Centromeres: unique chromatin structures that drive chromosome segregation (original) (raw)
Moore, L. L. & Roth, M. B. HCP-4, a CENP-C-like protein in Caenorhabditis elegans, is required for resolution of sister centromeres. J. Cell Biol.153, 1199–1208 (2001). ArticleCASPubMedPubMed Central Google Scholar
Sullivan, B. A. & Karpen, G. H. Centromeric chromatin exhibits a histone modification pattern that is distinct from both euchromatin and heterochromatin. Nature Struct. Mol. Biol.11, 1076–1083 (2004). ArticleCAS Google Scholar
Cheeseman, I. M. & Desai, A. Molecular architecture of the kinetochore–microtubule interface. Nature Rev. Mol. Cell Biol.9, 33–46 (2008). ArticleCAS Google Scholar
Bouck, D. C., Joglekar, A. P. & Bloom, K. S. Design features of a mitotic spindle: balancing tension and compression at a single microtubule kinetochore interface in budding yeast. Annu. Rev. Genet.42, 335–359 (2008). ArticleCASPubMedPubMed Central Google Scholar
Santaguida, S. & Musacchio, A. The life and miracles of kinetochores. EMBO J.28, 2511–2531 (2009). A comprehensive review of the structure and functions of the kinetochore. ArticleCASPubMedPubMed Central Google Scholar
Fukagawa, T. & De Wulf, P. in The Kinetochore — From Molecular Discoveries to Cancer Therapy (eds De Wulf, P. & Earnshaw, W. C.) 133–191 (Springer Science+Business Media, New York, 2009). Google Scholar
Przewloka, M. R. & Glover, D. M. The kinetochore and the centromere: a working long distance relationship. Annu. Rev. Genet.43, 439–465 (2009). ArticleCASPubMed Google Scholar
Clarke, L. & Carbon, J. Isolation of a yeast centromere and construction of functional small circular chromosomes. Nature287, 504–509 (1980). ArticleCASPubMed Google Scholar
Clarke, L. & Carbon, J. Genomic substitutions of centromeres in Saccharomyces cerevisiae. Nature305, 23–28 (1983). ArticleCASPubMed Google Scholar
Fitzgerald-Hayes, M., Clarke, L. & Carbon, J. Nucleotide sequence comparisons and functional analysis of yeast centromere DNAs. Cell29, 235–244 (1982). ArticleCASPubMed Google Scholar
Hieter, P. et al. Functional selection and analysis of yeast centromeric DNA. Cell42, 913–921 (1985). ArticleCASPubMed Google Scholar
McGrew, J., Diehl, B. & Fitzgerald-Hayes, M. Single base-pair mutations in centromere element III cause aberrant chromosome segregation in Saccharomyces cerevisiae. Mol. Cell. Biol.6, 530–538 (1986). CASPubMedPubMed Central Google Scholar
Sullivan, B. A. in The Kinetochore — From Molecular Discoveries to Cancer Therapy (eds De Wulf, P. & Earnshaw, W. C.) 45–76 (Springer Science+Business Media, New York, 2009). Google Scholar
Joglekar, A. P. et al. Molecular architecture of the kinetochore-microtubule attachment site is conserved between point and regional centromeres. J. Cell Biol.181, 587–594 (2008). ArticleCASPubMedPubMed Central Google Scholar
Chikashige, Y. et al. Composite motifs and repeat symmetry in S. pombe centromeres: direct analysis by integration of NotI restriction sites. Cell57, 739–751 (1989). ArticleCASPubMed Google Scholar
Clarke, L., Amstutz, H., Fishel, B. & Carbon, J. Analysis of centromeric DNA in the fission yeast Schizosaccharomyces pombe. Proc. Natl Acad. Sci. USA83, 8253–8257 (1986). ArticleCASPubMedPubMed Central Google Scholar
Baum, M., Ngan, V. K. & Clarke, L. The centromeric K-type repeat and the central core are together sufficient to establish a functional Schizosaccharomyces pombe centromere. Mol. Biol. Cell5, 747–761 (1994). ArticleCASPubMedPubMed Central Google Scholar
Pidoux, A. L. & Allshire, R. C. Kinetochore and heterochromatin domains of the fission yeast centromere. Chromosome Res.12, 521–534 (2004). ArticleCASPubMed Google Scholar
Sanyal, K., Baum, M. & Carbon, J. Centromeric DNA sequences in the pathogenic yeast Candida albicans are all different and unique. Proc. Natl Acad. Sci. USA101, 11374–11379 (2004). ArticleCASPubMedPubMed Central Google Scholar
Centola, M. & Carbon, J. Cloning and characterization of centromeric DNA from Neurospora crassa. Mol. Cell. Biol.14, 1510–1519 (1994). CASPubMedPubMed Central Google Scholar
Copenhaver, G. P. et al. Genetic definition and sequence analysis of Arabidopsis centromeres. Science286, 2468–2474 (1999). CASPubMed Google Scholar
