Induction and suppression of RNA silencing: insights from viral infections (original) (raw)
Bernstein, E., Caudy, A. A., Hammond, S. M. & Hannon, G. J. Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature409, 363–366 (2001). ArticleCASPubMed Google Scholar
Fire, A. et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature391, 806–811 (1998). ArticleCASPubMed Google Scholar
Waterhouse, P. M. & Helliwell, C. A. Exploring plant genomes by RNA-induced gene silencing. Nature Rev. Genet.4, 29–38 (2003). ArticleCASPubMed Google Scholar
Hannon, G. J. & Rossi, J. J. Unlocking the potential of the human genome with RNA interference. Nature431, 371–378 (2004). ArticleCASPubMed Google Scholar
Hamilton, A. J. & Baulcombe, D. C. A species of small antisense RNA in post-transcriptional gene silencing in plants. Science286, 950–952 (1999). This paper reports the discovery of siRNAs and shows their probable role in limiting virus infection in plants. ArticleCASPubMed Google Scholar
Zamore, P. D., Tuschl, T., Sharp, P. A. & Bartel, D. P. RNAi: Double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals. Cell101, 25–33 (2000). ArticleCASPubMed Google Scholar
Nykanen, A., Haley, B. & Zamore, P. D. ATP requirements and small interfering RNA structure in the RNA interference pathway. Cell107, 309–321 (2001). ArticleCASPubMed Google Scholar
Hammond, S. M., Bernstein, E., Beach, D. & Hannon, G. An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cell extracts. Nature404, 293–296 (2000). ArticleCASPubMed Google Scholar
Liu, J. et al. Argonaute2 is the catalytic engine of mammalian RNAi. Science305, 1437–1441 (2004). The authors demonstrate that AGO2 is the endonuclease that accounts for the catalytic activity of RISC during the RNAi reaction. ArticleCASPubMed Google Scholar
Kumagai, M. H. et al. Cytoplasmic inhibition of carotenoid biosynthesis with virus-derived RNA. Proc. Natl Acad. Sci. USA92, 1679–1683 (1995). ArticleCASPubMedPubMed Central Google Scholar
Ratcliff, F., MacFarlane, S. & Baulcombe, D. C. Gene silencing without DNA: RNA-mediated cross protection between viruses. Plant Cell11, 1207–1215 (1999). ArticleCASPubMedPubMed Central Google Scholar
Szittya, G., Molnar, A., Silhavy, D., Hornyik, C. & Burgyan, J. Short defective interfering RNAs of tombusviruses are not targeted but trigger post-transcriptional gene silencing against their helper virus. Plant Cell14, 359–372 (2002). One of the few analyses of antiviral RNA silencing that has been carried out in a genuine infection context, which demonstrates the pivotal role of silencing in the selection of defective interfering RNAs in tombusvirus-infected plants. ArticleCASPubMedPubMed Central Google Scholar
Jones, L., Ratcliff, F. & Baulcombe, D. C. RNA-directed transcriptional gene silencing in plants can be inherited independently of the RNA trigger and requires Met1 for maintenance. Curr. Biol.11, 747–757 (2001). ArticleCASPubMed Google Scholar
Jones, L. et al. RNA-DNA interactions and DNA methylation in post-transcriptional gene silencing. Plant Cell11, 2291–2301 (1999). CASPubMedPubMed Central Google Scholar
Hamilton, A. J., Voinnet, O., Chappell, L. & Baulcombe, D. C. Two classes of short interfering RNA in RNA silencing. EMBO J.21, 4671–4679 (2002). ArticleCASPubMedPubMed Central Google Scholar
Zilberman, D., Cao, X. & Jacobsen, S. E. ARGONAUTE4 control of locus-specific siRNA accumulation and DNA and histone methylation. Science299, 716–719 (2003). ArticleCASPubMed Google Scholar
Schramke, V. & Allshire, R. Hairpin RNAs and retrotransposon LTRs effect RNAi and chromatin-based gene silencing. Science301, 1069–1074 (2003). ArticleCASPubMed Google Scholar
