Towards better mouse models: enhanced genotypes, systemic phenotyping and envirotype modelling (original) (raw)
Nadeau, J. H. et al. Sequence interpretation. Functional annotation of mouse genome sequences. Science291, 1251–1255 (2001). ArticleCASPubMed Google Scholar
Auwerx, J. et al. The European dimension for the mouse genome mutagenesis program. Nature Genet.36, 925–927 (2004). ArticleCASPubMed Google Scholar
Patten, B. C. in Eco Targets, Goal Functions, and Orientors (eds Muller, F. & Leupelt, M.) 137–160 (Springer, Berlin, 1998). We believe that this publication introduced the term 'envirotype'. In particular, it is mentioned that “the genotype–phenotype pair of classical genetics is an incomplete specification of determinate reproduction; an external envirotype is needed to complete the mechanism.” Book Google Scholar
Bult, C. J., Eppig, J. T., Kadin, J. A., Richardson, J. E. & Blake, J. A. The Mouse Genome Database (MGD): mouse biology and model systems. Nucleic Acids Res.36, D724–D728 (2008). ArticleCASPubMed Google Scholar
Paigen, K. One hundred years of mouse genetics: an intellectual history. II. The molecular revolution (1981–2002). Genetics163, 1227–1235 (2003). References 6 and 7 give an excellent historical overview of 100 years of mouse genetics, from its beginning to the genomic era. CASPubMedPubMed Central Google Scholar
Paigen, K. One hundred years of mouse genetics: an intellectual history. I. The classical period (1902–1980). Genetics163, 1–7 (2003). CASPubMedPubMed Central Google Scholar
Collins, F. S., Finnell, R. H., Rossant, J. & Wurst, W. A new partner for the international knockout mouse consortium. Cell129, 235 (2007). ArticleCASPubMed Google Scholar
Gondo, Y. Trends in large-scale mouse mutagenesis: from genetics to functional genomics. Nature Rev. Genet.9, 803–810 (2008). ArticleCASPubMed Google Scholar
Ding, S. et al. Efficient transposition of the piggyBac (PB) transposon in mammalian cells and mice. Cell122, 473–483 (2005). ArticleCASPubMed Google Scholar
Dupuy, A. J., Akagi, K., Largaespada, D. A., Copeland, N. G. & Jenkins, N. A. Mammalian mutagenesis using a highly mobile somatic Sleeping Beauty transposon system. Nature436, 221–226 (2005). ArticleCASPubMed Google Scholar
Keng, V. W. et al. A conditional transposon-based insertional mutagenesis screen for genes associated with mouse hepatocellular carcinoma. Nature Biotechnol.27, 264–274 (2009). ArticleCAS Google Scholar
Rosenthal, N. & Brown, S. The mouse ascending: perspectives for human-disease models. Nature Cell Biol.9, 993–999 (2007). A comprehensive and insightful recent review of the genetic tools available for the mouse and the challenges that mouse models of human diseases are facing. ArticleCASPubMed Google Scholar
Gieger, C. et al. Genetics meets metabolomics: a genome-wide association study of metabolite profiles in human serum. PLoS Genet.4, e1000282 (2008). ArticleCASPubMedPubMed Central Google Scholar
McCarroll, S. A. & Altshuler, D. M. Copy-number variation and association studies of human disease. Nature Genet.39, S37–S42 (2007). ArticleCASPubMed Google Scholar
McCarroll, S. A. et al. Integrated detection and population-genetic analysis of SNPs and copy number variation. Nature Genet.40, 1166–1174 (2008). ArticleCASPubMed Google Scholar
Justice, M. J., Noveroske, J. K., Weber, J. S., Zheng, B. & Bradley, A. Mouse ENU mutagenesis. Hum. Mol. Genet.8, 1955–1963 (1999). ArticleCASPubMed Google Scholar
Soewarto, D., Klaften, M. & Rubio-Aliaga, I. Features and strategies of ENU mouse mutagenesis. Curr. Pharm. Biotechnol.10, 198–213 (2009). ArticleCASPubMed Google Scholar
Nolan, P. M. et al. Implementation of a large-scale ENU mutagenesis program: towards increasing the mouse mutant resource. Mamm. Genome11, 500–506 (2000). ArticleCASPubMed Google Scholar
