Innate lymphoid cells — how did we miss them? (original) (raw)
Spits, H. et al. Innate lymphoid cells — a proposal for uniform nomenclature. Nature Rev. Immunol. 7 Jan 2013 (doi:10.1038/nri3365). ArticleCASPubMed Google Scholar
Kiessling, R. Klein, E., Pross, H. & Wigzell, H. “Natural” killer cells in the mouse. II. Cytotoxic cells with specificity for mouse Moloney leukemia cells. Characteristics of the killer cell. Eur. J. Immunol.5, 117–121 (1975). ArticleCASPubMed Google Scholar
Herberman, R. B., Nunn, M. E., Holden, H. T. & Lavrin, D. H. Natural cytotoxic reactivity of mouse lymphoid cells against syngeneic and allogeneic tumors. II. Characterization of effector cells. Int. J. Cancer.16, 230–239 (1975). ArticleCASPubMed Google Scholar
Di Santo, J. P. & Vosshenrich, C. A. Bone marrow versus thymic pathways of natural killer cell development. Immunol. Rev.214, 35–46 (2006). ArticleCASPubMed Google Scholar
Crellin, N. K., Trifari, S., Kaplan, C. D., Cupedo, T. & Spits, H. Human NKp44+IL-22+ cells and LTi-like cells constitute a stable RORC+ lineage distinct from conventional natural killer cells. J. Exp. Med.207, 281–290 (2010). ArticleCASPubMedPubMed Central Google Scholar
Hurst, S. D. et al. New IL-17 family members promote Th1 or Th2 responses in the lung: in vivo function of the novel cytokine IL-25. J. Immunol.169, 443–453 (2002). ArticleCASPubMed Google Scholar
Fort, M. M. et al. IL-25 induces IL-4, IL-5, and IL-13 and Th2-associated pathologies in vivo. Immunity15, 985–995 (2001). ArticleCASPubMed Google Scholar
Fallon, P. G. et al. Identification of an interleukin (IL)-25-dependent cell population that provides IL-4, IL-5, and IL-13 at the onset of helminth expulsion. J. Exp. Med.203, 1105–1116 (2006). ArticleCASPubMedPubMed Central Google Scholar
Moro, K. et al. Innate production of TH2 cytokines by adipose tissue-associated c-Kit+Sca-1+ lymphoid cells. Nature463, 540–544 (2010). ArticleCASPubMed Google Scholar
Price, A. E. et al. Systemically dispersed innate IL-13-expressing cells in type 2 immunity. Proc. Natl Acad. Sci. USA107, 11489–11494 (2010). References 10–12 comprehensively characterize the group 2 ILCs (referred to as nuocytes, NHCs and IH2 cells) that were first identified in references 7–9. ArticleCASPubMedPubMed Central Google Scholar
Barlow, J. L. et al. Innate IL-13-producing nuocytes arise during allergic lung inflammation and contribute to airways hyperreactivity. J. Allergy Clin. Immunol.129, 191–198 (2012). ArticleCASPubMed Google Scholar
Bartemes, K. R. et al. IL-33-responsive lineage−CD25+CD44hi lymphoid cells mediate innate type 2 immunity and allergic inflammation in the lungs. J. Immunol.188, 1505–1513 (2011). Google Scholar
Chang, Y. J. et al. Innate lymphoid cells mediate influenza-induced airway hyper-reactivity independently of adaptive immunity. Nature Immunol.12, 631–638 (2011). ArticleCAS Google Scholar
Kim, H. Y. et al. Innate lymphoid cells responding to IL-33 mediate airway hyperreactivity independently of adaptive immunity. J. Allergy Clin. Immunol.129, 216–227 (2012). ArticleCASPubMed Google Scholar
Monticelli, L. A. et al. Innate lymphoid cells promote lung-tissue homeostasis after infection with influenza virus. Nature Immunol.12, 1045–1054 (2011). ArticleCAS Google Scholar
Halim, T. Y. et al. Retinoic-acid-receptor-related orphan nuclear receptor α is required for natural helper cell development and allergic inflammation. Immunity37, 463–474 (2012). ArticleCASPubMed Google Scholar
