Mechanical forces direct stem cell behaviour in development and regeneration (original) (raw)
Steinberg, M. S. Reconstruction of tissues by dissociated cells. Science141, 401–408 (1963). ArticlePubMedCAS Google Scholar
Maître, J.-L. et al. Asymmetric division of contractile domains couples cell positioning and fate specification. Nature536, 344–348 (2016). ArticlePubMedPubMed CentralCAS Google Scholar
Ninomiya, H. & Winklbauer, R. Epithelial coating controls mesenchymal shape change through tissue-positioning effects and reduction of surface-minimizing tension. Nat. Cell Biol.10, 61–69 (2008). ArticlePubMedCAS Google Scholar
Bertet, C., Sulak, L. & Lecuit, T. Myosin-dependent junction remodelling controls planar cell intercalation and axis elongation. Nature429, 667–671 (2004). This study shows that planar remodelling of cell–cell junctions in embryonic tissue is driven by intrinsic local forces, which are required for germ-band elongation during embryonic development. ArticlePubMedCAS Google Scholar
Beloussov, L. V., Dorfman, J. G. & Cherdantzev, V. G. Mechanical stresses and morphological patterns in amphibian embryos. J. Embryol. Exp. Morphol.34, 559–574 (1975). PubMedCAS Google Scholar
Rauzi, M., Verant, P., Lecuit, T. & Lenne, P. F. Nature and anisotropy of cortical forces orienting Drosophila tissue morphogenesis. Nat. Cell Biol.10, 1401–1410 (2008). ArticlePubMedCAS Google Scholar
Grill, S. W., Gonczy, P., Stelzer, E. H. & Hyman, A. A. Polarity controls forces governing asymmetric spindle positioning in the Caenorhabditis elegans embryo. Nature409, 630–633 (2001). ArticlePubMedCAS Google Scholar
Colombo, K. et al. Translation of polarity cues into asymmetric spindle positioning in Caenorhabditis elegans embryos. Science300, 1957–1961 (2003). ArticlePubMedCAS Google Scholar
Fernandez-Gonzalez, R., Simoes, S. D., Roper, J. C., Eaton, S. & Zallen, J. A. Myosin II dynamics are regulated by tension in intercalating cells. Dev. Cell17, 736–743 (2009). ArticlePubMedPubMed CentralCAS Google Scholar
Kumar, S. et al. Viscoelastic retraction of single living stress fibers and its impact on cell shape, cytoskeletal organization, and extracellular matrix mechanics. Biophys. J.90, 3762–3773 (2006). ArticlePubMedPubMed CentralCAS Google Scholar
Corrigall, D., Walther, R. F., Rodriguez, L., Fichelson, P. & Pichaud, F. Hedgehog signaling is a principal inducer of myosin-II-driven cell ingression in Drosophila epithelia. Dev. Cell13, 730–742 (2007). ArticlePubMedCAS Google Scholar
Martin, A. C., Kaschube, M. & Wieschaus, E. F. Pulsed contractions of an actin-myosin network drive apical constriction. Nature457, 495–499 (2009). ArticlePubMedCAS Google Scholar
Pouille, P. A., Ahmadi, P., Brunet, A. C. & Farge, E. Mechanical signals trigger myosin II redistribution and mesoderm invagination in Drosophila embryos. Sci. Signal.2, 8 (2009). ArticleCAS Google Scholar
Krieg, M. et al. Tensile forces govern germ-layer organization in zebrafish. Nat. Cell Biol.10, 429–436 (2008). ArticlePubMedCAS Google Scholar
Solon, J., Kaya-Copur, A., Colombelli, J. & Brunner, D. Pulsed forces timed by a ratchet-like mechanism drive directed tissue movement during dorsal closure. Cell137, 1331–1342 (2009). ArticlePubMed Google Scholar
Watanabe, K. et al. A ROCK inhibitor permits survival of dissociated human embryonic stem cells. Nat. Biotechnol.25, 681–686 (2007). ArticlePubMedCAS Google Scholar
Nonaka, S., Shiratori, H., Saijoh, Y. & Hamada, H. Determination of left-right patterning of the mouse embryo by artificial nodal flow. Nature418, 96–99 (2002). ArticlePubMedCAS Google Scholar
Tanaka, Y., Okada, Y. & Hirokawa, N. FGF-induced vesicular release of Sonic hedgehog and retinoic acid in leftward nodal flow is critical for left-right determination. Nature435, 172–177 (2005). ArticleCASPubMed Google Scholar
Cosgrove, B. D. et al. N-Cadherin adhesive interactions modulate matrix mechanosensing and fate commitment of mesenchymal stem cells. Nat. Mater.15, 1297–1306 (2016). ArticlePubMedPubMed CentralCAS Google Scholar
