) T cells. Blood124, 2296 (2014). Google Scholar
Haso, W. et al. Anti-CD22-chimeric antigen receptors targeting B-cell precursor acute lymphoblastic leukemia. Blood121, 1165–1174 (2013). CASPubMedPubMed Central Google Scholar
Berger, C. et al. Safety of targeting ROR1 in primates with chimeric antigen receptor-modified T cells. Cancer Immunol. Res.3, 206–216 (2015). CASPubMed Google Scholar
Hudecek, M. et al. The B-cell tumor-associated antigen ROR1 can be targeted with T cells modified to express a ROR1-specific chimeric antigen receptor. Blood116, 4532–4541 (2010). CASPubMedPubMed Central Google Scholar
Ying, Z.-T. et al. First-in-patient proof of safety and efficacy of a 4th generation chimeric antigen receptor-modified T cells for the treatment of relapsed or refractory CD30 positive lymphomas [poster]. Presented at the 13th International Conference on Malignant Lymphoma (2015).
Carpenter, R. O. et al. B-cell maturation antigen is a promising target for adoptive T-cell therapy of multiple myeloma. Clin. Cancer Res.19, 2048–2060 (2013). CASPubMedPubMed Central Google Scholar
Chu, J. et al. CS1-specific chimeric antigen receptor (CAR)-engineered natural killer cells enhance in vitro and in vivo antitumor activity against human multiple myeloma. Leukemia28, 917–927 (2014). CASPubMed Google Scholar
Mihara, K. et al. T-cell immunotherapy with a chimeric receptor against CD38 is effective in eliminating myeloma cells. Leukemia26, 365–367 (2012). CASPubMed Google Scholar
Drent, E. et al. CD38 chimeric antigen receptor engineered T cells as therapeutic tools for multiple myeloma. Blood124, 4759 (2014). Google Scholar
Guo, B. et al. CD138-directed adoptive immunotherapy of chimeric antigen receptor (CAR)-modified T cells for multiple myeloma. J. Cell. Immunother.http://dx.doi.org/10.1016/j.jocit.2014.11.001, (2015).
Kenderian, S. S. et al. CD33 specific chimeric antigen receptor T cells exhibit potent preclinical activity against human acute myeloid leukemia. Leukemia29, 1637–1647 (2015). CASPubMedPubMed Central Google Scholar
Gill, S. et al. Preclinical targeting of human acute myeloid leukemia and myeloablation using chimeric antigen receptor-modified T cells. Blood123, 2343–2354 (2014). CASPubMedPubMed Central Google Scholar
Tettamanti, S. et al. Targeting of acute myeloid leukaemia by cytokine-induced killer cells redirected with a novel CD123-specific chimeric antigen receptor. Br. J. Haematol.161, 389–401 (2013). CASPubMed Google Scholar
Mardiros, A. et al. T cells expressing CD123-specific chimeric antigen receptors exhibit specific cytolytic effector functions and antitumor effects against human acute myeloid leukemia. Blood122, 3138–3148 (2013). CASPubMedPubMed Central Google Scholar
Marusyk, A. & Polyak, K. Tumor heterogeneity: causes and consequences. Biochim. Biophys. Acta1805, 105–117 (2010). CASPubMed Google Scholar
Fidler, I. J. & Hart, I. R. Biological diversity in metastatic neoplasms: origins and implications. Science217, 998–1003 (1982). CASPubMed Google Scholar
Adusumilli, P. S. et al. Regional delivery of mesothelin-targeted CAR T cell therapy generates potent and long-lasting CD4-dependent tumor immunity. Sci. Transl. Med.6, 261ra151 (2014). PubMedPubMed Central Google Scholar
Beatty, G. L. et al. Mesothelin-specific chimeric antigen receptor mRNA-engineered T cells induce anti-tumor activity in solid malignancies. Cancer Immunol. Res.2, 112–120 (2014). CASPubMed Google Scholar
