New IL-12-family members: IL-23 and IL-27, cytokines with divergent functions (original) (raw)
Mosmann, T. T., Cherwinski, H., Bond, M. W., Giedlin, M. A. & Coffman, R. L. Two types of murine helper T cell clone. I. Definition according to profiles of lymphokine activities and secreted proteins. J. Immunol.136, 2348–2353 (1986). CASPubMed Google Scholar
Liew, F. Y. TH1 and TH2 cells: a historical perspective. Nature Rev. Immunol.2, 55–60 (2002). ArticleCAS Google Scholar
Kobayashi, M. et al. Identification and purification of natural killer cell stimulatory factor (NKSF), a cytokine with multiple biologic effects on human lymphocytes. J. Exp. Med.170, 827–845 (1989). ArticleCASPubMed Google Scholar
Hsieh, C. S. et al. Devlopment of TH1 CD4+ T cells through IL-12 produced by Listeria induced macrophages. Science260, 547–549 (1993). ArticleCASPubMed Google Scholar
Manetti, R. et al. Natural killer cell stimulatory factor (interleukin 12 [IL-12]) induces T helper type 1 (TH1)-specific immune responses and inhibits the development of IL-4-producing TH cells. J. Exp. Med.177, 1199–1204 (1993). ArticleCASPubMed Google Scholar
Tripp, C. S., Wolf, S. F. & Unanue, E. R. Interleukin 12 and tumor necrosis factor α are costimulators of interferon γ production by natural killer cells in severe combined immunodeficiency mice with listeriosis, and interleukin 10 is a physiological antagonist. Proc. Natl Acad. Sci. USA90, 3725–3729 (1993). ArticleCASPubMedPubMed Central Google Scholar
Gazzinelli, R. T., Hieny, S., Wynn, T. A., Wolf, S. & Sher, A. Interleukin 12 is required for the T-lymphocyte-independent induction of interferon γ by an intracellular parasite and induces resistance in T-cell deficient hosts. Proc. Natl Acad. Sci. USA90, 6115–6119 (1993). ArticleCASPubMedPubMed Central Google Scholar
Seder, R. A., Gazzinelli, R., Sher, A. & Paul, W. E. Interleukin 12 acts directly on CD4+ T cells to enhance priming for interferon γ production and diminishes interleukin 4 inhibition of such priming. Proc. Natl Acad. Sci. USA90, 10188–10192 (1993). ArticleCASPubMedPubMed Central Google Scholar
Robinson, D. S. & O'Garra, A. Further checkpoints in TH1 development. Immunity16, 755–758 (2002). ArticleCASPubMed Google Scholar
Trinchieri, G., Pflanz, S. & Kastelein, R. A. The IL-12 family of heterodimeric cytokines: new players in the regulation of T cell responses. Immunity19, 641–644 (2003). ArticleCASPubMed Google Scholar
Murphy, K. M. & Reiner, S. L. The lineage decisions of helper T cells. Nature Rev. Immunol.2, 933–944 (2002). ArticleCAS Google Scholar
Boulay, J. L., O'Shea, J. J. & Paul, W. E. Molecular phylogeny within type I cytokines and their cognate receptors. Immunity19, 159–163 (2003). ArticleCASPubMed Google Scholar
Yoshida, K. et al. Targeted disruption of gp130, a common signal transducer for the interleukin 6 family of cytokines, leads to myocardial and hematological disorders. Proc. Natl Acad. Sci. USA93, 407–411 (1996). ArticleCASPubMedPubMed Central Google Scholar
Oppmann, B. et al. Novel p19 protein engages IL-12p40 to form a cytokine, IL-23, with biological activities similar as well as distinct from IL-12. Immunity13, 715–725 (2000). This paper describes a crucial series of studies that identify IL-12p40 as a shared component of IL-12 and IL-23, and it highlights some of the similarities in the properties of these cytokines. ArticleCASPubMed Google Scholar
Parham, C. et al. A receptor for the heterodimeric cytokine IL-23 is composed of IL-12Rβ1 and a novel cytokine receptor subunit, IL-23R. J. Immunol.168, 5699–5708 (2002). ArticleCASPubMed Google Scholar