Kalson, N. S. et al. A structure-based extracellular matrix expansion mechanism of fibrous tissue growth. eLife4, 1–22 (2015). Article Google Scholar
Galbraith, C. G., Yamada, K. M. & Sheetz, M. P. The relationship between force and focal complex development. J. Cell Biol.159, 695–705 (2002). ArticlePubMedPubMed CentralCAS Google Scholar
Shyer, A. E. et al. Emergent cellular self-organization and mechanosensation initiate follicle pattern in the avian skin. Science357, 811–815 (2017). ArticlePubMedPubMed CentralCAS Google Scholar
Petridou, N. I., Spiro, Z. & Heisenberg, C.-P. Multiscale force sensing in development. Nat. Cell Biol.19, 581–588 (2017). ArticlePubMedCAS Google Scholar
Desprat, N., Supatto, W., Pouille, P. A., Beaurepaire, E. & Farge, E. Tissue deformation modulates twist expression to determine anterior midgut differentiation in Drosophila embryos. Dev. Cell15, 470–477 (2008). ArticlePubMedCAS Google Scholar
Yang, Y., Beqaj, S., Kemp, P., Ariel, I. & Schuger, L. Stretch-induced alternative splicing of serum response factor promotes bronchial myogenesis and is defective in lung hypoplasia. J. Clin. Invest.106, 1321–1330 (2000). ArticlePubMedPubMed CentralCAS Google Scholar
Hove, J. R. et al. Intracardiac fluid forces are an essential epigenetic factor for embryonic cardiogenesis. Nature421, 172–177 (2003). In this work, the intracardiac high-shear flow in zebrafish embryos is characterized, demonstrating that perturbations in fluid flow can result in developmental anomalies that are similar to defects observed in patients with congenital heart disease. ArticlePubMedCAS Google Scholar
Adamo, L. et al. Biomechanical forces promote embryonic haematopoiesis. Nature459, 1131–1135 (2009). This study establishes the role of pulsatile fluid shear stress in haematopoietic development by mimicking forces exerted on embryonic vasculature and demonstrating increased expression ofRUNX1, which is a master regulator of haematopoiesis. ArticlePubMedPubMed CentralCAS Google Scholar
Nauli, S. M. et al. Polycystins 1 and 2 mediate mechanosensation in the primary cilium of kidney cells. Nat. Genet.33, 129–137 (2003). ArticlePubMedCAS Google Scholar
Nowlan, N. C., Murphy, P. & Prendergast, P. J. A dynamic pattern of mechanical stimulation promotes ossification in avian embryonic long bones. J. Biomech.41, 249–258 (2008). ArticlePubMed Google Scholar
Daley, W. P., Gulfo, K. M., Sequeira, S. J. & Larsen, M. Identification of a mechanochemical checkpoint and negative feedback loop regulating branching morphogenesis. Dev. Biol.336, 169–182 (2009). This study establishes the role of mechanical forces in regulating the initiation and propagation of clefting during epithelial branching morphogenesis, mediated through actomyosin contractility. ArticlePubMedPubMed CentralCAS Google Scholar
Daley, W. P., Kohn, J. M. & Larsen, M. A. Focal adhesion protein-based mechanochemical checkpoint regulates cleft progression during branching morphogenesis. Dev. Dyn.240, 2069–2083 (2011). ArticlePubMedPubMed CentralCAS Google Scholar
Alcaraz, J. et al. Laminin and biomimetic extracellular elasticity enhance functional differentiation in mammary epithelia. EMBO J.27, 2829–2838 (2008). ArticlePubMedPubMed CentralCAS Google Scholar
Fischer, R. S., Gardel, M., Ma, X. F., Adelstein, R. S. & Waterman, C. M. Local cortical tension by myosin II guides 3D endothelial cell branching. Curr. Biol.19, 260–265 (2009). ArticlePubMedPubMed CentralCAS Google Scholar
Elliott, H. et al. Myosin II controls cellular branching morphogenesis and migration in three dimensions by minimizing cell-surface curvature. Nat. Cell Biol.17, 137–147 (2015). ArticlePubMedPubMed CentralCAS Google Scholar
Song, X. Q., Zhu, C. H., Doan, C. & Xie, T. Germline, stem cells anchored by adherens junctions in the Drosophila ovary niches. Science296, 1855–1857 (2002). ArticlePubMedCAS Google Scholar