Wong, S. H. et al. Transcription factor RORα is critical for nuocyte development. Nature Immunol.13, 229–236 (2012). References 18 and 19 illustrate the crucial role for the transcription factor RORα in the development of ILC2s. ArticleCAS Google Scholar
Hoyler, T. et al. The transcription factor GATA-3 controls cell fate and maintenance of type 2 innate lymphoid cells. Immunity37, 634–648 (2012). ArticleCASPubMedPubMed Central Google Scholar
Mjosberg, J. et al. The transcription factor GATA3 is essential for the function of human type 2 innate lymphoid cells. Immunity37, 649–659 (2012). References 20 and 21 characterize the role of the transcription factor GATA3 in ILC2 development in mice and humans. ArticlePubMedCAS Google Scholar
Barlow, J. L. & McKenzie, A. N. Nuocytes: expanding the innate cell repertoire in type-2 immunity. J. Leukoc. Biol.90, 867–874 (2011). ArticleCASPubMed Google Scholar
Mjosberg, J. M. et al. Human IL-25- and IL-33-responsive type 2 innate lymphoid cells are defined by expression of CRTH2 and CD161. Nature Immunol.12, 1055–1062 (2011). This paper is the first description of ILC2s in humans. ArticleCAS Google Scholar
Luci, C. et al. Influence of the transcription factor RORγt on the development of NKp46+ cell populations in gut and skin. Nature Immunol.10, 75–82 (2009). ArticleCAS Google Scholar
Sanos, S. L. et al. RORγt and commensal microflora are required for the differentiation of mucosal interleukin 22-producing NKp46+ cells. Nature Immunol.10, 83–91 (2009). ArticleCAS Google Scholar
Satoh-Takayama, N. et al. Microbial flora drives interleukin 22 production in intestinal NKp46+ cells that provide innate mucosal immune defense. Immunity29, 958–970 (2008). References 24–26 are the first reports of intestinal lymphoid cells that express NKp46 but are distinct from NK cells and require the transcription factor ROR? for their development. ArticleCASPubMed Google Scholar
Satoh-Takayama, N. et al. IL-7 and IL-15 independently program the differentiation of intestinal CD3−NKp46+ cell subsets from Id2-dependent precursors. J. Exp. Med.207, 273–280 (2010). ArticleCASPubMedPubMed Central Google Scholar
Vonarbourg, C. et al. Regulated expression of nuclear receptor RORγt confers distinct functional fates to NK cell receptor-expressing RORγt+ innate lymphocytes. Immunity33, 736–751 (2010). ArticleCASPubMedPubMed Central Google Scholar
Cella, M. et al. A human natural killer cell subset provides an innate source of IL-22 for mucosal immunity. Nature457, 722–725 (2009). ArticleCASPubMed Google Scholar
Cupedo, T. et al. Human fetal lymphoid tissue-inducer cells are interleukin 17-producing precursors to RORC+ CD127+ natural killer-like cells. Nature Immunol.10, 66–74 (2009). ArticleCAS Google Scholar
Hughes, T. et al. Stage 3 immature human natural killer cells found in secondary lymphoid tissue constitutively and selectively express the TH17 cytokine interleukin-22. Blood113, 4008–4010 (2009). ArticleCASPubMedPubMed Central Google Scholar
Mebius, R. E., Rennert, P. & Weissman, I. L. Developing lymph nodes collect CD4+CD3− LTβ+ cells that can differentiate to APC, NK cells, and follicular cells but not T or B cells. Immunity7, 493–504 (1997). ArticleCASPubMed Google Scholar
Mebius, R. E., Streeter, P. R., Michie, S., Butcher, E. C. & Weissman, I. L. A developmental switch in lymphocyte homing receptor and endothelial vascular addressin expression regulates lymphocyte homing and permits CD4+ CD3− cells to colonize lymph nodes. Proc. Natl Acad. Sci. USA93, 11019–11024 (1996). ArticleCASPubMedPubMed Central Google Scholar
Yoshida, H. et al. IL-7 receptor α+ CD3− cells in the embryonic intestine induces the organizing center of Peyer's patches. Int. Immunol.11, 643–655 (1999). ArticleCASPubMed Google Scholar