Nolan, P. M. et al. A systematic, genome-wide, phenotype-driven mutagenesis programme for gene function studies in the mouse. Nature Genet.25, 440–443 (2000). ArticleCASPubMed Google Scholar
Hrabe de Angelis, M. H. et al. Genome-wide, large-scale production of mutant mice by ENU mutagenesis. Nature Genet.25, 444–447 (2000). ArticleCASPubMed Google Scholar
Balling, R. ENU mutagenesis: analyzing gene function in mice. Annu. Rev. Genomics Hum. Genet.2, 463–492 (2001). ArticleCASPubMed Google Scholar
Vreugde, S. et al. Beethoven, a mouse model for dominant, progressive hearing loss DFNA36. Nature Genet.30, 257–258 (2002). This paper of an ENU-induced mouse model was published along with an article that describes patients with the same progressive deafness phenotype caused by a mutation in the homologous human gene. ArticlePubMed Google Scholar
Klaften, M. & Hrabe de Angelis, M. ARTS: a web-based tool for the set-up of high-throughput genome-wide mapping panels for the SNP genotyping of mouse mutants. Nucleic Acids Res.33, W496–W500 (2005). ArticleCASPubMedPubMed Central Google Scholar
Augustin, M. et al. Efficient and fast targeted production of murine models based on ENU mutagenesis. Mamm. Genome16, 405–413 (2005). ArticleCASPubMed Google Scholar
Coghill, E. L. et al. A gene-driven approach to the identification of ENU mutants in the mouse. Nature Genet.30, 255–256 (2002). ArticlePubMed Google Scholar
Quwailid, M. M. et al. A gene-driven ENU-based approach to generating an allelic series in any gene. Mamm. Genome15, 585–591 (2004). ArticleCASPubMed Google Scholar
Sakuraba, Y. et al. Molecular characterization of ENU mouse mutagenesis and archives. Biochem. Biophys. Res. Commun.336, 609–616 (2005). ArticleCASPubMed Google Scholar
Sakuraba, Y. et al. Identification and characterization of new long conserved noncoding sequences in vertebrates. Mamm. Genome19, 703–712 (2008). ArticleCASPubMed Google Scholar
Takahasi, K. R., Sakuraba, Y. & Gondo, Y. Mutational pattern and frequency of induced nucleotide changes in mouse ENU mutagenesis. BMC Mol. Biol.8, 52 (2007). ArticleCASPubMedPubMed Central Google Scholar
Herault, Y., Rassoulzadegan, M., Cuzin, F. & Duboule, D. Engineering chromosomes in mice through targeted meiotic recombination (TAMERE). Nature Genet.20, 381–384 (1998). ArticleCASPubMed Google Scholar
Olson, L. E., Richtsmeier, J. T., Leszl, J. & Reeves, R. H. A chromosome 21 critical region does not cause specific Down syndrome phenotypes. Science306, 687–690 (2004). ArticleCASPubMedPubMed Central Google Scholar
Kmita, M., Fraudeau, N., Herault, Y. & Duboule, D. Serial deletions and duplications suggest a mechanism for the collinearity of Hoxd genes in limbs. Nature420, 145–150 (2002). ArticleCASPubMed Google Scholar
Couzin, J. RNA interference. Mini RNA molecules shield mouse liver from hepatitis. Science299, 995 (2003). ArticleCASPubMed Google Scholar
Kunath, T. Transgenic RNA interference to investigate gene function in the mouse. Methods Mol. Biol.461, 165–186 (2008). ArticleCASPubMed Google Scholar
Raoul, C. et al. Lentiviral-mediated silencing of SOD1 through RNA interference retards disease onset and progression in a mouse model of ALS. Nature Med.11, 423–428 (2005). ArticleCASPubMed Google Scholar
Bibikova, M., Golic, M., Golic, K. G. & Carroll, D. Targeted chromosomal cleavage and mutagenesis in Drosophila using zinc-finger nucleases. Genetics161, 1169–1175 (2002). CASPubMedPubMed Central Google Scholar
Lloyd, A., Plaisier, C. L., Carroll, D. & Drews, G. N. Targeted mutagenesis using zinc-finger nucleases in Arabidopsis. Proc. Natl Acad. Sci. USA102, 2232–2237 (2005). ArticleCASPubMedPubMed Central Google Scholar
Zeevi, V., Tovkach, A. & Tzfira, T. Increasing cloning possibilities using artificial zinc finger nucleases. Proc. Natl Acad. Sci. USA105, 12785–12790 (2008). ArticleCASPubMedPubMed Central Google Scholar