Tanentzapf, G., Devenport, D., Godt, D. & Brown, N. H. Integrin-dependent anchoring of a stem-cell niche. Nat. Cell Biol.9, 1413–1418 (2007). ArticlePubMedPubMed CentralCAS Google Scholar
Zhu, A. J., Haase, I. & Watt, F. M. Signaling via β1 integrins and mitogen-activated protein kinase determines human epidermal stem cell fate in vitro. Proc. Natl Acad. Sci. USA96, 6728–6733 (1999). ArticlePubMedPubMed CentralCAS Google Scholar
Rompolas, P., Mesa, K. R. & Greco, V. Spatial organization within a niche as a determinant of stem-cell fate. Nature502, 513–518 (2013). ArticlePubMedPubMed CentralCAS Google Scholar
Kahn, J. et al. Muscle contraction is necessary to maintain joint progenitor cell fate. Dev. Cell16, 734–743 (2009). ArticlePubMedCAS Google Scholar
Huebsch, N. et al. Harnessing traction-mediated manipulation of the cell/matrix interface to control stem-cell fate. Nat. Mater.9, 518–526 (2010). Using a well-controlled 3D physical environment, this study shows that matrix stiffness can direct stem cell fate in 3D culture. ArticlePubMedPubMed CentralCAS Google Scholar
Khetan, S. et al. Degradation-mediated cellular traction directs stem cell fate in covalently crosslinked three-dimensional hydrogels. Nat. Mater.12, 458–465 (2013). ArticlePubMedPubMed CentralCAS Google Scholar
Rape, A. D., Zibinsky, M., Murthy, N. & Kumar, S. A synthetic hydrogel for the high-throughput study of cell–ECM interactions. Nat. Commun.6, 8129 (2015). ArticlePubMed Google Scholar
Chaudhuri, O. et al. Hydrogels with tunable stress relaxation regulate stem cell fate and activity. Nat. Mater.15, 326–334 (2016). By manipulating the stress relaxation behaviour of synthetic matrices, this study demonstrated that stem cell fate is regulated by time-dependent, or viscoelastic, properties of their physical environment. ArticlePubMedCAS Google Scholar
Das, R. K., Gocheva, V., Hammink, R., Zouani, O. F. & Rowan, A. E. Stress-stiffening-mediated stem-cell commitment switch in soft responsive hydrogels. Nat. Mater.15, 318–325 (2016). ArticlePubMedCAS Google Scholar
Grinnell, F., Ho, C.-H., Tamariz, E., Lee, D. J. & Skuta, G. Dendritic fibroblasts in three-dimensional collagen matrices. Mol. Biol. Cell14, 384–395 (2003). ArticlePubMedPubMed CentralCAS Google Scholar
Prewitz, M. C. et al. Tightly anchored tissue-mimetic matrices as instructive stem cell microenvironments. Nat. Methods10, 788–794 (2013). ArticlePubMedCAS Google Scholar
Beachley, V. Z. et al. Tissue matrix arrays for high-throughput screening and systems analysis of cell function. Nat. Methods12, 1197–1204 (2015). ArticlePubMedPubMed CentralCAS Google Scholar
Trappmann, B. et al. Extracellular-matrix tethering regulates stem-cell fate. Nat. Mater.11, 642–649 (2012). ArticlePubMedCAS Google Scholar
Engler, A. J., Sen, S., Sweeney, H. L. & Discher, D. E. Matrix elasticity directs stem cell lineage specification. Cell126, 677–689 (2006). This study shows that the lineage of MSCs can be controlled by the elasticity of the substrate to which they are adhered. ArticlePubMedCAS Google Scholar
Gjorevski, N. et al. Designer matrices for intestinal stem cell and organoid culture. Nature539, 560–564 (2016). This study describes a synthetic replacement for Matrigel that enhanced intestinal stem cell expansion through mechanotransduction and could control organoid formation. ArticlePubMedCAS Google Scholar
Mohammadi, H., Arora, P. D., Simmons, C. A., Janmey, P. A. & McCulloch, C. A. Inelastic behaviour of collagen networks in cell–matrix interactions and mechanosensation. J. R. Soc. Interface12, 20141074 (2015). ArticlePubMedPubMed CentralCAS Google Scholar
Jasinoski, S. C. & Reddy, B. D. Mechanics of cranial sutures during simulated cyclic loading. J. Biomech.45, 2050–2054 (2012). ArticlePubMedCAS Google Scholar
Mahadik, B. P., Bharadwaj, N. A. K., Ewoldt, R. H. & Harley, B. A. C. Regulating dynamic signaling between hematopoietic stem cells and niche cells via a hydrogel matrix. Biomaterials125, 54–64 (2017). ArticlePubMedPubMed CentralCAS Google Scholar