Sun, X., Le, H. D., Wahlstrom, J. M. & Karpen, G. H. Sequence analysis of a functional Drosophila centromere. Genome Res.13, 182–194 (2003). ArticleCASPubMedPubMed Central Google Scholar
Schueler, M. G., Higgins, A. W., Rudd, M. K., Gustashaw, K. & Willard, H. F. Genomic and genetic definition of a functional human centromere. Science294, 109–115 (2001). ArticleCASPubMed Google Scholar
Maio, J. J. DNA strand reassociation and polyribonucleotide binding in the African green monkey, Cercopithecus aethiops. J. Mol. Biol.56, 579–595 (1971). ArticleCASPubMed Google Scholar
Choo, K. H. Domain organization at the centromere and neocentromere. Dev. Cell1, 165–177 (2001). ArticleCASPubMed Google Scholar
Malik, H. S. & Henikoff, S. Major evolutionary transitions in centromere complexity. Cell138, 1067–1082 (2009). ArticleCASPubMed Google Scholar
Foltz, D. R. et al. The human CENP-A centromeric nucleosome-associated complex. Nature Cell Biol.8, 458–469 (2006). ArticleCASPubMed Google Scholar
Panchenko, T. & Black, B. E. The epigenetic basis for centromere identity. Prog. Mol. Subcell. Biol.48, 1–32 (2009). ArticleCASPubMed Google Scholar
Sullivan, K. F., Hechenberger, M. & Masri, K. Human CENP-A contains a histone H3 related histone fold domain that is required for targeting to the centromere. J. Cell Biol.127, 581–592 (1994). ArticleCASPubMed Google Scholar
Howman, E. V. et al. Early disruption of centromeric chromatin organization in centromere protein A (Cenpa) null mice. Proc. Natl Acad. Sci. USA97, 1148–1153 (2000). ArticleCASPubMedPubMed Central Google Scholar
Blower, M. D. & Karpen, G. H. The role of Drosophila CID in kinetochore formation, cell-cycle progression and heterochromatin interactions. Nature Cell Biol.3, 730–739 (2001). ArticleCASPubMed Google Scholar
Oegema, K., Desai, A., Rybina, S., Kirkham, M. & Hyman, A. A. Functional analysis of kinetochore assembly in Caenorhabditis elegans. J. Cell Biol.153, 1209–1226 (2001). ArticleCASPubMedPubMed Central Google Scholar
Palmer, D. K., O'Day, K., Wener, M. H., Andrews, B. S. & Margolis, R. L. A 17-kD centromere protein (CENP-A) copurifies with nucleosome core particles and with histones. J. Cell Biol.104, 805–815 (1987). ArticleCASPubMed Google Scholar
Saitoh, H. et al. CENP-C, an autoantigen in scleroderma, is a component of the human inner kinetochore plate. Cell70, 115–125 (1992). ArticleCASPubMed Google Scholar
Dawe, R. K., Reed, L. M., Yu, H. G., Muszynski, M. G. & Hiatt, E. N. A maize homolog of mammalian CENPC is a constitutive component of the inner kinetochore. Plant Cell11, 1227–1238 (1999). ArticleCASPubMedPubMed Central Google Scholar
Fukagawa, T., Regnier, V. & Ikemura, T. Creation and characterization of temperature-sensitive CENP-C mutants in vertebrate cells. Nucleic Acids Res.29, 3796–3803 (2001). ArticleCASPubMedPubMed Central Google Scholar
Ogura, Y., Shibata, F., Sato, H. & Murata, M. Characterization of a CENP-C homolog in Arabidopsis thaliana. Genes Genet. Syst.79, 139–144 (2004). ArticleCASPubMed Google Scholar
Schuh, M., Lehner, C. F. & Heidmann, S. Incorporation of Drosophila CID/CENP-A and CENP-C into centromeres during early embryonic anaphase. Curr. Biol.17, 237–243 (2007). ArticleCASPubMed Google Scholar
Tomkiel, J., Cooke, C. A., Saitoh, H., Bernat, R. L. & Earnshaw, W. C. CENP-C is required for maintaining proper kinetochore size and for a timely transition to anaphase. J. Cell Biol.125, 531–545 (1994). ArticleCASPubMed Google Scholar
Erhardt, S. et al. Genome-wide analysis reveals a cell cycle-dependent mechanism controlling centromere propagation. J. Cell Biol.183, 805–818 (2008). ArticleCASPubMedPubMed Central Google Scholar
Screpanti, E. et al. Direct binding of Cenp-C to the Mis12 complex joins the inner and outer kinetochore. Curr. Biol.21, 391–398 (2011). ArticleCASPubMedPubMed Central Google Scholar
Przewloka, M. R. et al. CENP-C is a structural platform for kinetochore assembly. Curr. Biol.21, 399–405 (2011). ArticleCASPubMed Google Scholar
Carroll, C. W., Milks, K. J. & Straight, A. F. Dual recognition of CENP-A nucleosomes is required for centromere assembly. J. Cell Biol.189, 1143–1155 (2010). ArticleCASPubMedPubMed Central Google Scholar