Bartel, D. P. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell116, 281–297 (2004). ArticleCASPubMed Google Scholar
Olsen, P. H. & Ambros, V. The lin-4 regulatory RNA controls developmental timing in Caenorhabditis elegans by blocking LIN-14 protein synthesis after the initiation of translation. Dev. Biol.216, 671–680 (1999). ArticleCASPubMed Google Scholar
Llave, C., Xie, Z., Kasschau, K. D. & Carrington, J. C. Cleavage of Scarecrow-like mRNA targets directed by a class of Arabidopsis miRNA. Science297, 2053–2056 (2002). ArticleCASPubMed Google Scholar
Lacomme, C., Hrubikova, K. & Hein, I. Enhancement of virus-induced gene silencing through viral-based production of inverted-repeats. Plant J.34, 543–553 (2003). ArticleCASPubMed Google Scholar
Papaefthimiou, I. et al. Replicating potato spindle tuber viroid RNA is accompanied by short RNA fragments that are characteristic of post-transcriptional gene silencing. Nucleic Acids Res.29, 2395–2400 (2001). ArticleCASPubMedPubMed Central Google Scholar
Itaya, A., Folimonov, A., Matsuda, Y., Nelson, R. S. & Ding, B. Potato spindle tuber viroid as inducer of RNA silencing in infected tomato. Mol. Plant Microbe Interact.14, 1332–1334 (2001). ArticleCASPubMed Google Scholar
Denti, M. A., Boutla, A., Tsagris, M. & Tabler, M. Short interfering RNAs specific for potato spindle tuber viroid are found in the cytoplasm but not in the nucleus. Plant J.37, 762–769 (2004). ArticleCASPubMed Google Scholar
Papp, I. et al. Evidence for nuclear processing of plant micro RNA and short interfering RNA precursors. Plant Physiol.132, 1382–1390 (2003). ArticleCASPubMedPubMed Central Google Scholar
Kurihara, Y. & Watanabe, Y. Arabidopsis micro-RNA biogenesis through Dicer-like 1 protein functions. Proc. Natl Acad. Sci. USA101, 12753–12758 (2004). ArticleCASPubMedPubMed Central Google Scholar
Xie, Z. et al. Genetic and functional diversification of small RNA pathways in plants. PLoS Biol.2, e104 (2004). A genetic dissection of RNA-silencing pathways inA. thalianathat clearly establishes the functional specialization and specific subcellular localization of Dicer-like enzymes in plants. ArticlePubMedPubMed Central Google Scholar
Tahbaz, N. et al. Characterization of the interactions between mammalian PAZ PIWI domain proteins and Dicer. EMBO J. Rep.5, 189–194 (2004). ArticleCAS Google Scholar
Uhlirova, M. et al. Use of Sindbis virus-mediated RNA interference to demonstrate a conserved role of Broad-Complex in insect metamorphosis. Proc. Natl Acad. Sci. USA100, 15607–15612 (2003). ArticleCASPubMedPubMed Central Google Scholar
Lee, Y. S. et al. Distinct roles for Drosophila Dicer-1 and Dicer-2 in the siRNA/miRNA silencing pathways. Cell117, 69–81 (2004). ArticleCASPubMed Google Scholar
Okamura, K., Ishizuka, A., Siomi, H. & Siomi, M. C. Distinct roles for Argonaute proteins in small RNA-directed RNA cleavage pathways. Genes Dev.18, 1655–1666 (2004). ArticleCASPubMedPubMed Central Google Scholar
Li, H., Li, W. X. & Ding, S. W. Induction and suppression of RNA silencing by an animal virus. Science296, 1319–1321 (2002). This provides the first demonstration that RNA silencing limits virus accumulation in insect cells. ArticleCASPubMed Google Scholar
Li, W. X. et al. Interferon antagonist proteins of influenza and vaccinia viruses are suppressors of RNA silencing. Proc. Natl Acad. Sci. USA101, 1350–1355 (2004). ArticleCASPubMedPubMed Central Google Scholar
Keene, K. M. et al. RNA interference acts as a natural antiviral response to O'nyong–nyong virus (Alphavirus; Togaviridae) infection of Anopheles gambiae. Proc. Natl Acad. Sci. USA (2004).