Rowley, J. A., Madlambayan, G. & Mooney, D. J. Alginate hydrogels as synthetic extracellular matrix materials. Biomaterials20, 45–53 (1999). ArticlePubMedCAS Google Scholar
Kong, H.-J., Lee, K. Y. & Mooney, D. J. Decoupling the dependence of rheological/mechanical properties of hydrogels from solids concentration. Polymer43, 6239–6246 (2002). ArticleCAS Google Scholar
Benoit, D. S. W., Schwartz, M. P., Durney, A. R. & Anseth, K. S. Small functional groups for controlled differentiation of hydrogel-encapsulated human mesenchymal stem cells. Nat. Mater.7, 816–823 (2008). ArticlePubMedPubMed CentralCAS Google Scholar
Gobaa, S. et al. Artificial niche microarrays for probing single stem cell fate in high throughput. Nat. Methods8, 949–955 (2011). ArticlePubMedCAS Google Scholar
Zhao, X., Huebsch, N., Mooney, D. J. & Suo, Z. Stress-relaxation behavior in gels with ionic and covalent crosslinks. J. Appl. Phys.107, 63509 (2010). ArticlePubMedCAS Google Scholar
Kasper, G. et al. Matrix metalloprotease activity is an essential link between mechanical stimulus and mesenchymal stem cell behavior. Stem Cells25, 1985–1994 (2007). ArticlePubMedCAS Google Scholar
Boontheekul, T., Kong, H. J. & Mooney, D. J. Controlling alginate gel degradation utilizing partial oxidation and bimodal molecular weight distribution. Biomaterials26, 2455–2465 (2005). ArticlePubMedCAS Google Scholar
Ho, F. C., Zhang, W., Li, Y. Y. & Chan, B. P. Mechanoresponsive, omni-directional and local matrix-degrading actin protrusions in human mesenchymal stem cells microencapsulated in a 3D collagen matrix. Biomaterials53, 392–405 (2015). ArticlePubMedCAS Google Scholar
Ye, K. et al. Matrix Stiffness and nanoscale spatial organization of cell-adhesive ligands direct stem cell fate. Nano Lett.15, 4720–4729 (2015). ArticlePubMedCAS Google Scholar
McMurray, R. J. et al. Nanoscale surfaces for the long-term maintenance of mesenchymal stem cell phenotype and multipotency. Nat. Mater.10, 637–644 (2011). ArticlePubMedCAS Google Scholar
Park, J. S. et al. Differential effects of equiaxial and uniaxial strain on mesenchymal stem cells. Biotechnol. Bioeng.88, 359–368 (2004). ArticlePubMedCAS Google Scholar
Mauck, R. L., Byers, B. A., Yuan, X. & Tuan, R. S. Regulation of cartilaginous ECM gene transcription by chondrocytes and MSCs in 3D culture in response to dynamic loading. Biomech. Model. Mechanobiol.6, 113–125 (2007). ArticlePubMedCAS Google Scholar
Zablotskii, V. et al. Down-regulation of adipogenesis of mesenchymal stem cells by oscillating high-gradient magnetic fields and mechanical vibration. Appl. Phys. Lett.105, 5 (2014). ArticleCAS Google Scholar
Guo, F. et al. Controlling cell–cell interactions using surface acoustic waves. Proc. Natl Acad. Sci. USA112, 43–48 (2015). ArticlePubMedCAS Google Scholar
Compton, J. L., Luo, J. C., Ma, H., Botvinick, E. & Venugopalan, V. High-throughput optical screening of cellular mechanotransduction. Nat. Photonics8, 710–715 (2014). ArticlePubMedPubMed CentralCAS Google Scholar
Swift, J. et al. Nuclear lamin-A scales with tissue stiffness and enhances matrix-directed differentiation. Science341, 1240104 (2013). ArticlePubMedPubMed CentralCAS Google Scholar
Tseng, P., Judy, J. W. & Di Carlo, D. Magnetic nanoparticle-mediated massively parallel mechanical modulation of single-cell behavior. Nat. Methods9, 1113–1119 (2012). ArticlePubMedPubMed CentralCAS Google Scholar
Gossett, D. R. et al. Hydrodynamic stretching of single cells for large population mechanical phenotyping. Proc. Natl Acad. Sci. USA109, 7630–7635 (2012). ArticlePubMedPubMed CentralCAS Google Scholar
Fu, J. P. et al. Mechanical regulation of cell function with geometrically modulated elastomeric substrates. Nat. Methods7, 733–736 (2010). ArticlePubMedPubMed CentralCAS Google Scholar
Weng, S., Shao, Y., Chen, W. & Fu, J. Mechanosensitive subcellular rheostasis drives emergent single-cell mechanical homeostasis. Nat. Mater.15, 961–967 (2016). ArticlePubMedPubMed CentralCAS Google Scholar