Hori, T. et al. CCAN makes multiple contacts with centromeric DNA to provide distinct pathways to the outer kinetochore. Cell135, 1039–1052 (2008). ArticleCASPubMed Google Scholar
Okada, M. et al. The CENP-H–I complex is required for the efficient incorporation of newly synthesized CENP-A into centromeres. Nature Cell Biol.8, 446–457 (2006). ArticleCASPubMed Google Scholar
Hori, T., Okada, M., Maenaka, K. & Fukagawa, T. CENP-O class proteins form a stable complex and are required for proper kinetochore function. Mol. Biol. Cell19, 843–854 (2008). ArticleCASPubMedPubMed Central Google Scholar
Amano, M. et al. The CENP-S complex is essential for the stable assembly of outer kinetochore structure. J. Cell Biol.186, 173–182 (2009). ArticleCASPubMedPubMed Central Google Scholar
Earnshaw, W. C. & Migeon, B. R. Three related centromere proteins are absent from the inactive centromere of a stable isodicentric chromosome. Chromosoma92, 290–296 (1985). ArticleCASPubMed Google Scholar
Mythreye, K. & Bloom, K. S. Differential kinetochore protein requirements for establishment versus propagation of centromere activity in Saccharomyces cerevisiae. J. Cell Biol.160, 833–843 (2003). ArticleCASPubMedPubMed Central Google Scholar
Mishra, P. K., Baum, M. & Carbon, J. Centromere size and position in Candida albicans are evolutionarily conserved independent of DNA sequence heterogeneity. Mol. Genet. Genomics278, 455–465 (2007). ArticleCASPubMed Google Scholar
Folco, H. D., Pidoux, A. L., Urano, T. & Allshire, R. C. Heterochromatin and RNAi are required to establish CENP-A chromatin at centromeres. Science319, 94–97 (2008). ArticleCASPubMedPubMed Central Google Scholar
Glynn, M., Kaczmarczyk, A., Prendergast, L., Quinn, N. & Sullivan, K. F. Centromeres: assembling and propagating epigenetic function. Subcell. Biochem.50, 223–249 (2010). ArticleCASPubMed Google Scholar
Bernard, P. et al. Requirement of heterochromatin for cohesion at centromeres. Science294, 2539–2542 (2001). ArticleCASPubMed Google Scholar
Giet, R. & Glover, D. M. Drosophila Aurora B kinase is required for histone H3 phosphorylation and condensin recruitment during chromosome condensation and to organize the central spindle during cytokinesis. J. Cell Biol.152, 669–682 (2001). ArticleCASPubMedPubMed Central Google Scholar
Hagstrom, K. A., Holmes, V. F., Cozzarelli, N. R. & Meyer, B. J. C. elegans condensin promotes mitotic chromosome architecture, centromere organization, and sister chromatid segregation during mitosis and meiosis. Genes Dev.16, 729–742 (2002). ArticleCASPubMedPubMed Central Google Scholar
Hendzel, M. J. et al. Mitosis-specific phosphorylation of histone H3 initiates primarily within pericentromeric heterochromatin during G2 and spreads in an ordered fashion coincident with mitotic chromosome condensation. Chromosoma106, 348–360 (1997). ArticleCASPubMed Google Scholar
Jager, H., Rauch, M. & Heidmann, S. The Drosophila melanogaster condensin subunit Cap-G interacts with the centromere-specific histone H3 variant CID. Chromosoma113, 350–361 (2005). ArticlePubMedCAS Google Scholar
Maddox, P. S., Hyndman, F., Monen, J., Oegema, K. & Desai, A. Functional genomics identifies a Myb domain-containing protein family required for assembly of CENP-A chromatin. J. Cell Biol.176, 757–763 (2007). ArticleCASPubMedPubMed Central Google Scholar
Dunleavy, E., Pidoux, A. & Allshire, R. Centromeric chromatin makes its mark. Trends Biochem. Sci.30, 172–175 (2005). ArticleCASPubMed Google Scholar
Bergmann, J. H. et al. Epigenetic engineering shows H3K4me2 is required for HJURP targeting and CENP-A assembly on a synthetic human kinetochore. EMBO J.30, 328–340 (2011). ArticleCASPubMed Google Scholar
Guenatri, M., Bailly, D., Maison, C. & Almouzni, G. Mouse centric and pericentric satellite repeats form distinct functional heterochromatin. J. Cell Biol.166, 493–505 (2004). ArticleCASPubMedPubMed Central Google Scholar
Greaves, I. K., Rangasamy, D., Ridgway, P. & Tremethick, D. J. H2A.Z contributes to the unique 3D structure of the centromere. Proc. Natl Acad. Sci. USA104, 525–530 (2007). ArticleCASPubMed Google Scholar
Martens, J. H. et al. The profile of repeat-associated histone lysine methylation states in the mouse epigenome. EMBO J.24, 800–812 (2005). ArticleCASPubMedPubMed Central Google Scholar