Chellappan, P., Vanitharani, R. & Fauquet, C. M. Short interfering RNA accumulation correlates with host recovery in DNA virus-infected hosts, and gene silencing targets specific viral sequences. J. Virol.78, 7465–7477 (2004). ArticleCASPubMedPubMed Central Google Scholar
Muangsan, N., Beclin, C., Vaucheret, H. & Robertson, D. Geminivirus VIGS of endogenous genes requires SGS2/SDE1 and SGS3 and defines a new branch in the genetic pathway for silencing in plants. Plant J.38, 1004–1014 (2004). ArticleCASPubMed Google Scholar
Harper, G., Hull, R., Lockhart, B. & Olszewski, N. Viral sequences integrated into plant genomes. Annu. Rev. Phytopathol.40, 119–136 (2002). ArticleCASPubMed Google Scholar
Richert-Poggeler, K. R., Noreen, F., Schwarzacher, T., Harper, G. & Hohn, T. Induction of infectious petunia vein clearing (pararetro) virus from endogenous provirus in petunia. EMBO J.22, 4836–4845 (2003). ArticlePubMedPubMed Central Google Scholar
Mette, M. F. et al. Endogenous viral sequences and their potential contribution to heritable virus resistance in plants. EMBO J.21, 461–469 (2002). ArticleCASPubMedPubMed Central Google Scholar
Pfeffer, S. et al. Identification of virus-encoded microRNAs. Science304, 734–736 (2004). The authors used a cloning and sequencing approach to identify several microRNAs that are encoded in the genome of the Epstein–Barr virus, which potentially target many cellular mRNAs in human cells. ArticleCASPubMed Google Scholar
Bennasser, Y., Le, S. Y., Yeung, M. L. & Jeang, K. T. HIV-1 encoded candidate micro-RNAs and their cellular targets. Retrovirology1, 43 (2004). ArticlePubMedPubMed CentralCAS Google Scholar
Dalmay, T., Hamilton, A. J., Rudd, S., Angell, S. & Baulcombe, D. C. An RNA-dependent RNA polymerase gene in Arabidopsis is required for posttranscriptional gene silencing mediated by a transgene but not by a virus. Cell101, 543–553 (2000). ArticleCASPubMed Google Scholar
Sijen, T. et al. On the role of RNA amplification in dsRNA-triggered gene silencing. Cell107, 465–476 (2001). ArticleCASPubMed Google Scholar
Makeyev, E. V. & Bamford, D. H. Cellular RNA-dependent RNA polymerase involved in posttranscriptional gene silencing has two distinct activity modes. Mol. Cell10, 1417–1427 (2002). ArticleCASPubMed Google Scholar
Vaistij, F. E., Jones, L. & Baulcombe, D. C. Spreading of RNA targeting and DNA methylation in RNA silencing requires transcription of the target gene and a putative RNA-dependent RNA polymerase. Plant Cell14, 857–867 (2002). ArticleCASPubMedPubMed Central Google Scholar
Himber, C., Dunoyer, P., Moissiard, G., Ritzenthaler, C. & Voinnet, O. Transitivity-dependent and -independent cell-to-cell movement of RNA silencing. EMBO J.22, 4523–4533 (2003). ArticleCASPubMedPubMed Central Google Scholar
Mourrain, P. et al. Arabidopsis SGS2 and SGS3 genes are required for posttranscriptional gene silencing and natural virus resistance. Cell101, 533–542 (2000). ArticleCASPubMed Google Scholar
Gazzani, S., Lawerson, T., Woodward, D., Headon, R. & Sablowski, R. A link between mRNA turnover and RNA interference in Arabidopsis. Science306, 1046–1048 (2004). The authors provided the first experimental support for the 'aberrant RNA' model for co-suppression in plants by showing that over-accumulation of non-capped mRNAs induces their sequence-specific turnover through an RDR6-dependent RNA-silencing pathway. ArticleCASPubMed Google Scholar