Sprecher, C. A. et al. Cloning and characterization of a novel class I cytokine receptor. Biochem. Biophys. Res. Commun.246, 82–90 (1998). ArticleCASPubMed Google Scholar
Devergne, O. et al. A novel interleukin-12 p40-related protein induced by latent Epstein–Barr virus infection in B lymphocytes. J. Virol.70, 1143–1153 (1996). CASPubMedPubMed Central Google Scholar
Pflanz, S. et al. IL-27, a heterodimeric cytokine composed of EBI3 and p28 protein, induces proliferation of naive CD4+ T cells. Immunity16, 779–790 (2002). These authors describe the identification of the unique pairing of type I cytokine components that forms IL-27 and the finding that WSX1 is required for signalling. ArticleCASPubMed Google Scholar
Pflanz, S. et al. WSX-1 and glycoprotein 130 constitute a signal-transducing receptor for IL-27. J. Immunol.172, 2225–2231 (2004). ArticleCASPubMed Google Scholar
Devergne, O., Birkenbach, M. & Kieff, E. Epstein–Barr virus-induced gene 3 and the p35 subunit of interleukin 12 form a novel heterodimeric hematopoietin. Proc. Natl Acad. Sci. USA94, 12041–12046 (1997). ArticleCASPubMedPubMed Central Google Scholar
Fieschi, C. et al. Low penetrance, broad resistance, and favorable outcome of interleukin 12 receptor β1 deficiency: medical and immunological implications. J. Exp. Med.197, 527–535 (2003). ArticleCASPubMedPubMed Central Google Scholar
Ghilardi, N. et al. A novel type I cytokine receptor is expressed on monocytes, signals proliferation, and activates STAT-3 and STAT-5. J. Biol. Chem.277, 16831–16836 (2002). ArticleCASPubMed Google Scholar
Dillon, S. R. et al. Interleukin 31, a cytokine produced by activated T cells, induces dermatitis in mice. Nature Immunol.5, 752–760 (2004). ArticleCAS Google Scholar
Wirtz, S. et al. EBV-induced gene 3 transcription is induced by TLR signaling in primary dendritic cells via NF-κB activation. J. Immunol.174, 2814–2824 (2005). ArticleCASPubMed Google Scholar
Smits, H. H. et al. Commensal Gram-negative bacteria prime human dendritic cells for enhanced IL-23 and IL-27 expression and enhanced TH1 development. Eur. J. Immunol.34, 1371–1380 (2004). ArticleCASPubMed Google Scholar
Schnurr, M. et al. Extracellular nucleotide signaling by P2 receptors inhibits IL-12 and enhances IL-23 expression in human dendritic cells: a novel role for the cAMP pathway. Blood105, 1582–1589 (2005). ArticleCASPubMed Google Scholar
Wiekowski, M. T. et al. Ubiquitous transgenic expression of the IL-23 subunit p19 induces multiorgan inflammation, runting, infertility, and premature death. J. Immunol.166, 7563–7570 (2001). ArticleCASPubMed Google Scholar
Kopp, T. et al. Inflammatory skin disease in K14/p40 transgenic mice: evidence for interleukin-12-like activities of p40. J. Invest. Dermatol.117, 618–626 (2001). ArticleCASPubMed Google Scholar
Kopp, T. et al. IL-23 production by cosecretion of endogenous p19 and transgenic p40 in keratin 14/p40 transgenic mice: evidence for enhanced cutaneous immunity. J. Immunol.170, 5438–5444 (2003). ArticleCASPubMed Google Scholar
Trinchieri, G. Interleukin-12 and the regulation of innate resistance and adaptive immunity. Nature Rev. Immunol.3, 133–146 (2003). ArticleCAS Google Scholar
Tripp, C. S., Gately, M. K., Hakimi, J., Ling, P. & Unanue, E. R. Neutralization of IL-12 decreases resistance to Listeria in SCID and C.B-17 mice. J. Immunol.152, 1883–1887 (1994). CASPubMed Google Scholar
Gazzinelli, R. T. et al. Parasite-induced IL-12 stimulates early IFN-γ synthesis and resistance during acute infection with Toxoplasma gondii. J. Immunol.153, 2533–2543 (1994). CASPubMed Google Scholar
Heinzel, F. P., Schoenhaut, D. S., Rerko, R. M., Rosser, L. E. & Gately, M. K. Recombinant interleukin 12 cures mice infected with Leishmania major. J. Exp. Med.177, 1505–1509 (1993). ArticleCASPubMed Google Scholar