Peters, A. H. et al. Partitioning and plasticity of repressive histone methylation states in mammalian chromatin. Mol. Cell12, 1577–1589 (2003). ArticleCASPubMed Google Scholar
Nonaka, N. et al. Recruitment of cohesin to heterochromatic regions by Swi6/HP1 in fission yeast. Naure Cell Biol.4, 89–93 (2002). CAS Google Scholar
Guetg, C. et al. The NoRC complex mediates the heterochromatin formation and stability of silent rRNA genes and centromeric repeats. EMBO J.29, 2135–2146 (2010). ArticleCASPubMedPubMed Central Google Scholar
Fraga, M. F. et al. Loss of acetylation at Lys16 and trimethylation at Lys20 of histone H4 is a common hallmark of human cancer. Nature Genet.37, 391–400 (2005). ArticleCASPubMed Google Scholar
Zhang, W., Lee, H. R., Koo, D. H. & Jiang, J. Epigenetic modification of centromeric chromatin: hypomethylation of DNA sequences in the CENH3-associated chromatin in Arabidopsis thaliana and maize. Plant Cell20, 25–34 (2008). ArticlePubMedPubMed CentralCAS Google Scholar
Nakano, M. et al. Inactivation of a human kinetochore by specific targeting of chromatin modifiers. Dev. Cell14, 507–522 (2008). Describes the use of a HAC to study the effects of altering centromeric chromatin on kinetochore formation. ArticleCASPubMedPubMed Central Google Scholar
Cardinale, S. et al. Hierarchical inactivation of a synthetic human kinetochore by a chromatin modifier. Mol. Biol. Cell20, 4194–4204 (2009). ArticleCASPubMedPubMed Central Google Scholar
Luger, K., Mader, A. W., Richmond, R. K., Sargent, D. F. & Richmond, T. J. Crystal structure of the nucleosome core particle at 2.8Å resolution. Nature389, 251–260 (1997). ArticleCASPubMed Google Scholar
Henikoff, S. & Dalal, Y. Centromeric chromatin: what makes it unique? Curr. Opin. Genet. Dev.15, 177–184 (2005). ArticleCASPubMed Google Scholar
Van Hooser, A. A. et al. Specification of kinetochore-forming chromatin by the histone H3 variant CENP-A. J. Cell Sci.114, 3529–3542 (2001). ArticleCASPubMed Google Scholar
Black, B. E. et al. Structural determinants for generating centromeric chromatin. Nature430, 578–582 (2004). ArticleCASPubMed Google Scholar
Black, B. E. et al. Centromere identity maintained by nucleosomes assembled with histone H3 containing the CENP-A targeting domain. Mol. Cell25, 309–322 (2007). ArticleCASPubMed Google Scholar
Zhou, Z. et al. Structural basis for recognition of centromere histone variant CenH3 by the chaperone Scm3. Nature 16 Mar 2011 (doi:10.1038/nature0 9854).
Furuyama, S. & Biggins, S. Centromere identity is specified by a single centromeric nucleosome in budding yeast. Proc. Natl Acad. Sci. USA104, 14706–14711 (2007). ArticleCASPubMedPubMed Central Google Scholar
Blower, M. D., Sullivan, B. A. & Karpen, G. H. Conserved organization of centromeric chromatin in flies and humans. Dev. Cell2, 319–330 (2002). ArticleCASPubMedPubMed Central Google Scholar
Sekulic, N., Bassett, E. A., Rogers, D. J. & Black, B. E. The structure of (CENP-A–H4)2 reveals physical features that mark centromeres. Nature467, 347–351 (2010). ArticleCASPubMedPubMed Central Google Scholar
Conde e Silva, N. et al. CENP-A-containing nucleosomes: easier disassembly versus exclusive centromeric localization. J. Mol. Biol.370, 555–573 (2007). ArticleCASPubMed Google Scholar
Shelby, R. D., Vafa, O. & Sullivan, K. F. Assembly of CENP-A into centromeric chromatin requires a cooperative array of nucleosomal DNA contact sites. J. Cell Biol.136, 501–513 (1997). ArticleCASPubMedPubMed Central Google Scholar
Chen, Y. et al. The N terminus of the centromere H3-like protein Cse4p performs an essential function distinct from that of the histone fold domain. Mol. Cell. Biol.20, 7037–7048 (2000). ArticleCASPubMedPubMed Central Google Scholar
Williams, J. S., Hayashi, T., Yanagida, M. & Russell, P. Fission yeast Scm3 mediates stable assembly of Cnp1/CENP-A into centromeric chromatin. Mol. Cell33, 287–298 (2009). ArticleCASPubMedPubMed Central Google Scholar
Dalal, Y., Furuyama, T., Vermaak, D. & Henikoff, S. Structure, dynamics, and evolution of centromeric nucleosomes. Proc. Natl Acad. Sci. USA104, 15974–15981 (2007). ArticleCASPubMedPubMed Central Google Scholar