Eberl, G. et al. An essential function for the nuclear receptor RORγt in the generation of fetal lymphoid tissue inducer cells. Nature Immunol.5, 64–73 (2004). ArticleCAS Google Scholar
Eberl, G. & Littman, D. R. Thymic origin of intestinal αβ T cells revealed by fate mapping of RORγt+ cells. Science305, 248–251 (2004). ArticleCASPubMed Google Scholar
Scandella, E. et al. Restoration of lymphoid organ integrity through the interaction of lymphoid tissue-inducer cells with stroma of the T cell zone. Nature Immunol.9, 667–675 (2008). ArticleCAS Google Scholar
Withers, D. R. et al. Cutting edge: lymphoid tissue inducer cells maintain memory CD4 T cells within secondary lymphoid tissue. J. Immunol.189, 2094–2098 (2012). ArticleCASPubMed Google Scholar
Sonnenberg, G. F., Monticelli, L. A., Elloso, M. M., Fouser, L. A. & Artis, D. CD4+ lymphoid tissue-inducer cells promote innate immunity in the gut. Immunity34, 122–134 (2011). ArticleCASPubMed Google Scholar
O'Shea, J. J. & Paul, W. E. Mechanisms underlying lineage commitment and plasticity of helper CD4+ T cells. Science327, 1098–1102 (2010). ArticleCASPubMedPubMed Central Google Scholar
Yoshida, H. et al. Expression of α4β7 integrin defines a distinct pathway of lymphoid progenitors committed to T cells, fetal intestinal lymphotoxin producer, NK, and dendritic cells. J. Immunol.167, 2511–2521 (2001). ArticleCASPubMed Google Scholar
Mebius, R. E. et al. The fetal liver counterpart of adult common lymphoid progenitors gives rise to all lymphoid lineages, CD45+CD4+CD3− cells, as well as macrophages. J. Immunol.166, 6593–6601 (2001). ArticleCASPubMed Google Scholar
Yang, Q., Saenz, S. A., Zlotoff, D. A., Artis, D. & Bhandoola, A. Cutting edge: natural helper cells derive from lymphoid progenitors. J. Immunol.187, 5505–5509 (2011). ArticleCASPubMed Google Scholar
Sawa, S. et al. Lineage relationship analysis of RORγt+ innate lymphoid cells. Science330, 665–669 (2010). ArticleCASPubMed Google Scholar
Cherrier, M., Sawa, S. & Eberl, G. Notch, Id2, and RORγt sequentially orchestrate the fetal development of lymphoid tissue inducer cells. J. Exp. Med.209, 729–740 (2012). ArticleCASPubMedPubMed Central Google Scholar
Possot, C. et al. Notch signaling is necessary for adult, but not fetal, development of RORγt+ innate lymphoid cells. Nature Immunol.12, 949–958 (2011). ArticleCAS Google Scholar
Yokota, Y. et al. Development of peripheral lymphoid organs and natural killer cells depends on the helix-loop-helix inhibitor Id2. Nature397, 702–706 (1999). ArticleCASPubMed Google Scholar
Boos, M. D., Yokota, Y., Eberl, G. & Kee, B. L. Mature natural killer cell and lymphoid tissue-inducing cell development requires Id2-mediated suppression of E protein activity. J. Exp. Med.204, 1119–1130 (2007). ArticleCASPubMedPubMed Central Google Scholar
Spits, H. & Di Santo, J. P. The expanding family of innate lymphoid cells: regulators and effectors of immunity and tissue remodeling. Nature Immunol.12, 21–27 (2011). ArticleCAS Google Scholar
Kiss, E. A. et al. Natural aryl hydrocarbon receptor ligands control organogenesis of intestinal lymphoid follicles. Science334, 1561–1565 (2011). ArticleCASPubMed Google Scholar
Lee, J. S. et al. AHR drives the development of gut ILC22 cells and postnatal lymphoid tissues via pathways dependent on and independent of Notch. Nature Immunol.13, 144–151 (2012). ArticleCAS Google Scholar
Qiu, J. et al. The aryl hydrocarbon receptor regulates gut immunity through modulation of innate lymphoid cells. Immunity36, 92–104 (2012). ArticleCASPubMed Google Scholar