Sypek, J. P. et al. Resolution of cutaneous leishmaniasis: interleukin 12 initiates a protective T helper type 1 immune response. J. Exp. Med.177, 1797–1802 (1993). ArticleCASPubMed Google Scholar
de Jong, R. et al. Severe mycobacterial and Salmonella infections in interleukin-12 receptor-deficient patients. Science280, 1435–1438 (1998). ArticleCASPubMed Google Scholar
Altare, F. et al. Impairment of mycobacterial immunity in human interleukin-12 receptor deficiency. Science280, 1432–1435 (1998). ArticleCASPubMed Google Scholar
Casanova, J. L. & Abel, L. The human model: a genetic dissection of immunity to infection in natural conditions. Nature Rev. Immunol.4, 55–66 (2004). ArticleCAS Google Scholar
Chen, Q. et al. Development of TH1-type immune responses requires the type I cytokine receptor TCCR. Nature407, 916–920 (2000). On the basis of analysis of mice lacking the IL-27-receptor subunit WSX1, this report was the first to link the IL-27 receptor with pro-inflammatory signalling. ArticleCASPubMed Google Scholar
Yoshida, H. et al. WSX-1 is required for the initiation of TH1 responses and resistance to L. major infection. Immunity15, 569–578 (2001). ArticleCASPubMed Google Scholar
McIntyre, K. W. et al. Reduced incidence and severity of collagen-induced arthritis in interleukin-12-deficient mice. Eur. J. Immunol.26, 2933–2938 (1996). ArticleCASPubMed Google Scholar
Neurath, M. F., Fuss, I., Kelsall, B. L., Stuber, E. & Strober, W. Antibodies to interleukin 12 abrogate established experimental colitis in mice. J. Exp. Med.182, 1281–1290 (1995). ArticleCASPubMed Google Scholar
Leonard, J. P., Waldburger, K. E. & Goldman, S. J. Prevention of expeimental autoimmune encephalomyelitis by antibodies against interleukin 12. J. Exp. Med.181, 381–386 (1995). ArticleCASPubMed Google Scholar
Malfait, A. M. et al. Blockade of IL-12 during the induction of collagen-induced arthritis (CIA) markedly attenuates the severity of the arthritis. Clin. Exp. Immunol.111, 377–383 (1998). ArticleCASPubMedPubMed Central Google Scholar
Ferber, I. A. et al. Mice with a disrupted IFN-γ gene are susceptible to the induction of experimental autoimmune encephalomyelitis (EAE). J. Immunol.156, 5–7 (1996). CASPubMed Google Scholar
Willenborg, D. O., Fordham, S., Bernard, C. C., Cowden, W. B. & Ramshaw, I. A. IFN-γ plays a critical down-regulatory role in the induction and effector phase of myelin oligodendrocyte glycoprotein-induced autoimmune encephalomyelitis. J. Immunol.157, 3223–3227 (1996). CASPubMed Google Scholar
Chu, C. Q., Wittmer, S. & Dalton, D. K. Failure to suppress the expansion of the activated CD4 T cell population in interferon γ-deficient mice leads to exacerbation of experimental autoimmune encephalomyelitis. J. Exp. Med.192, 123–128 (2000). ArticleCASPubMedPubMed Central Google Scholar
Vermeire, K. et al. Accelerated collagen-induced arthritis in IFN-γ receptor-deficient mice. J. Immunol.158, 5507–5513 (1997). CASPubMed Google Scholar
Davidson, N. J. et al. IL-12, but not IFN-γ, plays a major role in sustaining the chronic phase of colitis in IL-10-deficient mice. J. Immunol.161, 3143–3149 (1998). CASPubMed Google Scholar
Becher, B., Durell, B. G. & Noelle, R. J. Experimental autoimmune encephalitis and inflammation in the absence of interleukin-12. J. Clin. Invest.110, 493–497 (2002). ArticleCASPubMedPubMed Central Google Scholar
Gran, B. et al. IL-12p35-deficient mice are susceptible to experimental autoimmune encephalomyelitis: evidence for redundancy in the IL-12 system in the induction of central nervous system autoimmune demyelination. J. Immunol.169, 7104–7110 (2002). ArticleCASPubMed Google Scholar