Sutton, A. et al. Photothermally triggered actuation of hybrid materials as a new platform for in vitro cell manipulation. Nat. Commun.8, 14700 (2017). ArticlePubMedPubMed Central Google Scholar
Kilian, K. A., Bugarija, B., Lahn, B. T. & Mrksich, M. Geometric cues for directing the differentiation of mesenchymal stem cells. Proc. Natl Acad. Sci. USA107, 4872–4877 (2010). ArticlePubMedPubMed CentralCAS Google Scholar
McBeath, R., Pirone, D. M., Nelson, C. M., Bhadriraju, K. & Chen, C. S. Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment. Dev. Cell6, 483–495 (2004). ArticlePubMedCAS Google Scholar
Rus, D. & Tolley, M. T. Design, fabrication and control of soft robots. Nature521, 467–475 (2015). ArticlePubMedCAS Google Scholar
Pathak, M. M. et al. Stretch-activated ion channel Piezo1 directs lineage choice in human neural stem cells. Proc. Natl Acad. Sci. USA111, 16148–16153 (2014). ArticlePubMedPubMed CentralCAS Google Scholar
Hoey, D. A., Tormey, S., Ramcharan, S., O'Brien, F. J. & Jacobs, C. R. Primary cilia-mediated mechanotransduction in human mesenchymal stem cells. Stem Cells30, 2561–2570 (2012). ArticlePubMedPubMed CentralCAS Google Scholar
Vartiainen, M. K., Guettler, S., Larijani, B. & Treisman, R. Nuclear actin regulates dynamic subcellular localization and activity of the SRF cofactor MAL. Science316, 1749–1752 (2007). ArticlePubMedCAS Google Scholar
Connelly, J. T. et al. Actin and serum response factor transduce physical cues from the microenvironment to regulate epidermal stem cell fate decisions. Nat. Cell Biol.12, 711–718 (2010). ArticlePubMedCAS Google Scholar
Chen, J. C., Hoey, D. A., Chua, M., Bellon, R. & Jacobs, C. R. Mechanical signals promote osteogenic fate through a primary cilia-mediated mechanism. FASEB J.30, 1504–1511 (2016). ArticlePubMedCAS Google Scholar
Holst, J. et al. Substrate elasticity provides mechanical signals for the expansion of hemopoietic stem and progenitor cells. Nat. Biotechnol.28, 1123–1128 (2010). ArticlePubMedCAS Google Scholar
Maldonado, M. et al. The effects of electrospun substrate-mediated cell colony morphology on the self-renewal of human induced pluripotent stem cells. Biomaterials50, 10–19 (2015). ArticlePubMedCAS Google Scholar
Yahalom-Ronen, Y., Rajchman, D., Sarig, R., Geiger, B. & Tzahor, E. Reduced matrix rigidity promotes neonatal cardiomyocyte dedifferentiation, proliferation and clonal expansion. eLife4, e07455 (2015). ArticlePubMed Central Google Scholar
Baker, B. M. et al. Cell-mediated fibre recruitment drives extracellular matrix mechanosensing in engineered fibrillar microenvironments. Nat. Mater.14, 1262–1268 (2015). ArticlePubMedPubMed CentralCAS Google Scholar
Saha, S., Lin, J., De Pablo, J. J. & Palecek, S. P. Inhibition of human embryonic stem cell differentiation by mechanical strain. J. Cell. Physiol.206, 126–137 (2006). ArticlePubMedCAS Google Scholar
Zhao, C. et al. The effect of uniaxial mechanical stretch on Wnt/β-catenin pathway in bone mesenchymal stem cells. J. Craniofac. Surg.28, 113–117 (2017). ArticlePubMed Google Scholar
Kinney, M. A., Saeed, R. & McDevitt, T. C. Mesenchymal morphogenesis of embryonic stem cells dynamically modulates the biophysical microtissue niche. Sci. Rep.4, 4290 (2014). ArticlePubMedPubMed CentralCAS Google Scholar
Lü, D., Luo, C., Zhang, C., Li, Z. & Long, M. Differential regulation of morphology and stemness of mouse embryonic stem cells by substrate stiffness and topography. Biomaterials35, 3945–3955 (2014). ArticlePubMedCAS Google Scholar
Chowdhury, F. et al. Material properties of the cell dictate stress-induced spreading and differentiation in embryonic stem cells. Nat. Mater.9, 82–88 (2010). ArticlePubMedCAS Google Scholar
Vrij, E. et al. Directed assembly and development of material-free tissues with complex architectures. Adv. Mater.28, 4032–4039 (2016). ArticlePubMedCAS Google Scholar
