- Pray, L. Epigenetics: genome, meet your environment. Scientist 18, 14–20 (2004). This is an excellent introduction to the field of epigenetics.
Google Scholar
- Si, K. et al. A neuronal isoform of CPEB regulates local protein synthesis and stabilizes synapse-specific long-term facilitation in Aplysia. Cell. 115, 893–904 (2003). This study shows that the Aplysia form of the CPEB protein is necessary for the induction of long-term forms of synaptic plasticity.
Article CAS PubMed Google Scholar
- Si, K., Lindquist, S. & Kandel, E. R. A neuronal isoform of the Aplysia CPEB has prion-like properties. Cell 115, 879–891 (2003). In this study, the authors provide evidence to indicate that the CPEB protein in Aplysia contains a prion-like domain that might act in an epigenetic-like manner to mark specific synapses for facilitation.
Article CAS PubMed Google Scholar
- Egger, G., Liang, G., Aparicio, A. & Jones, P. A. Epigenetics in human disease and prospects for epigenetic therapy. Nature 429, 457–463 (2004).
Article CAS PubMed Google Scholar
- Rakyan, V. K., Preis, J., Morgan, H. D. & Whitelaw, E. The marks, mechanisms and memory of epigenetic states in mammals. Biochem. J. 356, 1–10 (2001). This is an excellent recent review of epigenetic mechanisms.
Article CAS PubMed PubMed Central Google Scholar
- Hatzis, P. & Talianidis, I. Regulatory mechanisms controlling human hepatocyte nuclear factor 4α gene expression. Mol. Cell Biol. 21, 7320–7330 (2001).
Article CAS PubMed PubMed Central Google Scholar
- Crowe, A. J. et al. Hepatocyte nuclear factor 3 relieves chromatin-mediated repression of the α-fetoprotein gene. J. Biol. Chem. 274, 25113–25120 (1999).
Article CAS PubMed Google Scholar
- Parrizas, M. et al. Hepatic nuclear factor 1-α directs nucleosomal hyperacetylation to its tissue-specific transcriptional targets. Mol. Cell. Biol. 21, 3234–3243 (2001).
Article CAS PubMed PubMed Central Google Scholar
- Ehrenhofer-Murray, A. E. Chromatin dynamics at DNA replication, transcription and repair. Eur. J. Biochem. 271, 2335–2349 (2004).
Article CAS PubMed Google Scholar
- Henderson, I. R., Shindo, C. & Dean, C. The need for winter in the switch to flowering. Annu. Rev. Genet. 37, 371–392 (2003).
Article CAS PubMed Google Scholar
- Smale, S. T. The establishment and maintenance of lymphocyte identity through gene silencing. Nature Immunol. 4, 607–615 (2003).
Article CAS Google Scholar
- Luger, K., Mader, A. W., Richmond, R. K., Sargent, D. F. & Richmond, T. J. Crystal structure of the nucleosome core particle at 2.8 Å resolution. Nature 389, 251–260 (1997).
Article CAS PubMed Google Scholar
- Strahl, B. D. & Allis, C. D. The language of covalent histone modifications. Nature 403, 41–45 (2000).
Article CAS PubMed Google Scholar
- Tanner, K. G. et al. Catalytic mechanism and function of invariant glutamic acid 173 from the histone acetyltransferase GCN5 transcriptional co-activator. J. Biol. Chem. 274, 18157–18160 (1999).
Article CAS PubMed Google Scholar
- Tanner, K. G., Langer, M. R., Kim, Y. & Denu, J. M. Kinetic mechanism of the histone acetyltransferase GCN5 from yeast. J. Biol. Chem. 275, 22048–22055 (2000).
Article CAS PubMed Google Scholar
- Lau, O. D. et al. p300/CBP-associated factor histone acetyltransferase processing of a peptide substrate. Kinetic analysis of the catalytic mechanism. J. Biol. Chem. 275, 21953–21959 (2000).
Article CAS PubMed Google Scholar
- Tanner, K. G., Langer, M. R. & Denu, J. M. Kinetic mechanism of human histone acetyltransferase P/CAF. Biochemistry 39, 11961–11969 (2000).
Article CAS PubMed Google Scholar
- Murray, K. The occurrence of ε-N-methyl lysine in histones. Biochemistry 127, 10–15 (1964).
Article Google Scholar
- Goldknopf, I. L. et al. Isolation and characterization of protein A24, a 'histone-like' non-histone chromosomal protein. J. Biol. Chem. 250, 7182–7187 (1975).
CAS PubMed Google Scholar
- Pickart, C. M. Mechanisms underlying ubiquitination. Annu. Rev. Biochem. 70, 503–533 (2001).
Article CAS PubMed Google Scholar
- Nickel, B. E. & Davie, J. R. Structure of polyubiquitinated histone H2A. Biochemistry 28, 964–968 (1989).
Article CAS PubMed Google Scholar
- West, M. H. & Bonner, W. M. Histone 2B can be modified by the attachment of ubiquitin. Nucleic Acids Res. 8, 4671–4680 (1980).