Aggarwal, S., Ghilardi, N., Xie, M. H., de Sauvage, F. J. & Gurney, A. L. Interleukin-23 promotes a distinct CD4 T cell activation state characterized by the production of interleukin-17. J. Biol. Chem.278, 1910–1914 (2003). Although previous studies had indicated that IL-23 and IL-12 had some properties that were distinct from each other, these authors were the first to associate IL-23 with the production of IL-17. ArticleCASPubMed Google Scholar
Cua, D. J. et al. Interleukin-23 rather than interleukin-12 is the critical cytokine for autoimmune inflammation of the brain. Nature421, 744–748 (2003). The initial study with IL-23p19-deficient mice revealed a unique role for IL-23 and not IL-12 in the development of EAE. ArticleCASPubMed Google Scholar
Langrish, C. L. et al. IL-23 drives a pathogenic T cell population that induces autoimmune inflammation. J. Exp. Med.201, 233–240 (2005). A crucial series of experiments are described that provided evidence of a unique T-cell subset that responds to IL-23 by producing IL-17 and mediates autoimmune disease. ArticleCASPubMedPubMed Central Google Scholar
Murphy, C. A. et al. Divergent pro- and antiinflammatory roles for IL-23 and IL-12 in joint autoimmune inflammation. J. Exp. Med.198, 1951–1957 (2003). ArticleCASPubMedPubMed Central Google Scholar
Nakae, S., Nambu, A., Sudo, K. & Iwakura, Y. Suppression of immune induction of collagen-induced arthritis in IL-17-deficient mice. J. Immunol.171, 6173–6177 (2003). ArticleCASPubMed Google Scholar
Nakae, S. et al. IL-17 production from activated T cells is required for the spontaneous development of destructive arthritis in mice deficient in IL-1 receptor antagonist. Proc. Natl Acad. Sci. USA100, 5986–5990 (2003). ArticleCASPubMedPubMed Central Google Scholar
Ghilardi, N. et al. Compromised humoral and delayed-type hypersensitivity responses in IL-23-deficient mice. J. Immunol.172, 2827–2833 (2004). ArticleCASPubMed Google Scholar
Langrish, C. L. et al. IL-12 and IL-23: master regulators of innate and adaptive immunity. Immunol. Rev.202, 96–105 (2004). ArticleCASPubMed Google Scholar
Taylor, G. A., Feng, C. G. & Sher, A. p47 GTPases: regulators of immunity to intracellular pathogens. Nature Rev. Immunol.4, 100–109 (2004). ArticleCAS Google Scholar
Mattner, F. et al. Genetically resistant mice lacking interleukin-12 are susceptible to infection with Leishmania major and mount a polarized TH2 cell response. Eur. J. Immunol.26, 1553–1559 (1996). ArticleCASPubMed Google Scholar
Park, A. Y., Hondowicz, B. D. & Scott, P. IL-12 is required to maintain a TH1 response during Leishmania major infection. J. Immunol.165, 896–902 (2000). ArticleCASPubMed Google Scholar
Elkins, K. L., Cooper, A., Colombini, S. M., Cowley, S. C. & Kieffer, T. L. In vivo clearance of an intracellular bacterium, Francisella tularensis LVS, is dependent on the p40 subunit of interleukin-12 (IL-12) but not on IL-12 p70. Infect. Immun.70, 1936–1948 (2002). ArticleCASPubMedPubMed Central Google Scholar
Decken, K. et al. Interleukin-12 is essential for a protective TH1 response in mice infected with Cryptococcus neoformans. Infect. Immun.66, 4994–5000 (1998). CASPubMedPubMed Central Google Scholar
Lehmann, J. et al. IL-12p40-dependent agonistic effects on the development of protective innate and adaptive immunity against Salmonella enteritidis. J. Immunol.167, 5304–5315 (2001). ArticleCASPubMed Google Scholar
Holscher, C. et al. A protective and agonistic function of IL-12p40 in mycobacterial infection. J. Immunol.167, 6957–6966 (2001). ArticleCASPubMed Google Scholar