Furuyama, T. & Henikoff, S. Centromeric nucleosomes induce positive DNA supercoils. Cell138, 104–113 (2009). Reports the right-handed wrapping of CenH3 nucleosomesin vitrousing reconstitutedD. melanogasterproteins on circular minichromosomes, and proposes that this alternative right-handed wrapping serves to keep the centromere decondensed and accessible for kinetochore formation. ArticleCASPubMedPubMed Central Google Scholar
Dalal, Y., Wang, H., Lindsay, S. & Henikoff, S. Tetrameric structure of centromeric nucleosomes in interphase Drosophila cells. PLoS Biol.5, e218 (2007). ArticlePubMedPubMed CentralCAS Google Scholar
Mizuguchi, G., Xiao, H., Wisniewski, J., Smith, M. M. & Wu, C. Nonhistone Scm3 and histones CenH3-H4 assemble the core of centromere-specific nucleosomes. Cell129, 1153–1164 (2007). ArticleCASPubMed Google Scholar
Camahort, R. et al. Scm3 is essential to recruit the histone H3 variant Cse4 to centromeres and to maintain a functional kinetochore. Mol. Cell26, 853–865 (2007). ArticleCASPubMed Google Scholar
Stoler, S. et al. Scm3, an essential Saccharomyces cerevisiae centromere protein required for G2/M progression and Cse4 localization. Proc. Natl Acad. Sci. USA104, 10571–10576 (2007). ArticleCASPubMedPubMed Central Google Scholar
Pidoux, A. L. et al. Fission yeast Scm3: a CENP-A receptor required for integrity of subkinetochore chromatin. Mol. Cell33, 299–311 (2009). ArticleCASPubMedPubMed Central Google Scholar
Sanchez-Pulido, L., Pidoux, A. L., Ponting, C. P. & Allshire, R. C. Common ancestry of the CENP-A chaperones Scm3 and HJURP. Cell137, 1173–1174 (2009). ArticlePubMedPubMed Central Google Scholar
Dunleavy, E. M. et al. HJURP is a cell-cycle-dependent maintenance and deposition factor of CENP-A at centromeres. Cell137, 485–497 (2009). ArticleCASPubMed Google Scholar
Aravind, L., Iyer, L. M. & Wu, C. Domain architectures of the Scm3p protein provide insights into centromere function and evolution. Cell Cycle6, 2511–2515 (2007). ArticleCASPubMed Google Scholar
Shuaib, M., Ouararhni, K., Dimitrov, S. & Hamiche, A. HJURP binds CENP-A via a highly conserved N-terminal domain and mediates its deposition at centromeres. Proc. Natl Acad. Sci. USA107, 1349–1354 (2010). ArticleCASPubMedPubMed Central Google Scholar
Ranjitkar, P. et al. An E3 ubiquitin ligase prevents ectopic localization of the centromeric histone H3 variant via the centromere targeting domain. Mol. Cell40, 455–464 (2010). ArticleCASPubMedPubMed Central Google Scholar
Furuyama, T., Dalal, Y. & Henikoff, S. Chaperone-mediated assembly of centromeric chromatin in vitro. Proc. Natl Acad. Sci. USA103, 6172–6177 (2006). ArticleCASPubMedPubMed Central Google Scholar
Lavelle, C. et al. Right-handed nucleosome: myth or reality? Cell139, 1216–1217; author reply 1217–1218 (2009). ArticlePubMed Google Scholar
Suto, R. K., Clarkson, M. J., Tremethick, D. J. & Luger, K. Crystal structure of a nucleosome core particle containing the variant histone H2A.Z. Nature Struct. Biol.7, 1121–1124 (2000). ArticleCASPubMed Google Scholar
Bruce, K. et al. The replacement histone H2A.Z in a hyperacetylated form is a feature of active genes in the chicken. Nucleic Acids Res.33, 5633–5639 (2005). ArticleCASPubMedPubMed Central Google Scholar
Meneghini, M. D., Wu, M. & Madhani, H. D. Conserved histone variant H2A.Z protects euchromatin from the ectopic spread of silent heterochromatin. Cell112, 725–736 (2003). ArticleCASPubMed Google Scholar
Abbott, D. W., Ivanova, V. S., Wang, X., Bonner, W. M. & Ausio, J. Characterization of the stability and folding of H2A.Z chromatin particles: implications for transcriptional activation. J. Biol. Chem.276, 41945–41949 (2001). ArticleCASPubMed Google Scholar
Fan, J. Y., Gordon, F., Luger, K., Hansen, J. C. & Tremethick, D. J. The essential histone variant H2A.Z regulates the equilibrium between different chromatin conformational states. Nature Struct. Biol.9, 172–176 (2002). ArticleCASPubMed Google Scholar
Mellone, B. G. & Allshire, R. C. Stretching it: putting the CEN(P-A) in centromere. Curr. Opin. Genet. Dev.13, 191–198 (2003). ArticleCASPubMed Google Scholar