Tanyi, J. et al. Safety and feasibility of chimeric antigen receptor modified T cells directed against mesothelin (CART-meso) in patients with mesothelin expressing cancers [abstract]. Cancer Res.75 (Suppl.), CT105 (2015). Google Scholar
Louis, C. U. et al. Antitumor activity and long-term fate of chimeric antigen receptor-positive T cells in patients with neuroblastoma. Blood118, 6050–6056 (2011). CASPubMedPubMed Central Google Scholar
Singh, N. et al. Nature of tumor control by permanently and transiently modified GD2 chimeric antigen receptor T cells in xenograft models of neuroblastoma. Cancer Immunol. Res.2, 1059–1070 (2014). CASPubMedPubMed Central Google Scholar
Johnson, L. A. et al. Rational development and characterization of humanized anti-EGFR variant III chimeric antigen receptor T cells for glioblastoma. Sci. Transl. Med.7, 275ra22 (2015). CASPubMedPubMed Central Google Scholar
Koneru, M. et al. IL-12 secreting tumor-targeted chimeric antigen receptor T cells eradicate ovarian tumors in vivo. Oncoimmunology4, e994446 (2015). PubMedPubMed Central Google Scholar
Koneru, M. et al. A phase I clinical trial of adoptive T cell therapy using IL-12 secreting MUC-16ecto directed chimeric antigen receptors for recurrent ovarian cancer. J. Transl. Med.13, 102 (2015). PubMedPubMed Central Google Scholar
Grupp, S. A. et al. Chimeric antigen receptor-modified T cells for acute lymphoid leukemia. N. Engl. J. Med.368, 1509–1518 (2013). CASPubMedPubMed Central Google Scholar
Moon, E. K. et al. Multifactorial T-cell hypofunction that is reversible can limit the efficacy of chimeric antigen receptor-transduced human T cells in solid tumors. Clin. Cancer Res.20, 4262–4273 (2014). CASPubMedPubMed Central Google Scholar
Ankri, C. et al. Human T cells engineered to express a programmed death 1/28 costimulatory retargeting molecule display enhanced antitumor activity. J. Immunol.191, 4121–4129 (2013). CASPubMed Google Scholar
Kobold, S. et al. Impact of a new fusion receptor on PD-1-mediated immunosuppression in adoptive T cell therapy. J. Natl. Cancer Inst.107, djv146 (2015). PubMedPubMed Central Google Scholar
Heemskerk, B. et al. Adoptive cell therapy for patients with melanoma, using tumor-infiltrating lymphocytes genetically engineered to secrete interleukin-2. Hum. Gene Ther.19, 496–510 (2008). CASPubMed Google Scholar
Hoyos, V. et al. Engineering CD19-specific T lymphocytes with interleukin-15 and a suicide gene to enhance their anti-lymphoma/leukemia effects and safety. Leukemia24, 1160–1170 (2010). CASPubMedPubMed Central Google Scholar
Leonard, J. P. et al. Effects of single-dose interleukin-12 exposure on interleukin-12-associated toxicity and interferon-γ production. Blood90, 2541–2548 (1997). CASPubMed Google Scholar
Chinnasamy, D. et al. Local delivery of interleukin-12 using T cells targeting VEGF receptor-2 eradicates multiple vascularized tumors in mice. Clin. Cancer Res.18, 1672–1683 (2012). CASPubMedPubMed Central Google Scholar
Kerkar, S. P. et al. IL-12 triggers a programmatic change in dysfunctional myeloid-derived cells within mouse tumors. J. Clin. Invest.121, 4746–4757 (2011). CASPubMedPubMed Central Google Scholar
Kerkar, S. P. et al. Collapse of the tumor stroma is triggered by IL-12 induction of Fas. Mol. Ther.21, 1369–1377 (2013). CASPubMedPubMed Central Google Scholar