Dalmay, T. D., Horsefield, R., Braunstein, T. H. & Baulcombe, D. C. SDE3 encodes an RNA helicase required for post-transcriptional gene silencing in Arabidopsis. EMBO J.20, 2069–2078 (2001). ArticleCASPubMedPubMed Central Google Scholar
Boutet, S. et al. Arabidopsis HEN1: a genetic link between endogenous miRNA controlling development and siRNA controlling transgene silencing and virus resistance. Curr. Biol.13, 843–848 (2003). ArticleCASPubMedPubMed Central Google Scholar
Yu, D., Fan, B., MacFarlane, S. A. & Chen, Z. Analysis of the involvement of an inducible Arabidopsis RNA-dependent RNA polymerase in antiviral defense. Mol. Plant Microbe Interact.16, 206–216 (2003). ArticleCASPubMed Google Scholar
Yang, S. J., Carter, S. A., Cole, A. B., Cheng, N. H. & Nelson, R. S. A natural variant of a host RNA-dependent RNA polymerase is associated with increased susceptibility to viruses by Nicotiana benthamiana. Proc. Natl Acad. Sci. USA101, 6297–6302 (2004). ArticleCASPubMedPubMed Central Google Scholar
Lindbo, J. A., Silva-Rosales, L., Proebsting, W. M. & Dougherty, W. G. Induction of a highly specific antiviral state in transgenic plants: implications for regulation of gene expression and virus resistance. Plant Cell5, 1749–1759 (1993). Although they largely pre-date the discovery of RNAi, the seminal experiments that are described in this classic paper have been used to formulate the first testable model for the mechanism and antiviral roles of RNA silencing in plants, with astonishing accuracy in retrospect. ArticleCASPubMedPubMed Central Google Scholar
Palauqui, J. -C., Elmayan, T., Pollien, J. -M. & Vaucheret, H. Systemic acquired silencing: transgene-specific post-transcriptional silencing is transmitted by grafting from silenced stocks to non-silenced scions. EMBO J.16, 4738–4745 (1997). ArticleCASPubMedPubMed Central Google Scholar
Voinnet, O. & Baulcombe, D. C. Systemic signalling in gene silencing. Nature389, 553 (1997). ArticleCASPubMed Google Scholar
Voinnet, O., Lederer, C. & Baulcombe, D. C. A viral movement protein prevents systemic spread of the gene silencing signal in Nicotiana benthamiana. Cell103, 157–167 (2000). ArticleCASPubMed Google Scholar
Havelda, Z., Hornyik, C., Crescenzi, A. & Burgyan, J. In situ characterization of Cymbidium Ringspot Tombusvirus infection-induced posttranscriptional gene silencing in Nicotiana benthamiana. J Virol.77, 6082–6086 (2003). ArticleCASPubMedPubMed Central Google Scholar
Pruss, G., Ge, X., Shi, X. M., Carrington, J. C. & Vance, V. B. Plant viral synergism: the potyviral genome encodes a broad-range pathogenicity enhancer that transactivates replication of heterologous viruses. Plant Cell9, 859–868 (1997). ArticleCASPubMedPubMed Central Google Scholar
Kasschau, K. D., Cronin, S. & Carrington, J. C. Genome amplification and long-distance movement functions associated with the central domain of tobacco etch potyvirus helper component-proteinase. Virology228, 251–262 (1997). ArticleCASPubMed Google Scholar
Kasschau, K. D. & Carrington, J. C. A counterdefensive strategy of plant viruses: suppression of post-transcriptional gene silencing. Cell95, 461–470 (1998). ArticleCASPubMed Google Scholar
Brigneti, G. et al. Viral pathogenicity determinants are suppressors of transgene silencing in Nicotiana benthamiana. EMBO J.17, 6739–6746 (1998). ArticleCASPubMedPubMed Central Google Scholar