Mani, M., Kandavelou, K., Dy, F. J., Durai, S. & Chandrasegaran, S. Design, engineering, and characterization of zinc finger nucleases. Biochem. Biophys. Res. Commun.335, 447–457 (2005). ArticleCASPubMed Google Scholar
Steuber-Buchberger, P., Wurst, W. & Kuhn, R. Simultaneous Cre-mediated conditional knockdown of two genes in mice. Genesis46, 144–151 (2008). ArticleCASPubMed Google Scholar
Hitz, C., Steuber-Buchberger, P., Delic, S., Wurst, W. & Kuhn, R. Generation of shRNA transgenic mice. Methods Mol. Biol.530, 1–29 (2009). ArticleCAS Google Scholar
Echeverri, C. J. et al. Minimizing the risk of reporting false positives in large-scale RNAi screens. Nature Methods3, 777–779 (2006). ArticleCASPubMed Google Scholar
Meng, X., Noyes, M. B., Zhu, L. J., Lawson, N. D. & Wolfe, S. A. Targeted gene inactivation in zebrafish using engineered zinc-finger nucleases. Nature Biotechnol.26, 695–701 (2008). ArticleCAS Google Scholar
Yan, Z., Sun, X. & Engelhardt, J. F. Progress and prospects: techniques for site-directed mutagenesis in animal models. Gene Ther. 19 Feb 2009 (doi:10.1038/gt.2009.16). ArticleCASPubMedPubMed Central Google Scholar
Matera, I. et al. A sensitized mutagenesis screen identifies Gli3 as a modifier of Sox10 neurocristopathy. Hum. Mol. Genet.17, 2118–2131 (2008). ArticleCASPubMedPubMed Central Google Scholar
Mohan, S., Baylink, D. J. & Srivastava, A. K. A chemical mutagenesis screen to identify modifier genes that interact with growth hormone and TGF-beta signaling pathways. Bone42, 388–395 (2008). ArticleCASPubMed Google Scholar
Rubio-Aliaga, I. et al. A genetic screen for modifiers of the delta1-dependent Notch signaling function in the mouse. Genetics175, 1451–1463 (2007). ArticleCASPubMedPubMed Central Google Scholar
Dietrich, W. F. et al. Genetic identification of Mom-1, a major modifier locus affecting Min-induced intestinal neoplasia in the mouse. Cell75, 631–639 (1993). A hallmark article on the genetic mapping of the first quantitative trait gene or modifier affecting a mouse model for human disease. ArticleCASPubMed Google Scholar
Erickson, R. P. Mouse models of human genetic disease: which mouse is more like a man? Bioessays18, 993–998 (1996). ArticleCASPubMed Google Scholar
Gregorova, S. et al. Mouse consomic strains: exploiting genetic divergence between Mus m. musculus and Mus m. domesticus subspecies. Genome Res.18, 509–515 (2008). ArticleCASPubMedPubMed Central Google Scholar
Rogner, U. C. & Avner, P. Congenic mice: cutting tools for complex immune disorders. Nature Rev. Immunol.3, 243–252 (2003). ArticleCAS Google Scholar
Matin, A., Collin, G. B., Asada, Y., Varnum, D. & Nadeau, J. H. Susceptibility to testicular germ-cell tumours in a 129.MOLF-Chr 19 chromosome substitution strain. Nature Genet.23, 237–240 (1999). ArticleCASPubMed Google Scholar
Nadeau, J. H., Singer, J. B., Matin, A. & Lander, E. S. Analysing complex genetic traits with chromosome substitution strains. Nature Genet.24, 221–225 (2000). ArticleCASPubMed Google Scholar
Singer, J. B. et al. Genetic dissection of complex traits with chromosome substitution strains of mice. Science304, 445–448 (2004). ArticleCASPubMed Google Scholar
Singer, J. B., Hill, A. E., Nadeau, J. H. & Lander, E. S. Mapping quantitative trait loci for anxiety in chromosome substitution strains of mice. Genetics169, 855–862 (2005). ArticleCASPubMedPubMed Central Google Scholar
Grattan, M., Mi, Q. S., Meagher, C. & Delovitch, T. L. Congenic mapping of the diabetogenic locus Idd4 to a 5.2-cM region of chromosome 11 in NOD mice: identification of two potential candidate subloci. Diabetes51, 215–223 (2002). ArticleCASPubMed Google Scholar
Hill, N. J. et al. NOD Idd5 locus controls insulitis and diabetes and overlaps the orthologous CTLA4/IDDM12 and NRAMP1 loci in humans. Diabetes49, 1744–1747 (2000). ArticleCASPubMed Google Scholar