Pegram, H. J. et al. IL-12-secreting CD19-targeted cord blood-derived T cells for the immunotherapy of B-cell acute lymphoblastic leukemia. Leukemia29, 415–422 (2015). CASPubMed Google Scholar
Dunn, G. P. et al. Cancer immunoediting: from immunosurveillance to tumor escape. Nat. Immunol.3, 991–998 (2002). CASPubMed Google Scholar
Koebel, C. M. et al. Adaptive immunity maintains occult cancer in an equilibrium state. Nature450, 903–907 (2007). CASPubMed Google Scholar
Schreiber, R. D., Old, L. J. & Smyth, M. J. Cancer immunoediting: integrating immunity's roles in cancer suppression and promotion. Science331, 1565–1570 (2011). CASPubMed Google Scholar
Shankaran, V. et al. IFNγ and lymphocytes prevent primary tumour development and shape tumour immunogenicity. Nature410, 1107–1111 (2001). CASPubMed Google Scholar
Vesely, M. D., Kershaw, M. H., Schreiber, R. D. & Smyth, M. J. Natural innate and adaptive immunity to cancer. Annu. Rev. Immunol.29, 235–271 (2011). CASPubMed Google Scholar
Matsushita, H. et al. Cancer exome analysis reveals a T-cell-dependent mechanism of cancer immunoediting. Nature482, 400–404 (2012). CASPubMedPubMed Central Google Scholar
John, L. B. et al. Anti-PD-1 antibody therapy potently enhances the eradication of established tumors by gene-modified T cells. Clin. Cancer Res.19, 5636–5646 (2013). CASPubMed Google Scholar
Garon, E. B. et al. Pembrolizumab for the treatment of non-small-cell lung cancer. N. Engl. J. Med.372, 2018–2028 (2015). PubMed Google Scholar
Skoulidis, F. et al. Co-occurring genomic alterations define major subsets of _KRAS_-mutant lung adenocarcinoma with distinct biology, immune profiles, and therapeutic vulnerabilities. Cancer Discov.5, 860–877 (2015). CASPubMedPubMed Central Google Scholar
US National Library of Science. ClinicalTrials.gov[online], (2015).
Robbins, P. F. et al. Mining exomic sequencing data to identify mutated antigens recognized by adoptively transferred tumor-reactive T cells. Nat. Med.19, 747–752 (2013). CASPubMedPubMed Central Google Scholar
Rosenberg, S. A. et al. Durable complete responses in heavily pretreated patients with metastatic melanoma using T-cell transfer immunotherapy. Clin. Cancer Res.17, 4550–4557 (2011). CASPubMedPubMed Central Google Scholar
Dudley, M. E. et al. Cancer regression and autoimmunity in patients after clonal repopulation with antitumor lymphocytes. Science298, 850–854 (2002). CASPubMedPubMed Central Google Scholar
Tran, E. et al. Cancer immunotherapy based on mutation-specific CD4+ T cells in a patient with epithelial cancer. Science344, 641–645 (2014). CASPubMedPubMed Central Google Scholar
Stafford, J. H. et al. Colony stimulating factor 1 receptor inhibition delays recurrence of glioblastoma after radiation by altering myeloid cell recruitment and polarization. Neuro Oncol.http://dx.doi.org/10.1093/neuonc/nov272, (2015).
Lipson, E. J. et al. Safety and immunologic correlates of melanoma GVAX, a GM-CSF secreting allogeneic melanoma cell vaccine administered in the adjuvant setting. J. Transl. Med.13, 214 (2015). PubMedPubMed Central Google Scholar
DiLillo, D. J. & Ravetch, J. V. Differential Fc-receptor engagement drives an anti-tumor vaccinal effect. Cell161, 1035–1045 (2015). CASPubMedPubMed Central Google Scholar
Kraman, M. et al. Suppression of antitumor immunity by stromal cells expressing fibroblast activation protein-α. Science330, 827–830 (2010). CASPubMed Google Scholar