Voinnet, O., Pinto, Y. M. & Baulcombe, D. C. Suppression of gene silencing: a general strategy used by diverse DNA and RNA viruses. Proc. Natl Acad. Sci. USA96, 14147–14152 (1999). By showing that several viral pathogenicity determinants effectively inhibit RNA silencing, this work provides a rationale for the identification of many addtional RNA silencing suppressors that are encoded by plant and animal viruses. ArticleCASPubMedPubMed Central Google Scholar
Dunoyer, P., Lecellier, C. H., Parizotto, E. A., Himber, C. & Voinnet, O. Probing the microRNA and small interfering RNA pathways with virus-encoded suppressors of RNA silencing. Plant Cell16, 1235–1250 (2004). Together with references 70 and 75, this comparative study addresses the interplay between viral silencing suppression, the siRNA and miRNA pathways and the expression of symptoms in plants. It also provides clues about the mode of action of several silencing suppressors. ArticleCASPubMedPubMed Central Google Scholar
Chen, J., Li, W. X., Xie, D., Peng, J. R. & Ding, S. W. Viral virulence protein suppresses RNA silencing-mediated defense but upregulates the role of microRNA in host gene expression. Plant Cell16, 1302–1313 (2004). ArticleCASPubMedPubMed Central Google Scholar
Moissiard, G. & Voinnet, O. Viral suppression of RNA silencing. Mol. Plant Pathol.1, 71–82 (2004). Article Google Scholar
Roth, B. M., Pruss, G. J. & Vance, V. B. Plant viral suppressors of RNA silencing. Virus Res.102, 97–108 (2004). ArticleCASPubMed Google Scholar
Silhavy, D. et al. A viral protein suppresses RNA silencing and binds silencing-generated, 21- to 25-nucleotide double-stranded RNAs. EMBO J.21, 3070–3080 (2002). ArticleCASPubMedPubMed Central Google Scholar
Lakatos, L., Szittya, G., Silhavy, D. & Burgyan, J. Molecular mechanism of RNA silencing suppression mediated by p19 protein of tombusviruses. EMBO J.23, 876–884 (2004). ArticleCASPubMedPubMed Central Google Scholar
Chapman, E. J., Prokhnevsky, A. I., Gopinath, K., Dolja, V. V. & Carrington, J. C. Viral RNA silencing suppressors inhibit the microRNA pathway at an intermediate step. Genes Dev.18, 1179–1186 (2004). ArticleCASPubMedPubMed Central Google Scholar
Vargason, J. M., Szittya, G., Burgyan, J. & Tanaka Hall, T. M. Size selective recognition of siRNA by an RNA silencing suppressor. Cell115, 799–811 (2003). ArticleCASPubMed Google Scholar
Ye, K., Malinina, L. & Patel, D. J. Recognition of small interfering RNA by a viral suppressor of RNA silencing. Nature426, 874–878 (2003). The structure of P19 homodimers that are directly bound to siRNAs is resolved in references 76 and 77. ArticleCASPubMedPubMed Central Google Scholar
Anandalakshmi, R. et al. A calmodulin-related protein that suppresses posttranscriptional gene silencing in plants. Science290, 142–144 (2000). ArticleCASPubMed Google Scholar
Kennedy, S., Wang, D. & Ruvkun, G. A conserved siRNA-degrading RNase negatively regulates RNA interference in C. elegans. Nature427, 645–649 (2004). This key paper clearly establishes the existence of negative regulatory pathways for RNAi inC. elegans, and probably in many other organisms. Such pathways might be recruited by some viral-encoded silencing suppressors, as suggested in reference 78. ArticleCASPubMed Google Scholar
Hartitz, M. D., Sunter, G. & Bisaro, D. M. The tomato golden mosaic virus transactivator (TrAP) is a single-stranded DNA and zinc-binding phosphoprotein with an acidic activation domain. Virology263, 1–14 (1999). ArticleCASPubMed Google Scholar