Zoldan, J. et al. The influence of scaffold elasticity on germ layer specification of human embryonic stem cells. Biomaterials32, 9612–9621 (2011). ArticlePubMedPubMed CentralCAS Google Scholar
Shao, Y. et al. Self-organized amniogenesis by human pluripotent stem cells in a biomimetic implantation-like niche. Nat. Mater.16, 419–425 (2017). ArticlePubMedCAS Google Scholar
Sun, Y. et al. Hippo/YAP-mediated rigidity-dependent motor neuron differentiation of human pluripotent stem cells. Nat. Mater.13, 599–604 (2014). This study describes mechanically tuned soft substrates accelerating the differentiation of human pluripotent stem cells into functional motor neurons. ArticlePubMedPubMed CentralCAS Google Scholar
Caiazzo, M. et al. Defined three-dimensional microenvironments boost induction of pluripotency. Nat. Mater.15, 344–352 (2016). In this study, biophysical factors in 3D microenvironments are shown to act in parallel with transcription factors to support the plasticity of somatic cells and improve reprogramming through facilitating the mesenchymal-to-epithelial transition. ArticlePubMedCAS Google Scholar
Nguyen, E. H. et al. Versatile synthetic alternatives to Matrigel for vascular toxicity screening and stem cell expansion. Nat. Biomed. Eng.1, 0096 (2017). ArticlePubMedPubMed Central Google Scholar
Aguilar, A. et al. Importance of environmental stiffness for megakaryocyte differentiation and proplatelet formation. Blood128, 2022–2032 (2016). ArticlePubMedCAS Google Scholar
Tse, J. R. & Engler, A. J. Stiffness gradients mimicking in vivo tissue variation regulate mesenchymal stem cell fate. PLoS ONE6, 9 (2011). Google Scholar
Sunyer, R. et al. Collective cell durotaxis emerges from long-range intercellular force transmission. Science353, 1157–1161 (2016). ArticlePubMedCAS Google Scholar
Raab, M. et al. Crawling from soft to stiff matrix polarizes the cytoskeleton and phosphoregulates myosin-II heavy chain. J. Cell Biol.199, 669–683 (2012). ArticlePubMedPubMed CentralCAS Google Scholar
Yang, C., Tibbitt, M. W., Basta, L. & Anseth, K. S. Mechanical memory and dosing influence stem cell fate. Nat. Mater.13, 645–652 (2014). ArticlePubMedPubMed CentralCAS Google Scholar
Li, C. X. et al. MicroRNA-21 preserves the fibrotic mechanical memory of mesenchymal stem cells. Nat. Mater.16, 379–389 (2017). ArticlePubMedCAS Google Scholar
Guvendiren, M. & Burdick, J. A. Stiffening hydrogels to probe short- and long-term cellular responses to dynamic mechanics. Nat. Commun.3, 9 (2012). ArticleCAS Google Scholar
Chaudhuri, O. et al. Substrate stress relaxation regulates cell spreading. Nat. Commun.6, 6364 (2015). ArticlePubMedCAS Google Scholar
Cameron, A. R., Frith, J. E. & Cooper-White, J. J. The influence of substrate creep on mesenchymal stem cell behaviour and phenotype. Biomaterials32, 5979–5993 (2011). ArticlePubMedCAS Google Scholar
Angele, P. et al. Cyclic hydrostatic pressure enhances the chondrogenic phenotype of human mesenchymal progenitor cells differentiated in vitro. J. Orthop. Res.21, 451–457 (2003). ArticlePubMedCAS Google Scholar
Mouw, J. K., Connelly, J. T., Wilson, C. G., Michael, K. E. & Levenston, M. E. Dynamic compression regulates the expression and synthesis of chondrocyte-specific matrix molecules in bone marrow stromal cells. Stem Cells25, 655–663 (2007). ArticlePubMedCAS Google Scholar
Wang, J. et al. Mechanical stimulation orchestrates the osteogenic differentiation of human bone marrow stromal cells by regulating HDAC1. Cell Death Dis.7, 12 (2016). Google Scholar
Datta, N. et al. In vitro generated extracellular matrix and fluid shear stress synergistically enhance 3D osteoblastic differentiation. Proc. Natl Acad. Sci. USA103, 2488–2493 (2006). ArticlePubMedPubMed CentralCAS Google Scholar
Kreke, M. R., Huckle, W. R. & Goldstein, A. S. Fluid flow stimulates expression of osteopontin and bone sialoprotein by bone marrow stromal cells in a temporally dependent manner. Bone36, 1047–1055 (2005). ArticlePubMedCAS Google Scholar