Cella, M., Otero, K. & Colonna, M. Expansion of human NK-22 cells with IL-7, IL-2, and IL-1β reveals intrinsic functional plasticity. Proc. Natl Acad. Sci. USA107, 10961–10966 (2010). ArticleCASPubMedPubMed Central Google Scholar
Hughes, T. et al. Interleukin-1β selectively expands and sustains interleukin-22+ immature human natural killer cells in secondary lymphoid tissue. Immunity32, 803–814 (2010). ArticleCASPubMedPubMed Central Google Scholar
Buonocore, S. et al. Innate lymphoid cells drive interleukin-23-dependent innate intestinal pathology. Nature464, 1371–1375 (2010). This paper is the first description of ILCs in inflammatory bowel disease models. ArticleCASPubMedPubMed Central Google Scholar
Vonarbourg, C. & Diefenbach, A. Multifaceted roles of interleukin-7 signaling for the development and function of innate lymphoid cells. Semin. Immunol.24, 165–174 (2012). ArticleCASPubMed Google Scholar
Liang, H. E. et al. Divergent expression patterns of IL-4 and IL-13 define unique functions in allergic immunity. Nature Immunol.13, 58–66 (2012). ArticleCAS Google Scholar
Bajoghli, B. et al. Evolution of genetic networks underlying the emergence of thymopoiesis in vertebrates. Cell138, 186–197 (2009). ArticleCASPubMed Google Scholar
Alder, M. N. et al. Diversity and function of adaptive immune receptors in a jawless vertebrate. Science310, 1970–1973 (2005). ArticleCASPubMed Google Scholar
Saito, H. et al. Generation of intestinal T cells from progenitors residing in gut cryptopatches. Science280, 275–278 (1998). ArticleCASPubMed Google Scholar
Wang, T., Martin, S. A. & Secombes, C. J. Two interleukin-17C-like genes exist in rainbow trout Oncorhynchus mykiss that are differentially expressed and modulated. Dev. Comp. Immunol.34, 491–500 (2010). ArticleCASPubMed Google Scholar
Tsutsui, S., Nakamura, O. & Watanabe, T. Lamprey (Lethenteron japonicum) IL-17 upregulated by LPS-stimulation in the skin cells. Immunogenetics59, 873–882 (2007). ArticleCASPubMed Google Scholar
Ohtani, M., Hayashi, N., Hashimoto, K., Nakanishi, T. & Dijkstra, J. M. Comprehensive clarification of two paralogous interleukin 4/13 loci in teleost fish. Immunogenetics60, 383–397 (2008). ArticleCASPubMed Google Scholar
Lane, P. J., Gaspal, F. M., McConnell, F. M., Withers, D. R. & Anderson, G. Lymphoid tissue inducer cells: pivotal cells in the evolution of CD4 immunity and tolerance? Front. Immunol.3, 24 (2012). ArticlePubMedPubMed Central Google Scholar
Flores, M. V., Hall, C., Jury, A., Crosier, K. & Crosier, P. The zebrafish retinoid-related orphan receptor (ror) gene family. Gene Expr. Patterns7, 535–543 (2007). ArticlePubMedCAS Google Scholar
Fallon, P. G. et al. IL-4 induces characteristic Th2 responses even in the combined absence of IL-5, IL-9, and IL-13. Immunity17, 7–17 (2002). ArticleCASPubMed Google Scholar
Finkelman, F. D. et al. Interleukin-4- and interleukin-13-mediated host protection against intestinal nematode parasites. Immunol. Rev.201, 139–155 (2004). ArticleCASPubMed Google Scholar
Barner, M., Mohrs, M., Brombacher, F. & Kopf, M. Differences between IL-4R α-deficient and IL-4-deficient mice reveal a role for IL-13 in the regulation of Th2 responses. Curr. Biol.8, 669–672 (1998). ArticleCASPubMed Google Scholar
McKenzie, G. J., Bancroft, A., Grencis, R. K. & McKenzie, A. N. A distinct role for interleukin-13 in Th2-cell-mediated immune responses. Curr. Biol.8, 339–342 (1998). ArticleCASPubMed Google Scholar