Henikoff, S., Ahmad, K., Platero, J. S. & van Steensel, B. Heterochromatic deposition of centromeric histone H3-like proteins. Proc. Natl Acad. Sci. USA97, 716–721 (2000). ArticleCASPubMedPubMed Central Google Scholar
Shelby, R. D., Monier, K. & Sullivan, K. F. Chromatin assembly at kinetochores is uncoupled from DNA replication. J. Cell Biol.151, 1113–1118 (2000). ArticleCASPubMedPubMed Central Google Scholar
Jansen, L. E., Black, B. E., Foltz, D. R. & Cleveland, D. W. Propagation of centromeric chromatin requires exit from mitosis. J. Cell Biol.176, 795–805 (2007). ArticleCASPubMedPubMed Central Google Scholar
Lermontova, I. et al. Loading of Arabidopsis centromeric histone CENH3 occurs mainly during G2 and requires the presence of the histone fold domain. Plant Cell18, 2443–2451 (2006). ArticleCASPubMedPubMed Central Google Scholar
Lermontova, I., Fuchs, J., Schubert, V. & Schubert, I. Loading time of the centromeric histone H3 variant differs between plants and animals. Chromosoma116, 507–510 (2007). ArticlePubMed Google Scholar
Takahashi, K., Takayama, Y., Masuda, F., Kobayashi, Y. & Saitoh, S. Two distinct pathways responsible for the loading of CENP-A to centromeres in the fission yeast cell cycle. Phil. Trans. R. Soc. B Biol. Sci.360, 595–606; discussion 606–607 (2005). ArticleCAS Google Scholar
Pearson, C. G. et al. Stable kinetochore-microtubule attachment constrains centromere positioning in metaphase. Curr. Biol.14, 1962–1967 (2004). ArticleCASPubMed Google Scholar
Mellone, B. G., Zhang, W. & Karpen, G. Frodos found: behold the CENP-A “Ring” bearers. Cell137, 409–412 (2009). A thorough review of research regarding Scm3, its relationship to HJURP and its role in CENPA loading. ArticleCASPubMedPubMed Central Google Scholar
Hayashi, T. et al. Mis16 and Mis18 are required for CENP-A loading and histone deacetylation at centromeres. Cell118, 715–729 (2004). ArticleCASPubMed Google Scholar
Fujita, Y. et al. Priming of centromere for CENP-A recruitment by human hMis18α, hMis18β, and M18BP1. Dev. Cell12, 17–30 (2007). ArticleCASPubMed Google Scholar
Kato, T. et al. Activation of Holliday junction recognizing protein involved in the chromosomal stability and immortality of cancer cells. Cancer Res.67, 8544–8553 (2007). ArticleCASPubMed Google Scholar
Perpelescu, M., Nozaki, N., Obuse, C., Yang, H. & Yoda, K. Active establishment of centromeric CENP-A chromatin by RSF complex. J. Cell Biol.185, 397–407 (2009). ArticleCASPubMedPubMed Central Google Scholar
Kaufman, P. D., Cohen, J. L. & Osley, M. A. Hir proteins are required for position-dependent gene silencing in Saccharomyces cerevisiae in the absence of chromatin assembly factor I. Mol. Cell. Biol.18, 4793–4806 (1998). ArticleCASPubMedPubMed Central Google Scholar
Sharp, J. A., Franco, A. A., Osley, M. A. & Kaufman, P. D. Chromatin assembly factor I and Hir proteins contribute to building functional kinetochores in S. cerevisiae. Genes Dev.16, 85–100 (2002). ArticleCASPubMedPubMed Central Google Scholar
Lopes da Rosa, J., Holik, J., Green, E. M., Rando, O. J. & Kaufman, P. D. Overlapping regulation of CenH3 localization and histone H3 turnover by CAF-1 and HIR proteins in Saccharomyces cerevisiae. Genetics187, 9–19 (2011). ArticleCASPubMed Google Scholar
Galvani, A. et al. In vivo study of the nucleosome assembly functions of ASF1 histone chaperones in human cells. Mol. Cell. Biol.28, 3672–3685 (2008). ArticleCASPubMedPubMed Central Google Scholar
Sharp, J. A., Krawitz, D. C., Gardner, K. A., Fox, C. A. & Kaufman, P. D. The budding yeast silencing protein Sir1 is a functional component of centromeric chromatin. Genes Dev.17, 2356–2361 (2003). ArticleCASPubMedPubMed Central Google Scholar
Lee, M. T. & Bachant, J. SUMO modification of DNA topoisomerase II: trying to get a CENse of it all. DNA Repair (Amst.)8, 557–568 (2009). ArticleCASPubMed Central Google Scholar
Hsu, J. M., Huang, J., Meluh, P. B. & Laurent, B. C. The yeast RSC chromatin-remodeling complex is required for kinetochore function in chromosome segregation. Mol. Cell. Biol.23, 3202–3215 (2003). ArticleCASPubMedPubMed Central Google Scholar
Xue, Y. et al. The human SWI/SNF-B chromatin-remodeling complex is related to yeast rsc and localizes at kinetochores of mitotic chromosomes. Proc. Natl Acad. Sci. USA97, 13015–13020 (2000). ArticleCASPubMedPubMed Central Google Scholar