Shin, J. W. et al. Contractile forces sustain and polarize hematopoiesis from stem and progenitor cells. Cell Stem Cell14, 81–93 (2014). ArticlePubMedCAS Google Scholar
Gilbert, P. M. et al. Substrate elasticity regulates skeletal muscle stem cell self-renewal in culture. Science329, 1078–1081 (2010). In this study, substrate elasticity is shown to regulate self-renewal of skeletal muscle stem cellsin vitro, which were capable of regenerating muscle tissue when transplantedin vivo. ArticlePubMedPubMed CentralCAS Google Scholar
Seib, F. P., Prewitz, M., Werner, C. & Bornhäuser, M. Matrix elasticity regulates the secretory profile of human bone marrow-derived multipotent mesenchymal stromal cells (MSCs). Biochem. Biophys. Res. Commun.389, 663–667 (2009). ArticlePubMedCAS Google Scholar
Yang, H. B., Nguyen, K. T., Leong, D. T., Tan, N. S. & Tay, C. Y. Soft material approach to induce oxidative stress in mesenchymal stem cells for functional tissue repair. ACS Appl. Mater. Interfaces8, 26591–26599 (2016). ArticlePubMedCAS Google Scholar
Lee, S. et al. Contractile force generation by 3D hiPSC-derived cardiac tissues is enhanced by rapid establishment of cellular interconnection in matrix with muscle-mimicking stiffness. Biomaterials131, 111–120 (2017). ArticlePubMedPubMed CentralCAS Google Scholar
Huebsch, N. et al. Matrix elasticity of void-forming hydrogels controls transplanted-stem-cell-mediated bone formation. Nat. Mater.14, 1269–1277 (2015). ArticlePubMedPubMed CentralCAS Google Scholar
Mao, A. S. et al. Deterministic encapsulation of single cells in thin tunable microgels for niche modelling and therapeutic delivery. Nat. Mater.16, 236–243 (2017). ArticlePubMedCAS Google Scholar
Darnell, M. et al. Substrate stress-relaxation regulates scaffold remodeling and bone formation in vivo. Adv. Healthc. Mater.6, 1601185 (2017). ArticleCAS Google Scholar
Griffin, D. R., Weaver, W. M., Scumpia, P. O., Di Carlo, D. & Segura, T. Accelerated wound healing by injectable microporous gel scaffolds assembled from annealed building blocks. Nat. Mater.14, 737–744 (2015). ArticlePubMedPubMed CentralCAS Google Scholar
Blaber, E. A. et al. Mechanical unloading of bone in microgravity reduces mesenchymal and hematopoietic stem cell-mediated tissue regeneration. Stem Cell Res.13, 181–201 (2014). ArticlePubMedCAS Google Scholar
Kessler, P., Neukam, F. W. & Wiltfang, J. Effects of distraction forces and frequency of distraction on bony regeneration. Br. J. Oral Maxillofac. Surg.43, 392–398 (2005). ArticlePubMedCAS Google Scholar
Cilla, M., Checa, S. & Duda, G. N. Strain shielding inspired re-design of proximal femoral stems for total hip arthroplasty. J. Orthop. Res.http://dx.doi.org/10.1002/jor.23540 (2017).
Mogil, R. J. et al. Effect of low-magnitude, high-frequency mechanical stimulation on bmd among young childhood cancer survivors: a randomized clinical trial. JAMA Oncol.2, 908–914 (2016). ArticlePubMedPubMed Central Google Scholar
Kanzaki, H., Chiba, M., Shimizu, Y. & Mitani, H. Periodontal ligament cells under mechanical stress induce osteoclastogenesis by receptor activator of nuclear factor κB ligand up-regulation via prostaglandin E-2 synthesis. J. Bone Miner. Res.17, 210–220 (2002). ArticlePubMedCAS Google Scholar
Powell, C. A., Smiley, B. L., Mills, J. & Vandenburgh, H. H. Mechanical stimulation improves tissue-engineered human skeletal muscle. Am. J. Physiol. Cell Physiol.283, C1557–C1565 (2002). This work highlights the important role of externally applied mechanical forces in promoting the generation of tissue-engineered muscle fibresin vitrofrom human cells. ArticlePubMedCAS Google Scholar
Moon, D. G., Christ, G., Stitzel, J. D., Atala, A. & Yoo, J. J. Cyclic mechanical preconditioning improves engineered muscle contraction. Tissue Eng. Part A14, 473–482 (2008). ArticleCAS Google Scholar
Crane, J. D. et al. Massage therapy attenuates inflammatory signaling after exercise-induced muscle damage. Sci. Transl Med.4, 119ra13 (2012). ArticlePubMedCAS Google Scholar