Voehringer, D., Reese, T. A., Huang, X., Shinkai, K. & Locksley, R. M. Type 2 immunity is controlled by IL-4/IL-13 expression in hematopoietic non-eosinophil cells of the innate immune system. J. Exp. Med.203, 1435–1446 (2006). ArticleCASPubMedPubMed Central Google Scholar
Kang, Z. et al. Epithelial cell-specific Act1 adaptor mediates interleukin-25-dependent helminth expulsion through expansion of Lin−c-Kit+ innate cell population. Immunity36, 821–833 (2012). ArticleCASPubMedPubMed Central Google Scholar
Zheng, Y. et al. Interleukin-22 mediates early host defense against attaching and effacing bacterial pathogens. Nature Med.14, 282–289 (2008). ArticleCASPubMed Google Scholar
Zenewicz, L. A. & Flavell, R. A. Recent advances in IL-22 biology. Int. Immunol.23, 159–163 (2011). ArticleCASPubMed Google Scholar
Vallance, B. A., Deng, W., Knodler, L. A. & Finlay, B. B. Mice lacking T and B lymphocytes develop transient colitis and crypt hyperplasia yet suffer impaired bacterial clearance during Citrobacter rodentium infection. Infect. Immun.70, 2070–2081 (2002). ArticleCASPubMedPubMed Central Google Scholar
De Luca, A. et al. IL-22 defines a novel immune pathway of antifungal resistance. Mucosal Immunol.3, 361–373 (2010). ArticleCASPubMed Google Scholar
Sonnenberg, G. F. et al. Innate lymphoid cells promote anatomical containment of lymphoid-resident commensal bacteria. Science336, 1321–1325 (2012). ArticleCASPubMedPubMed Central Google Scholar
Wolterink, R. G. et al. Pulmonary innate lymphoid cells are major producers of IL-5 and IL-13 in murine models of allergic asthma. Eur. J. Immunol.42, 1106–1116 (2012). ArticleCAS Google Scholar
Halim, T. Y., Krauss, R. H., Sun, A. C. & Takei, F. Lung natural helper cells are a critical source of Th2 cell-type cytokines in protease allergen-induced airway inflammation. Immunity36, 451–463 (2012). ArticleCASPubMed Google Scholar
Ikutani, M. et al. Identification of innate IL-5-producing cells and their role in lung eosinophil regulation and antitumor immunity. J. Immunol.188, 703–713 (2012). ArticleCASPubMed Google Scholar
Jackson, D. J., Sykes, A., Mallia, P. & Johnston, S. L. Asthma exacerbations: origin, effect, and prevention. J. Allergy Clin. Immunol.128, 1165–1174 (2011). ArticlePubMedPubMed Central Google Scholar
Maloy, K. J. & Powrie, F. Intestinal homeostasis and its breakdown in inflammatory bowel disease. Nature474, 298–306 (2011). ArticleCASPubMed Google Scholar
Fuss, I. J. et al. Nonclassical CD1d-restricted NK T cells that produce IL-13 characterize an atypical Th2 response in ulcerative colitis. J. Clin. Invest.113, 1490–1497 (2004). ArticleCASPubMedPubMed Central Google Scholar
Heller, F., Fuss, I. J., Nieuwenhuis, E. E., Blumberg, R. S. & Strober, W. Oxazolone colitis, a Th2 colitis model resembling ulcerative colitis, is mediated by IL-13-producing NK-T cells. Immunity17, 629–638 (2002). ArticleCASPubMed Google Scholar
Powell, N. et al. The transcription factor T-bet regulates intestinal inflammation mediated by interleukin-7 receptor+ innate lymphoid cells. Immunity37, 674–684 (2012). ArticleCASPubMedPubMed Central Google Scholar
Lochner, M. et al. Microbiota-induced tertiary lymphoid tissues aggravate inflammatory disease in the absence of RORγt and LTi cells. J. Exp. Med.208, 125–134 (2011). ArticleCASPubMedPubMed Central Google Scholar
Geremia, A. et al. IL-23-responsive innate lymphoid cells are increased in inflammatory bowel disease. J. Exp. Med.208, 1127–1133 (2011). ArticleCASPubMedPubMed Central Google Scholar
Takayama, T. et al. Imbalance of NKp44+NKp46− and NKp44−NKp46+ natural killer cells in the intestinal mucosa of patients with Crohn's disease. Gastroenterology139, 882–892 (2010). ArticleCASPubMed Google Scholar