Carr, J. A., Rogerson, J. A., Mulqueen, M. J., Roberts, N. A. & Nash, A. A. The role of endogenous interleukin-12 in resistance to murine cytomegalovirus (MCMV) infection and a novel action for endogenous IL-12 p40. J. Interferon Cytokine Res.19, 1145–1152 (1999). ArticleCASPubMed Google Scholar
Lieberman, L. A. et al. IL-23 provides a limited mechanism of resistance to acute toxoplasmosis in the absence of IL-12. J. Immunol.173, 1887–1893 (2004). ArticleCASPubMed Google Scholar
Ye, P. et al. Requirement of interleukin 17 receptor signaling for lung CXC chemokine and granulocyte colony-stimulating factor expression, neutrophil recruitment, and host defense. J. Exp. Med.194, 519–527 (2001). This was the first description of a role for IL-17 in the regulation of neutrophil mobilization and host resistance to infection. ArticleCASPubMedPubMed Central Google Scholar
Happel, K. I. et al. Roles of Toll-like receptor 4 and IL-23 in IL-17 expression in response to Klebsiella pneumoniae infection. J. Immunol.170, 4432–4436 (2003). ArticleCASPubMed Google Scholar
Kelly, M. N. et al. Interleukin-17/interleukin-17 receptor-mediated signaling is important for generation of an optimal polymorphonuclear response against Toxoplasma gondii infection. Infect. Immun.73, 617–621 (2005). ArticleCASPubMedPubMed Central Google Scholar
Hunter, C. A., Abrams, J. S., Beaman, M. H. & Remington, J. S. Cytokine mRNA in the central nervous system of SCID mice infected with Toxoplasma gondii: importance of T-cell-independent regulation of resistance to T. gondii. Infect. Immun.61, 4038–4044 (1993). CASPubMedPubMed Central Google Scholar
Suzuki, Y. et al. Impaired resistance to the development of toxoplasmic encephalitis in interleukin-6-deficient mice. Infect. Immun.65, 2339–2345 (1997). CASPubMedPubMed Central Google Scholar
Deckert-Schluter, M., Bluethmann, H., Rang, A., Hof, H. & Schluter, D. Crucial role of TNF receptor type 1 (p55), but not of TNF receptor type 2 (p75), in murine toxoplasmosis. J. Immunol.160, 3427–3436 (1998). CASPubMed Google Scholar
Yap, G. S., Scharton-Kersten, T., Charest, H. & Sher, A. Decreased resistance of TNF receptor p55- and p75-deficient mice to chronic toxoplasmosis despite normal activation of inducible nitric oxide synthase in vivo. J. Immunol.160, 1340–1345 (1998). CASPubMed Google Scholar
Bettelli, E. & Kuchroo, V. K. IL-12- and IL-23-induced T helper cell subsets: birds of the same feather flock together. J. Exp. Med.201, 169–171 (2005). ArticleCASPubMedPubMed Central Google Scholar
Greenberger, M. J. et al. IL-12 gene therapy protects mice in lethal Klebsiella pneumoniae. J. Immunol.157, 3006–3012 (1996). CASPubMed Google Scholar
Deng, J. C. et al. STAT4 is a critical mediator of early innate immune responses against pulmonary Klebsiella infection. J. Immunol.173, 4075–4083 (2004). ArticleCASPubMed Google Scholar
Tsai, W. C. et al. Nitric oxide is required for effective innate immunity against Klebsiella pneumoniae. Infect. Immun.65, 1870–1875 (1997). CASPubMedPubMed Central Google Scholar
Moore, T. A., Perry, M. L., Getsoian, A. G., Newstead, M. W. & Standiford, T. J. Divergent role of γ interferon in a murine model of pulmonary versus systemic Klebsiella pneumoniae infection. Infect. Immun.70, 6310–6318 (2002). ArticleCASPubMedPubMed Central Google Scholar
Suzuki, Y., Orelana, M. A., Schreiber, R. D. & Remington, J. S. Inteferon-γ: the major mediator of resistance against Toxoplasma gondii. Science240, 516–518 (1988). ArticleCASPubMed Google Scholar
Cai, G., Radzanowski, T., Villegas, E. N., Kastelein, R. & Hunter, C. A. Identification of STAT4-dependent and independent mechanisms of resistance to Toxoplasma gondii. J. Immunol.165, 2619–2627 (2000). ArticleCASPubMed Google Scholar