van Wezel, W. R. et al. Mutation of three cysteine residues in Tomato yellow leaf curl virus-China C2 protein causes dysfunction in pathogenesis and posttranscriptional gene-silencing suppression. Mol. Plant Microbe Interact.15, 203–208 (2002). ArticleCASPubMed Google Scholar
Van Wezel, R., Liu, H., Wu, Z., Stanley, J. & Hong, Y. Contribution of the zinc finger to zinc and DNA binding by a suppressor of posttranscriptional gene silencing. J. Virol.77, 696–700 (2003). ArticleCASPubMedPubMed Central Google Scholar
Trinks, D. et al. Suppression of silencing by geminivirus nuclear protein AC2 correlates with transactivation of host genes. J. Virol.75, 2517–2527 (2004). Google Scholar
Ketting, R., Haverkamp, T., van Luenen, H. & Plasterk, R. mut-7 of C. elegans, required for transposon silencing and RNA interference, is a homolog of Werner syndrome helicase and RNaseD. Cell99, 133–141 (1999). ArticleCASPubMed Google Scholar
Glazov, E. et al. A gene encoding an RNase D exonuclease-like protein is required for post-transcriptional silencing in Arabidopsis. Plant J.35, 342–349 (2003). ArticleCASPubMed Google Scholar
Lu, S. & Cullen, B. R. Adenovirus VA1 non-coding RNA can inhibit small interfering RNA and microRNA biogenesis. J. Virol.78, 1957–1966 (2005). Google Scholar
Tuteja, J. H., Clough, S. J., Chan, W. C. & Vodkin, L. O. Tissue-specific gene silencing mediated by a naturally occurring chalcone synthase gene cluster in Glycine max. Plant Cell16, 819–835 (2004). ArticleCASPubMedPubMed Central Google Scholar
Senda, M. et al. Patterning of virus-infected Glycine max seed coat is associated with suppression of endogenous silencing of chalcone synthase genes. Plant Cell16, 807–818 (2004). A straightforward example of how viral suppression of RNA silencing can directly influence an agronomic trait in plants. ArticleCASPubMedPubMed Central Google Scholar
Kasschau, K. D. et al. P1/HC-Pro, a viral suppressor of RNA silencing, interferes with Arabidopsis development and miRNA unction. Dev. Cell4, 205–217 (2003). This important paper provides the first demonstration of a link between the expression of viral symptoms and inhibition of miRNA-guided functions. ArticleCASPubMed Google Scholar
Xie, Z., Kasschau, K. D. & Carrington, J. C. Negative feedback regulation of Dicer-like1 in Arabidopsis by microRNA-guided mRNA degradation. Curr. Biol.13, 784–789 (2003). ArticleCASPubMed Google Scholar
Tijsterman, M. & Plasterk, R. H. Dicers at RISC; the mechanism of RNAi. Cell117, 1–3 (2004). ArticleCASPubMed Google Scholar
Schwartz, M. et al. A positive-strand RNA virus replication complex parallels form and function of retrovirus capsids. Mol. Cell9, 505–514 (2002). ArticleCASPubMed Google Scholar
Tabler, M. & Tsagris, M. Viroids: petite RNA pathogens with distinguished talents. Trends Plant Sci.9, 339–348 (2004). ArticleCASPubMed Google Scholar
Ge, Q. et al. RNA interference of influenza virus production by directly targeting mRNA for degradation and indirectly inhibiting all viral RNA transcription. Proc. Natl Acad. Sci. USA100, 2718–2723 (2003). ArticleCASPubMedPubMed Central Google Scholar
Boden, D., Pusch, O., Lee, F., Tucker, L. & Ramratnam, B. Human immunodeficiency virus type 1 escape from RNA interference. J. Virol.77, 11531–11535 (2003). ArticleCASPubMedPubMed Central Google Scholar
Das, A. T. et al. Human immunodeficiency virus type 1 escapes from RNA interference-mediated inhibition. J. Virol.78, 2601–2605 (2004). ArticleCASPubMedPubMed Central Google Scholar