Fuss, I. J. et al. Disparate CD4+ lamina propria (LP) lymphokine secretion profiles in inflammatory bowel disease. Crohn's disease LP cells manifest increased secretion of IFN-γ, whereas ulcerative colitis LP cells manifest increased secretion of IL-5. J. Immunol.157, 1261–1270 (1996). CASPubMed Google Scholar
Sawa, S. et al. RORγt+ innate lymphoid cells regulate intestinal homeostasis by integrating negative signals from the symbiotic microbiota. Nature Immunol.12, 320–326 (2011). ArticleCAS Google Scholar
Besnard, A. G. et al. Dual role of IL-22 in allergic airway inflammation and its cross-talk with IL-17A. Am. J. Respir. Crit. Care Med.183, 1153–1163 (2011). ArticleCASPubMed Google Scholar
Schnyder, B., Lima, C. & Schnyder-Candrian, S. Interleukin-22 is a negative regulator of the allergic response. Cytokine50, 220–227 (2010). ArticleCASPubMed Google Scholar
Taube, C. et al. IL-22 is produced by innate lymphoid cells and limits inflammation in allergic airway disease. PLoS ONE6, e21799 (2011). ArticleCASPubMedPubMed Central Google Scholar
Takahashi, K. et al. IL-22 attenuates IL-25 production by lung epithelial cells and inhibits antigen-induced eosinophilic airway inflammation. J. Allergy Clin. Immunol.128, 1067–1076 (2011). ArticleCASPubMed Google Scholar
Barlow, J. L., Flynn, R. J., Ballantyne, S. J. & McKenzie, A. N. Reciprocal expression of IL-25 and IL-17A is important for allergic airways hyperreactivity. Clin. Exp. Allergy41, 1447–1455 (2011). ArticleCASPubMed Google Scholar
Wilhelm, C. et al. An IL-9 fate reporter demonstrates the induction of an innate IL-9 response in lung inflammation. Nature Immunol.12, 1071–1077 (2011). ArticleCAS Google Scholar
Huntington, N. D., Vosshenrich, C. A. & Di Santo, J. P. Developmental pathways that generate natural-killer-cell diversity in mice and humans. Nature Rev. Immunol.7, 703–714 (2007). ArticleCAS Google Scholar
Jackson, J. T. et al. Id2 expression delineates differential checkpoints in the genetic program of CD8α+ and CD103+ dendritic cell lineages. EMBO J.30, 2690–2704 (2011). ArticleCASPubMedPubMed Central Google Scholar
Gascoyne, D. M. et al. The basic leucine zipper transcription factor E4BP4 is essential for natural killer cell development. Nature Immunol.10, 1118–1124 (2009). ArticleCAS Google Scholar
Kamizono, S. et al. Nfil3/E4bp4 is required for the development and maturation of NK cells in vivo. J. Exp. Med.206, 2977–2986 (2009). ArticleCASPubMedPubMed Central Google Scholar
Yang, X. O. et al. T helper 17 lineage differentiation is programmed by orphan nuclear receptors ROR α and RORγ. Immunity28, 29–39 (2008). ArticleCASPubMed Google Scholar
Samson, S. I. et al. GATA-3 promotes maturation, IFN-γ production, and liver-specific homing of NK cells. Immunity19, 701–711 (2003). ArticleCASPubMed Google Scholar
Veldhoen, M. et al. The aryl hydrocarbon receptor links TH17-cell-mediated autoimmunity to environmental toxins. Nature453, 106–109 (2008). ArticleCASPubMed Google Scholar
Aliahmad, P., de la Torre, B. & Kaye, J. Shared dependence on the DNA-binding factor TOX for the development of lymphoid tissue-inducer cell and NK cell lineages. Nature Immunol.11, 945–952 (2010). ArticleCAS Google Scholar
Ohno, S. et al. Runx proteins are involved in regulation of CD122, Ly49 family and IFN-γ expression during NK cell differentiation. Int. Immunol.20, 71–79 (2008). ArticleCASPubMed Google Scholar
Tachibana, M. et al. Runx1/Cbfβ2 complexes are required for lymphoid tissue inducer cell differentiation at two developmental stages. J. Immunol.186, 1450–1457 (2011). ArticleCASPubMed Google Scholar