Scharton-Kersten, T. M., Yap, G., Magram, J. & Sher, A. Inducible nitric oxide is essential for host control of persistent but not acute infection with the intracellular pathogen Toxoplasma gondii. J. Exp. Med.185, 1261–1273 (1997). ArticleCASPubMedPubMed Central Google Scholar
Teunissen, M. B., Koomen, C. W., de Waal Malefyt, R., Wierenga, E. A. & Bos, J. D. Interleukin-17 and interferon-γ synergize in the enhancement of proinflammatory cytokine production by human keratinocytes. J. Invest. Dermatol.111, 645–649 (1998). ArticleCASPubMed Google Scholar
Takeda, A. et al. Role of IL-27/WSX-1 signaling for induction of T-bet through activation of STAT1 during initial TH1 commitment. J. Immunol.170, 4886–4890 (2003). This is the initial description of the signalling components that are used by IL-27 and that could promote TH1-cell responses. ArticleCASPubMed Google Scholar
Hibbert, L., Pflanz, S., De Waal Malefyt, R. & Kastelein, R. A. IL-27 and IFN-α signal via Stat1 and Stat3 and induce T-Bet and IL-12Rβ2 in naive T cells. J. Interferon Cytokine Res.23, 513–522 (2003). ArticleCASPubMed Google Scholar
Lucas, S., Ghilardi, N., Li, J. & de Sauvage, F. J. IL-27 regulates IL-12 responsiveness of naive CD4+ T cells through Stat1-dependent and -independent mechanisms. Proc. Natl Acad. Sci. USA100, 15047–15052 (2003). This paper provides insights into the ability of IL-27 to enhance the polarization of CD4+ T cells to a TH1-cell phenotype and shows that IL-27 can inhibit the expression of GATA3. ArticleCASPubMedPubMed Central Google Scholar
Kamiya, S. et al. An indispensable role for STAT1 in IL-27-induced T-bet expression but not proliferation of naive CD4+ T cells. J. Immunol.173, 3871–3877 (2004). ArticleCASPubMed Google Scholar
Artis, D. et al. Early IL-4 production governs the requirement for IL-27–WSX-1 signaling in the development of protective TH1 cytokine responses following Leishmania major infection. J. Immunol.172, 4672–4675 (2004). ArticleCASPubMed Google Scholar
Zahn, S. et al. Impaired TH1 responses in mice deficient in Epstein–Barr virus-induced gene 3 and challenged with physiological doses of Leishmania major. Eur. J. Immunol.35, 1106–1112 (2005). ArticleCASPubMed Google Scholar
Villarino, A. V., Huang, E. & Hunter, C. A. Understanding the pro- and anti-inflammatory properties of IL-27. J. Immunol.173, 715–720 (2004). ArticleCASPubMed Google Scholar
Chiyo, M. et al. Expression of IL-27 in murine carcinoma cells produces antitumor effects and induces protective immunity in inoculated host animals. Int. J. Cancer115, 437–442 (2005). ArticleCASPubMed Google Scholar
Matsui, M. et al. Adjuvant activities of novel cytokines, interleukin-23 (IL-23) and IL-27, for induction of hepatitis C virus-specific cytotoxic T lymphocytes in HLA-A*0201 transgenic mice. J. Virol.78, 9093–9104 (2004). ArticleCASPubMedPubMed Central Google Scholar
Salcedo, R. et al. IL-27 mediates complete regression of orthotopic primary and metastatic murine neuroblastoma tumors: role for CD8+ T cells. J. Immunol.173, 7170–7182 (2004). ArticleCASPubMed Google Scholar
Hisada, M. et al. Potent antitumor activity of interleukin-27. Cancer Res.64, 1152–1156 (2004). ArticleCASPubMed Google Scholar
Larousserie, F. et al. Analysis of interleukin-27 (EBI3/p28) expression in Epstein–Barr virus- and human T-cell leukemia virus type 1-associated lymphomas: heterogeneous expression of EBI3 subunit by tumoral cells. Am. J. Pathol.166, 1217–1228 (2005). ArticleCASPubMedPubMed Central Google Scholar
Goldberg, R., Wildbaum, G., Zohar, Y., Maor, G. & Karin, N. Suppression of ongoing adjuvant-induced arthritis by neutralizing the function of the p28 subunit of IL-27. J. Immunol.173, 1171–1178 (2004). ArticleCASPubMed Google Scholar