Lamhamedi-Cherradi, S. E. et al. Further mapping of the Idd5.1 locus for autoimmune diabetes in NOD mice. Diabetes50, 2874–2878 (2001). ArticleCASPubMed Google Scholar
Shao, H. et al. Genetic architecture of complex traits: large phenotypic effects and pervasive epistasis. Proc. Natl Acad. Sci. USA105, 19910–19914 (2008). An insightful article on the frequent occurrence of QTLs in the rodent genome and how the interaction of QTLs is neither simple nor additive. ArticleCASPubMedPubMed Central Google Scholar
Churchill, G. A. et al. The Collaborative Cross, a community resource for the genetic analysis of complex traits. Nature Genet.36, 1133–1137 (2004). ArticleCASPubMed Google Scholar
Iraqi, F. A., Churchill, G. & Mott, R. The Collaborative Cross, developing a resource for mammalian systems genetics: a status report of the Wellcome Trust cohort. Mamm. Genome19, 379–381 (2008). ArticlePubMed Google Scholar
Chesler, E. J. et al. The Collaborative Cross at Oak Ridge National Laboratory: developing a powerful resource for systems genetics. Mamm. Genome19, 382–389 (2008). ArticlePubMedPubMed Central Google Scholar
Davisson, M. FIMRe: Federation of International Mouse Resources: global networking of resource centers. Mamm. Genome17, 363–364 (2006). ArticlePubMed Google Scholar
von Herrath, M. G. & Nepom, G. T. Lost in translation: barriers to implementing clinical immunotherapeutics for autoimmunity. J. Exp. Med.202, 1159–1162 (2005). ArticleCASPubMedPubMed Central Google Scholar
Traggiai, E. et al. Development of a human adaptive immune system in cord blood cell-transplanted mice. Science304, 104–107 (2004). ArticleCASPubMed Google Scholar
Cocco, M. et al. CD34+ cord blood cell-transplanted Rag2−/−γc−/− mice as a model for Epstein–Barr virus infection. Am. J. Pathol.173, 1369–1378 (2008). ArticlePubMedPubMed Central Google Scholar
Gorantla, S. et al. Human immunodeficiency virus type 1 pathobiology studied in humanized BALB/c-Rag2−/−γc−/− mice. J. Virol.81, 2700–2712 (2007). ArticleCASPubMed Google Scholar
Proia, D. A. & Kuperwasser, C. Reconstruction of human mammary tissues in a mouse model. Nature Protoc.1, 206–214 (2006). ArticleCAS Google Scholar
Gailus-Durner, V. et al. Introducing the German Mouse Clinic: open access platform for standardized phenotyping. Nature Methods2, 403–404 (2005). ArticleCASPubMed Google Scholar
Brown, S. D., Chambon, P. & de Angelis, M. H. EMPReSS: standardized phenotype screens for functional annotation of the mouse genome. Nature Genet.37, 1155 (2005). ArticleCASPubMed Google Scholar
Green, E. C. et al. EMPReSS: European mouse phenotyping resource for standardized screens. Bioinformatics21, 2930–2931 (2005). ArticleCASPubMed Google Scholar
Mallon, A. M., Blake, A. & Hancock, J. M. EuroPhenome and EMPReSS: online mouse phenotyping resource. Nucleic Acids Res.36, D715–D718 (2008). ArticleCASPubMed Google Scholar
Woychik, R. P., Klebig, M. L., Justice, M. J., Magnuson, T. R. & Avner, E. D. Functional genomics in the post-genome era. Mutat. Res.400, 3–14 (1998). ArticleCASPubMed Google Scholar
Horsch, M. et al. Systematic gene expression profiling of mouse model series reveals coexpressed genes. Proteomics8, 1248–1256 (2008). ArticleCASPubMed Google Scholar
Frey, I. M. et al. Profiling at mRNA, protein, and metabolite levels reveals alterations in renal amino acid handling and glutathione metabolism in kidney tissue of Pept2−/− mice. Physiol. Genomics28, 301–310 (2007). ArticleCASPubMed Google Scholar
Ntziachristos, V., Culver, J. P. & Rice, B. W. Small-animal optical imaging. J. Biomed. Opt.13, 011001 (2008). ArticlePubMed Google Scholar
Niedre, M. J. et al. Early photon tomography allows fluorescence detection of lung carcinomas and disease progression in mice in vivo. Proc. Natl Acad. Sci. USA105, 19126–19131 (2008). ArticleCASPubMedPubMed Central Google Scholar