Cezar, C. A. et al. Biologic-free mechanically induced muscle regeneration. Proc. Natl Acad. Sci. USA113, 1534–1539 (2016). This study shows that externally applied forces alone, without growth factors or drugs, reduced fibrosis and inflammation in severely injured muscle, enhanced muscle regeneration and improved muscle function. ArticlePubMedPubMed CentralCAS Google Scholar
Celiz, A. D. et al. Discovery of a novel polymer for human pluripotent stem cell expansion and multilineage differentiation. Adv. Mater.27, 4006–4012 (2015). ArticlePubMedPubMed CentralCAS Google Scholar
Kolesky, D. B., Homan, K. A., Skylar-Scott, M. A. & Lewis, J. A. Three-dimensional bioprinting of thick vascularized tissues. Proc. Natl Acad. Sci. USA113, 3179–3184 (2016). ArticlePubMedPubMed CentralCAS Google Scholar
Chaudhuri, O. et al. Extracellular matrix stiffness and composition jointly regulate the induction of malignant phenotypes in mammary epithelium. Nat. Mater.13, 970–978 (2014). ArticlePubMedCAS Google Scholar
Shin, J.-W. & Mooney, D. J. Extracellular matrix stiffness causes systematic variations in proliferation and chemosensitivity in myeloid leukemias. Proc. Natl Acad. Sci. USA113, 12126–12131 (2016). ArticlePubMedPubMed CentralCAS Google Scholar
Levental, I., Georges, P. C. & Janmey, P. A. Soft biological materials and their impact on cell function. Soft Matter3, 299–306 (2007). ArticleCASPubMed Google Scholar
McDonald, S. J. et al. Early fracture callus displays smooth muscle-like viscoelastic properties ex vivo: implications for fracture healing. J. Orthop. Res.27, 1508–1513 (2009). ArticlePubMed Google Scholar
Pailler-Mattei, C., Bec, S. & Zahouani, H. In vivo measurements of the elastic mechanical properties of human skin by indentation tests. Med. Eng. Phys.30, 599–606 (2008). ArticlePubMedCAS Google Scholar
Discher, D. E., Mooney, D. J. & Zandstra, P. W. Growth factors, matrices, and forces combine and control stem cells. Science324, 1673–1677 (2009). ArticlePubMedPubMed CentralCAS Google Scholar
Jansen, L. E., Birch, N. P., Schiffman, J. D., Crosby, A. J. & Peyton, S. R. Mechanics of intact bone marrow. J. Mech. Behav. Biomed. Mater.50, 299–307 (2015). ArticlePubMedPubMed Central Google Scholar
Follet, H., Boivin, G., Rumelhart, C. & Meunier, P. J. The degree of mineralization is a determinant of bone strength: a study on human calcanei. Bone34, 783–789 (2004). ArticlePubMedCAS Google Scholar
Zhang, Y.-R., Du, W., Zhou, X.-D. & Yu, H.-Y. Review of research on the mechanical properties of the human tooth. Int. J. Oral Sci.6, 61–69 (2014). ArticlePubMedPubMed Central Google Scholar
Wozniak, M. A. & Chen, C. S. Mechanotransduction in development: a growing role for contractility. Nat. Rev. Mol. Cell Biol.10, 34–43 (2009). ArticlePubMedPubMed CentralCAS Google Scholar
Nam, S., Hu, K. H., Butte, M. J. & Chaudhuri, O. Strain-enhanced stress relaxation impacts nonlinear elasticity in collagen gels. Proc. Natl Acad. Sci. USA113, 5492–5497 (2016). ArticlePubMedPubMed CentralCAS Google Scholar
Loy, C., Laine, A. & Mantovani, D. Rotation-based technique for the rapid densification of tubular collagen gel scaffolds. Biotechnol. J.11, 1673–1679 (2016). ArticlePubMedCAS Google Scholar
Hu, M. et al. A biomimetic gelatin-based platform elicits a pro-differentiation effect on podocytes through mechanotransduction. Sci. Rep.7, 43934 (2017). ArticlePubMedPubMed Central Google Scholar
Trichet, L. et al. Evidence of a large-scale mechanosensing mechanism for cellular adaptation to substrate stiffness. Proc. Natl Acad. Sci. USA109, 6933–6938 (2012). ArticleCASPubMedPubMed Central Google Scholar
Azzolin, L. et al. YAP/TAZ incorporation in the β-catenin destruction complex orchestrates the Wnt response. Cell158, 157–170 (2014). ArticlePubMedCAS Google Scholar
Makarenkova, H. P. et al. Differential interactions of FGFs with heparan sulfate control gradient formation and branching morphogenesis. Sci. Signal.2, ra55 (2009). ArticlePubMedPubMed CentralCAS Google Scholar