Goldberg, R. et al. Suppression of ongoing experimental autoimmune encephalomyelitis by neutralizing the function of the p28 subunit of IL-27. J. Immunol.173, 6465–6471 (2004). ArticleCASPubMed Google Scholar
Nieuwenhuis, E. E. et al. Disruption of T helper 2-immune responses in Epstein–Barr virus-induced gene 3-deficient mice. Proc. Natl Acad. Sci. USA99, 16951–16956 (2002). ArticleCASPubMedPubMed Central Google Scholar
Hamano, S. et al. WSX-1 is required for resistance to Trypanosoma cruzi infection by regulation of proinflammatory cytokine production. Immunity19, 657–667 (2003). This is one of the initial studies that showed that IL-27-receptor-deficient mice develop exaggerated TH1- and TH2-cell responses during infection. ArticleCASPubMed Google Scholar
Artis, D. et al. The IL-27 receptor (WSX-1) is an inhibitor of innate and adaptive elements of type 2 immunity. J. Immunol.173, 5626–5634 (2004). ArticleCASPubMed Google Scholar
Holscher, C. et al. The IL-27 receptor chain WSX-1 differentially regulates antibacterial immunity and survival during experimental tuberculosis. J. Immunol.174, 3534–3544 (2005). ArticlePubMed Google Scholar
Villarino, A. et al. The IL-27R (WSX-1) is required to suppress T cell hyperactivity during infection. Immunity19, 645–655 (2003). This was the first report to propose an anti-inflammatory function for IL-27 in the context of infection. ArticleCASPubMed Google Scholar
Yamanaka, A. et al. Hyperproduction of proinflammatory cytokines by WSX-1-deficient NKT cells in concanavalin A-induced hepatitis. J. Immunol.172, 3590–3596 (2004). ArticleCASPubMed Google Scholar
Pearl, J. E. et al. IL-27 signaling compromises control of bacterial growth in mycobacteria-infected mice. J. Immunol.173, 7490–7496 (2004). ArticleCASPubMed Google Scholar
Villarino, A. V. et al. Positive and negative regulation of the IL-27 receptor during lymphoid cell activation. J. Immunol.174, 7684–7691 (2005). ArticleCASPubMed Google Scholar
Bancroft, A. J., Humphreys, N. E., Worthington, J. J., Yoshida, H. & Grencis, R. K. WSX-1: a key role in induction of chronic intestinal nematode infection. J. Immunol.172, 7635–7641 (2004). ArticleCASPubMed Google Scholar
Barczyk, A., Pierzchala, W. & Sozanska, E. Interleukin-17 in sputum correlates with airway hyperresponsiveness to methacholine. Respir. Med.97, 726–733 (2003). ArticleCASPubMed Google Scholar
Casado, B., Pannell, L. K., Viglio, S., Iadarola, P. & Baraniuk, J. N. Analysis of the sinusitis nasal lavage fluid proteome using capillary liquid chromatography interfaced to electrospray ionization-quadrupole time of flight-tandem mass spectrometry. Electrophoresis25, 1386–1393 (2004). ArticleCASPubMed Google Scholar
Lock, C. et al. Gene-microarray analysis of multiple sclerosis lesions yields new targets validated in autoimmune encephalomyelitis. Nature Med.8, 500–508 (2002). ArticleCASPubMed Google Scholar
Schmidt, C. et al. Expression of interleukin-12-related cytokine transcripts in inflammatory bowel disease: elevated interleukin-23p19 and interleukin-27p28 in Crohn's disease but not in ulcerative colitis. Inflamm. Bowel Dis.11, 16–23 (2005). ArticlePubMed Google Scholar
Lee, E. et al. Increased expression of interleukin 23 p19 and p40 in lesional skin of patients with psoriasis vulgaris. J. Exp. Med.199, 125–130 (2004). ArticleCASPubMedPubMed Central Google Scholar
McAllister, F. et al. Role of IL-17A, IL-17F and the IL-17 receptor in regulating Gro-α and G-CSF in bronchial epithelium: implications for airway inflammation in cystic fibrosis. J. Immunol. (in the press).