Wood, A. J., Severson, A. F. & Meyer, B. J. Condensin and cohesin complexity: the expanding repertoire of functions. Nature Rev. Genet.11, 391–404 (2010). ArticleCASPubMed Google Scholar
Nasmyth, K. & Haering, C. H. Cohesin: its roles and mechanisms. Annu. Rev. Genet.43, 525–558 (2009). ArticleCASPubMed Google Scholar
Hirano, T. At the heart of the chromosome: SMC proteins in action. Nature Rev. Mol. Cell Biol.7, 311–322 (2006). ArticleCAS Google Scholar
Ocampo-Hafalla, M. T., Katou, Y., Shirahige, K. & Uhlmann, F. Displacement and re-accumulation of centromeric cohesin during transient pre-anaphase centromere splitting. Chromosoma116, 531–544 (2007). ArticlePubMedPubMed Central Google Scholar
Dewar, H., Tanaka, K., Nasmyth, K. & Tanaka, T. U. Tension between two kinetochores suffices for their bi-orientation on the mitotic spindle. Nature428, 93–97 (2004). ArticleCASPubMed Google Scholar
Tanaka, T., Fuchs, J., Loidl, J. & Nasmyth, K. Cohesin ensures bipolar attachment of microtubules to sister centromeres and resists their precocious separation. Nature Cell Biol.2, 492–499 (2000). ArticleCASPubMed Google Scholar
Sakuno, T., Tada, K. & Watanabe, Y. Kinetochore geometry defined by cohesion within the centromere. Nature458, 852–858 (2009). Details the link between cohesion at the centromere and kinetochore geometry in promoting bipolar attachment. ArticleCASPubMed Google Scholar
Stumpff, J. & Asbury, C. L. Chromosome bi-orientation: euclidian euploidy. Curr. Biol.18, R81–R83 (2008). ArticleCAS Google Scholar
Indjeian, V. B. & Murray, A. W. Budding yeast mitotic chromosomes have an intrinsic bias to biorient on the spindle. Curr. Biol.17, 1837–1846 (2007). ArticleCASPubMed Google Scholar
Maresca, T. J. & Salmon, E. D. Intrakinetochore stretch is associated with changes in kinetochore phosphorylation and spindle assembly checkpoint activity. J. Cell Biol.184, 373–381 (2009). ArticleCASPubMedPubMed Central Google Scholar
Maresca, T. J. & Salmon, E. D. Welcome to a new kind of tension: translating kinetochore mechanics into a wait-anaphase signal. J. Cell Sci.123, 825–835 (2010). ArticleCASPubMedPubMed Central Google Scholar
Zinkowski, R. P., Meyne, J. & Brinkley, B. R. The centromere-kinetochore complex: a repeat subunit model. J. Cell Biol.113, 1091–1110 (1991). ArticleCASPubMed Google Scholar
Birchler, J. A., Gao, Z. & Han, F. A tale of two centromeres—diversity of structure but conservation of function in plants and animals. Funct. Integr. Genomics9, 7–13 (2009). ArticleCASPubMed Google Scholar
Anderson, M., Haase, J., Yeh, E. & Bloom, K. Function and assembly of DNA looping, clustering, and microtubule attachment complexes within a eukaryotic kinetochore. Mol. Biol. Cell20, 4131–4139 (2009). ArticleCASPubMedPubMed Central Google Scholar
Joglekar, A. P., Bouck, D. C., Molk, J. N., Bloom, K. S. & Salmon, E. D. Molecular architecture of a kinetochore-microtubule attachment site. Nature Cell Biol.8, 581–585 (2006). Reports on the protein composition of the budding yeast kinetochore using quantitative fluorescence microscopy and proposes the architecture of a kinetochore–microtubule attachment. ArticleCASPubMed Google Scholar
Joglekar, A. P., Bloom, K. & Salmon, E. D. In vivo protein architecture of the eukaryotic kinetochore with nanometer scale accuracy. Curr. Biol.19, 694–699 (2009). ArticleCASPubMedPubMed Central Google Scholar
Wan, X. et al. Protein architecture of the human kinetochore microtubule attachment site. Cell137, 672–684 (2009). Determination of the organization of a human kinetochore using two-colour fluorescence light microscopy, proposing a mechanism of tension-sensing within the kinetochore that contributes to spindle assembly checkpoint activation. ArticleCASPubMedPubMed Central Google Scholar
Dong, Y., Vanden Beldt, K. J., Meng, X., Khodjakov, A. & McEwen, B. F. The outer plate in vertebrate kinetochores is a flexible network with multiple microtubule interactions. Nature Cell Biol.9, 516–522 (2007). ArticlePubMedCAS Google Scholar
McEwen, B. F. & Dong, Y. Contrasting models for kinetochore microtubule attachment in mammalian cells. Cell. Mol. Life Sci.67, 2163–2172 (2010). ArticleCASPubMedPubMed Central Google Scholar