Dalmay, T., Szittya, G. & Burgyan, J. Generation of defective interfering RNA dimers of cymbidium ringspot tombusvirus. Virology207, 510–517 (1995). ArticleCASPubMed Google Scholar
Wang, M. B. et al. On the role of RNA silencing in the pathogenicity and evolution of viroids and viral satellites. Proc. Natl Acad. Sci. USA101, 3275–3280 (2004). The authors show how RNA silencing that is triggered by sub-viral parasites can result in symptom expression due to homology between the host and pathogen genomes. ArticleCASPubMedPubMed Central Google Scholar
Bitko, V. & Barik, S. Phenotypic silencing of cytoplasmic genes using sequence-specific double-stranded short interfering RNA and its application in the reverse genetics of wild type negative-strand RNA viruses. BMC Microbiol.1, 34 (2001). ArticleCASPubMedPubMed Central Google Scholar
Angell, S. M. & Baulcombe, D. C. Consistent gene silencing in transgenic plants expressing a replicating potato virus X RNA. EMBO J.16, 3675–3684 (1997). ArticleCASPubMedPubMed Central Google Scholar
Ratcliff, F., Harrison, B. D. & Baulcombe, D. C. A similarity between viral defense and gene silencing in plants. Science276, 1558–1560 (1997). A classic paper that for the first time identifies RNA silencing as the causal agent of a naturally occuring antiviral response in plants. ArticleCASPubMed Google Scholar
Pfeffer, S. et al. P0 of beet Western yellows virus is a suppressor of posttranscriptional gene silencing. J. Virol.13, 6815–6824 (2002). ArticleCAS Google Scholar
Saksela, K. Human viruses under attack by small inhibitory RNA. Trends Microbiol.11, 345–347 (2003). ArticleCASPubMed Google Scholar
Ge, Q. et al. Inhibition of influenza virus production in virus-infected mice by RNA interference. Proc. Natl Acad. Sci. USA101, 8676–8681 (2004). ArticleCASPubMedPubMed Central Google Scholar
Tompkins, S. M., Lo, C. Y., Tumpey, T. M. & Epstein, S. L. Protection against lethal influenza virus challenge by RNA interference in vivo. Proc. Natl Acad. Sci. USA101, 8682–8686 (2004). ArticleCASPubMedPubMed Central Google Scholar
Delgadillo, M. O., Saenz, P., Salvador, B., Garcia, J. A. & Simon-Mateo, C. Human influenza virus NS1 protein enhances viral pathogenicity and acts as an RNA silencing suppressor in plants. J. Gen. Virol.85, 993–999 (2004). ArticleCASPubMed Google Scholar
Bucher, E., Hemmes, H., de Haan, P., Goldbach, R. & Prins, M. The influenza A virus NS1 protein binds small interfering RNAs and suppresses RNA silencing in plants. J. Gen. Virol.85, 983–991 (2004). ArticleCASPubMed Google Scholar
Lichner, Z., Silhavy, D. & Burgyan, J. Double-stranded RNA-binding proteins could suppress RNA interference-mediated antiviral defences. J. Gen. Virol.84, 975–980 (2003). ArticleCASPubMed Google Scholar
Wianny, F. & Zernicka-Goetz, M. Specific interference with gene function by double-stranded RNA in early mouse development. Nature Cell Biol.2, 70–75 (2000). ArticleCASPubMed Google Scholar
Billy, E., Brondani, V., Zhang, H. D., Muller, U. & Filipowicz, W. Specific interference with gene expression induced by long, double-stranded RNA in mouse embryonal teratocarcinoma cell lines. Proc. Natl Acad. Sci. USA98, 14428–14433 (2001). ArticleCASPubMedPubMed Central Google Scholar
Llave, C. MicroRNAs:more than a role in plant development? Mol. Plant Pathol.5, 361–366 (2004). An insightful review, elaborating on the roles of endogenous small RNAs in plants, including the possibility that those molecules might confer antiviral immunity in some instances. ArticleCASPubMed Google Scholar