Ahting, U. et al. Neurological phenotype and reduced lifespan in heterozygous Tim23 knockout mice, the first mouse model of defective mitochondrial import. Biochim. Biophys. Acta 9 Dec 2008 (doi:10.1016/j.bbabio.2008.12.001). ArticleCAS Google Scholar
Hoelter, S. M. et al. “Sighted C3H” mice — a tool for analysing the influence of vision on mouse behaviour? Front. Biosci.13, 5810–5823 (2008). ArticleCASPubMed Google Scholar
Fuchs, H. et al. Phenotypic characterization of mouse models for bone-related diseases in the German Mouse Clinic. J. Musculoskelet. Neuronal Interact.8, 13–14 (2008). CASPubMed Google Scholar
Bender, A. et al. Creatine improves health and survival of mice. Neurobiol. Aging29, 1404–1411 (2008). ArticleCASPubMed Google Scholar
Vauti, F. et al. The mouse Trm1-like gene is expressed in neural tissues and plays a role in motor coordination and exploratory behaviour. Gene389, 174–185 (2007). ArticleCASPubMed Google Scholar
Barrantes Idel, B. et al. Generation and characterization of dickkopf3 mutant mice. Mol. Cell Biol.26, 2317–2326 (2006). ArticleCASPubMed Google Scholar
Colucci-Guyon, E., Gimenez, Y. R. M., Maurice, T., Babinet, C. & Privat, A. Cerebellar defect and impaired motor coordination in mice lacking vimentin. Glia25, 33–43 (1999). ArticleCASPubMed Google Scholar
Colucci-Guyon, E. et al. Mice lacking vimentin develop and reproduce without an obvious phenotype. Cell79, 679–694 (1994). ArticleCASPubMed Google Scholar
Eckes, B. et al. Impaired wound healing in embryonic and adult mice lacking vimentin. J. Cell Sci.113, 2455–2462 (2000). CASPubMed Google Scholar
Henrion, D. et al. Impaired flow-induced dilation in mesenteric resistance arteries from mice lacking vimentin. J. Clin. Invest.100, 2909–2914 (1997). ArticleCASPubMedPubMed Central Google Scholar
Schiffers, P. M. et al. Altered flow-induced arterial remodeling in vimentin-deficient mice. Arterioscler. Thromb. Vasc. Biol.20, 611–616 (2000). ArticleCASPubMed Google Scholar
Terzi, F. et al. Reduction of renal mass is lethal in mice lacking vimentin. Role of endothelin-nitric oxide imbalance. J. Clin. Invest.100, 1520–1528 (1997). ArticleCASPubMedPubMed Central Google Scholar
Welsh, E., Jirotka, M. & Gavaghan, D. Post-genomic science: cross-disciplinary and large-scale collaborative research and its organizational and technological challenges for the scientific research process. Philos. Transact. A Math. Phys. Eng. Sci.364, 1533–1549 (2006). A sociological study on the far-reaching impact that the advent of 'big science' in life science research is beginning to have, for example, in the areas of organizational cultures, working practice, rewarding systems, education and communication technology. ArticleCAS Google Scholar
Bogue, M. Mouse Phenome Project: understanding human biology through mouse genetics and genomics. J. Appl. Physiol.95, 1335–1337 (2003). ArticleCASPubMed Google Scholar
Bogue, M. A., Grubb, S. C., Maddatu, T. P. & Bult, C. J. Mouse Phenome Database (MPD). Nucleic Acids Res.35, D643–D649 (2007). ArticleCASPubMed Google Scholar
Hancock, J. M. & Mouse Phenotype Database Integration Consortium. Integration of mouse phenome data resources. Mamm. Genome18, 157–163 (2007). ArticlePubMed Google Scholar
Brown, S. D., Hancock, J. M. & Gates, H. Understanding mammalian genetic systems: the challenge of phenotyping in the mouse. PLoS Genet.2, e118 (2006). ArticleCASPubMedPubMed Central Google Scholar
Richter, S. H., Garner, J. P. & Wurbel, H. Environmental standardization: cure or cause of poor reproducibility in animal experiments? Nature Methods6, 257–261 (2009). ArticleCASPubMed Google Scholar
Valérie Gailus-Durner et al. in Gene Knockout Protocols 2nd edn Vol. 530 (eds Wurst, W. & Kühn, R.) 436–509 (Humana Press, New Jersey, 2009).