Duan, Z. et al. A three-dimensional model of the yeast genome. Nature465, 363–367 (2010). Maps whole-genome organization of the budding yeast genome by capturing inter- and intra-chromosome interactions, illustrating the higher-order organization and clustering of the chromosomes. ArticleCASPubMedPubMed Central Google Scholar
Grosberg, A. Y. & Khokhlov, A. R. Giant Molecules: Here, There, And Everywhere. (Academic Press, San Diego, 1997). Google Scholar
Jun, S. & Wright, A. Entropy as the driver of chromosome segregation. Nature Rev. Microbiol.8, 600–607 (2010). ArticleCAS Google Scholar
Finan, K., Cook, P. R. & Marenduzzo, D. Non-specific (entropic) forces as major determinants of the structure of mammalian chromosomes. Chromosome Res.19, 53–61 (2010). ArticleCAS Google Scholar
Marko, J. F. Linking topology of tethered polymer rings with applications to chromosome segregation and estimation of the knotting length. Phys. Rev. E Stat. Nonlin. Soft Matter Phys.79, 051905 (2009). ArticlePubMedCAS Google Scholar
Koszul, R. & Kleckner, N. Dynamic chromosome movements during meiosis: a way to eliminate unwanted connections? Trends Cell Biol.19, 716–724 (2009). ArticleCASPubMedPubMed Central Google Scholar
Marenduzzo, D., Finan, K. & Cook, P. R. The depletion attraction: an underappreciated force driving cellular organization. J. Cell Biol.175, 681–686 (2006). ArticleCASPubMedPubMed Central Google Scholar
Bohn, M. & Heermann, D. W. Repulsive forces between looping chromosomes induce entropy-driven segregation. PLoS ONE6, e14428 (2011). Recent work that reports on the entropic forces between eukaryotic chromosomes and the effects of chromosome looping on transcriptional regulation, chromosome order and segregation. ArticleCASPubMedPubMed Central Google Scholar
Nicklas, R. B. Measurements of the force produced by the mitotic spindle in anaphase. J. Cell Biol.97, 542–548 (1983). Measures forces produced by the mitotic spindle using a flexible glass needle on intact grasshopper spermatocytes to determine the force generated by the mitotic spindle on the chromosome. ArticleCASPubMed Google Scholar
Zhang, T., Lim, H. H., Cheng, C. S. & Surana, U. Deficiency of centromere-associated protein Slk19 causes premature nuclear migration and loss of centromeric elasticity. J. Cell Sci.119, 519–531 (2006). ArticleCASPubMed Google Scholar
Chai, C. C., Teh, E. M. & Yeong, F. M. Unrestrained spindle elongation during recovery from spindle checkpoint activation in cdc15-2 cells results in mis-segregation of chromosomes. Mol. Biol. Cell21, 2384–2398 (2010). ArticleCASPubMedPubMed Central Google Scholar
Tanaka, T. U., Stark, M. J. & Tanaka, K. Kinetochore capture and bi-orientation on the mitotic spindle. Nature Rev. Mol. Cell Biol.6, 929–942 (2005). ArticleCAS Google Scholar
Marshall, W. F., Marko, J. F., Agard, D. A. & Sedat, J. W. Chromosome elasticity and mitotic polar ejection force measured in living Drosophila embryos by four-dimensional microscopy-based motion analysis. Curr. Biol.11, 569–578 (2001). ArticleCASPubMed Google Scholar
Brinkley, B. R. & Stubblefield, E. The fine structure of the kinetochore of a mammalian cell in vitro. Chromosoma19, 28–43 (1966). ArticleCASPubMed Google Scholar
Jokelainen, P. T. The ultrastructure and spatial organization of the metaphase kinetochore in mitotic rat cells. J. Ultrastruct. Res.19, 19–44 (1967). ArticleCASPubMed Google Scholar
Welburn, J. P. & Cheeseman, I. M. Toward a molecular structure of the eukaryotic kinetochore. Dev. Cell15, 645–655 (2008). ArticleCASPubMed Google Scholar
Canman, J. C. et al. Determining the position of the cell division plane. Nature424, 1074–1078 (2003). ArticleCASPubMed Google Scholar
Bancaud, A. et al. Nucleosome chiral transition under positive torsional stress in single chromatin fibers. Mol. Cell27, 135–147 (2007). ArticleCASPubMed Google Scholar
Ohta, S. et al. The protein composition of mitotic chromosomes determined using multiclassifier combinatorial proteomics. Cell142, 810–821 (2010). A thorough characterization of centromere-associated proteins using quantitative proteomics and bioinformatic analysis. ArticleCASPubMedPubMed Central Google Scholar