Seitz, H. et al. Imprinted microRNA genes transcribed antisense to a reciprocally imprinted retrotransposon-like gene. Nature Genet.34, 261–262 (2003). ArticleCASPubMed Google Scholar
Lin, S. P. et al. Asymmetric regulation of imprinting on the maternal and paternal chromosomes at the Dlk1_–_Gtl2 imprinted cluster on mouse chromosome 12. Nature Genet.35, 97–102 (2003). ArticleCASPubMed Google Scholar
Dangl, J. L. & Jones, J. D. Plant pathogens and integrated defence responses to infection. Nature411, 826–833 (2001). ArticleCASPubMed Google Scholar
Durrant, W. E. & Dong, X. Systemic acquired resistance. Annu Rev. Phytopathol.42, 185–209 (2004). ArticleCASPubMed Google Scholar
Li, H. -W. et al. Strong host resistance targeted against a viral suppressor of the plant gene silencing defence mechanism. EMBO J.18, 2683–2691 (1999). ArticleCASPubMedPubMed Central Google Scholar
Scholthof, H. B., Scholthof, K. B. G. & Jackson, A. O. Identification of tomato bushy stunt virus host-specific symptom determinants by expression of individual genes from a potato virus X vector. Plant Cell7, 1157–1172 (1995). CASPubMedPubMed Central Google Scholar
Ji, L. H. & Ding, S. W. The suppressor of transgene RNA silencing encoded by Cucumber mosaic virus interferes with salicylic acid-mediated virus resistance. Mol. Plant Microbe Interact.14, 715–724 (2001). ArticleCASPubMed Google Scholar
Pruss, G. J. et al. The potyviral suppressor of RNA silencing confers enhanced resistance to multiple pathogens. Virology320, 107–120 (2004). ArticleCASPubMed Google Scholar
Thomas, C. L., Leh, V., Lederer, C. & Maule, A. J. Turnip crinkle virus coat protein mediates suppression of RNA silencing in Nicotiana benthamiana. Virology306, 33–41 (2003). ArticleCASPubMed Google Scholar
Reed, J. C. et al. Suppressor of RNA silencing encoded by Beet yellows virus. Virology306, 203–209 (2003). ArticleCASPubMed Google Scholar
Lu, R. et al. Three distinct suppressors of RNA silencing encoded by a 20-kb viral genome. Proc. Natl Acad. Sci. USA101, 15742–15747 (2004). ArticleCASPubMedPubMed Central Google Scholar
Liu, L., Grainger, J., Canizares, M. C., Angell, S. M. & Lomonossoff, G. P. Cowpea mosaic virus RNA-1 acts as an amplicon whose effects can be counteracted by a RNA-2-encoded suppressor of silencing. Virology323, 37–48 (2004). ArticleCASPubMed Google Scholar
Yelina, N. E., Savenkov, E. I., Solovyev, A. G., Morozov, S. Y. & Valkonen, J. P. Long-distance movement, virulence, and RNA silencing suppression controlled by a single protein in hordei- and potyviruses: complementary functions between virus families. J. Virol.76, 12981–12991 (2002). ArticleCASPubMedPubMed Central Google Scholar
Dunoyer, P. et al. Identification, subcellular localization and some properties of a cysteine-rich suppressor of gene silencing encoded by peanut clump virus. Plant J.29, 555–567 (2002). ArticleCASPubMed Google Scholar
Kubota, K., Tsuda, S., Tamai, A. & Meshi, T. Tomato mosaic virus replication protein suppresses virus-targeted posttranscriptional gene silencing. J. Virol.77, 11016–11026 (2003). ArticleCASPubMedPubMed Central Google Scholar
Bucher, E., Sijen, T., De Haan, P., Goldbach, R. & Prins, M. Negative-strand tospoviruses and tenuiviruses carry a gene for a suppressor of gene silencing at analogous genomic positions. J. Virol.77, 1329–1336 (2003). ArticleCASPubMedPubMed Central Google Scholar