Mannon, P. J. et al. Anti-interleukin-12 antibody for active Crohn's disease. N. Engl. J. Med.351, 2069–2079 (2004). This paper describes the results of the clinical trial using IL-12p40-specific antibodies, which indicate that this cytokine component is a viable clinical target. ArticleCASPubMed Google Scholar
Gardam, M. A. et al. Anti-tumour necrosis factor agents and tuberculosis risk: mechanisms of action and clinical management. Lancet Infect. Dis.3, 148–155 (2003). ArticleCASPubMed Google Scholar
Larousserie, F. et al. Expression of IL-27 in human TH1-associated granulomatous diseases. J. Pathol.202, 164–171 (2004). ArticleCASPubMed Google Scholar
Omata, F., Birkenbach, M., Matsuzaki, S., Christ, A. D. & Blumberg, R. S. The expression of IL-12 p40 and its homologue, Epstein–Barr virus-induced gene 3, in inflammatory bowel disease. Inflamm. Bowel Dis.7, 215–220 (2001). ArticleCASPubMed Google Scholar
Lenardo, M. J. Interleukin-2 programs mouse αβ T lymphocytes for apoptosis. Nature353, 858–861 (1991). ArticleCASPubMed Google Scholar
Hodge-Dufour, J. et al. Inhibition of interferon γ induced interleukin 12 production: a potential mechanism for the anti-inflammatory activities of tumor necrosis factor. Proc. Natl Acad. Sci. USA95, 13806–13811 (1998). ArticleCASPubMedPubMed Central Google Scholar
Cope, A. P. et al. Chronic tumor necrosis factor alters T cell responses by attenuating T cell receptor signalling. J. Exp. Med.185, 1573–1584 (1997). ArticleCASPubMedPubMed Central Google Scholar
Diehl, S. et al. Inhibition of TH1 differentiation by IL-6 is mediated by SOCS1. Immunity13, 805–815 (2000). ArticleCASPubMed Google Scholar
Cousens, L. P., Orange, J. S., Su, H. C. & Biron, C. A. Interferon-α/β inhibition of interleukin 12 and interferon-γ production in vitro during viral infection. Proc. Natl Acad. Sci. USA94, 634–639 (1997). ArticleCASPubMedPubMed Central Google Scholar
Lee, C. K., Smith, E., Gimeno, R., Gertner, R. & Levy, D. E. STAT1 affects lymphocyte survival and proliferation partially independent of its role downstream of IFN-γ. J. Immunol.164, 1286–1292 (2000). ArticleCASPubMed Google Scholar
Tebbutt, N. C. et al. Reciprocal regulation of gastrointestinal homeostasis by SHP2 and STAT-mediated trefoil gene activation in gp130 mutant mice. Nature Med.8, 1089–1097 (2002). ArticleCASPubMed Google Scholar
Ishida, H., Hastings, R., Kearney, J. & Howard, M. Continuous anti-interleukin 10 antibody administration depletes mice of Ly-1 B cells but not conventional B cells. J. Exp. Med.175, 1213–1220 (1992). ArticleCASPubMed Google Scholar
Cai, G., Kastelein, R. A. & Hunter, C. A. IL-10 enhances NK cell proliferation, cytotoxicity and production of IFN-γ when combined with IL-18. Eur. J. Immunol.29, 2658–2665 (1999). ArticleCASPubMed Google Scholar
Shibata, Y. et al. Immunoregulatory roles of IL-10 in innate immunity: IL-10 inhibits macrophage production of IFN-γ-inducing factors but enhances NK cell production of IFN-γ. J. Immunol.161, 4283–4288 (1998). CASPubMed Google Scholar
Kolls, J. K. & Linden, A. Interleukin-17 family members and inflammation. Immunity21, 467–476 (2004). ArticleCASPubMed Google Scholar