Article CAS PubMed PubMed Central Google Scholar
- Chen, H. Y., Sun, J. M., Zhang, Y., Davie, J. R. & Meistrich, M. L. Ubiquitination of histone H3 in elongating spermatids of rat testes. J. Biol. Chem. 273, 13165–13169 (1998).
Article CAS PubMed Google Scholar
- Pham, A. D. & Sauer, F. Ubiquitin-activating/conjugating activity of TAFII250, a mediator of activation of gene expression in Drosophila. Science 289, 2357–2360 (2000).
Article CAS PubMed Google Scholar
- Bradbury, E. M., Inglis, R. J., Matthews, H. R. & Sarner, N. Phosphorylation of very-lysine-rich histone in Physarum polycephalum. Correlation with chromosome condensation. Eur. J. Biochem. 33, 131–139 (1973).
Article CAS PubMed Google Scholar
- Gurley, L. R., Walters, R. A. & Tobey, R. A. Cell cycle-specific changes in histone phosphorylation associated with cell proliferation and chromosome condensation. J. Cell Biol. 60, 356–364 (1974).
Article CAS PubMed PubMed Central Google Scholar
- Mahadevan, L. C., Willis, A. C. & Barratt, M. J. Rapid histone H3 phosphorylation in response to growth factors, phorbol esters, okadaic acid, and protein synthesis inhibitors. Cell 65, 775–783 (1991).
Article CAS PubMed Google Scholar
- Sassone-Corsi, P. et al. Requirement of Rsk-2 for epidermal growth factor-activated phosphorylation of histone H3. Science 285, 886–891 (1999).
Article CAS PubMed Google Scholar
- Thomson, S. et al. The nucleosomal response associated with immediate-early gene induction is mediated via alternative MAP kinase cascades: MSK1 as a potential histone H3/HMG-14 kinase. EMBO J. 18, 4779–4793 (1999).
Article CAS PubMed PubMed Central Google Scholar
- Hsu, J. Y. et al. Mitotic phosphorylation of histone H3 is governed by Ipl1/aurora kinase and Glc7/PP1 phosphatase in budding yeast and nematodes. Cell 102, 279–291 (2000).
Article CAS PubMed Google Scholar
- Di Agostino, S., Rossi, P., Geremia, R. & Sette, C. The MAPK pathway triggers activation of Nek2 during chromosome condensation in mouse spermatocytes. Development 129, 1715–1727 (2002).
CAS PubMed Google Scholar
- Goto, H., Yasui, Y., Nigg, E. A. & Inagaki, M. Aurora-B phosphorylates Histone H3 at serine28 with regard to the mitotic chromosome condensation. Genes Cells 7, 11–17 (2002).
Article CAS PubMed Google Scholar
- Ajiro, K., Yoda, K., Utsumi, K. & Nishikawa, Y. Alteration of cell cycle-dependent histone phosphorylations by okadaic acid. Induction of mitosis-specific H3 phosphorylation and chromatin condensation in mammalian interphase cells. J. Biol. Chem. 271, 13197–13201 (1996).
Article CAS PubMed Google Scholar
- Nowak, S. J., Pai, C. Y. & Corces, V. G. Protein phosphatase 2A activity affects histone H3 phosphorylation and transcription in Drosophila melanogaster. Mol. Cell. Biol. 23, 6129–6138 (2003).
Article CAS PubMed PubMed Central Google Scholar
- van Leeuwen, F., Gafken, P. R. & Gottschling, D. E. Dot1p modulates silencing in yeast by methylation of the nucleosome core. Cell 109, 745–756 (2002).
Article CAS PubMed Google Scholar
- Brown, D. T. Histone H1 and the dynamic regulation of chromatin function. Biochem. Cell Biol. 81, 221–227 (2003).
Article CAS PubMed Google Scholar
- Okano, M., Xie, S. & Li, E. Cloning and characterization of a family of novel mammalian DNA (cytosine-5) methyltransferases. Nature Genet. 19, 219–220 (1998).
Article CAS PubMed Google Scholar
- Chen, L. et al. Direct identification of the active-site nucleophile in a DNA (cytosine-5)-methyltransferase. Biochemistry 30, 11018–11025 (1991).
Article CAS PubMed Google Scholar
- Bird, A. P. Use of restriction enzymes to study eukaryotic DNA methylation: II. The symmetry of methylated sites supports semi-conservative copying of the methylation pattern. J. Mol. Biol. 118, 49–60 (1978).
Article CAS PubMed Google Scholar
- Cedar, H., Solage, A., Glaser, G. & Razin, A. Direct detection of methylated cytosine in DNA by use of the restriction enzyme MspI. Nucleic Acids Res. 6, 2125–2132 (1979).
Article CAS PubMed PubMed Central Google Scholar
- Cooper, D. N. & Krawczak, M. Cytosine methylation and the fate of CpG dinucleotides in vertebrate genomes. Hum. Genet. 83, 181–188 (1989).
Article CAS PubMed Google Scholar
- Bird, A. P. CpG-rich islands and the function of DNA methylation. Nature 321, 209–213 (1986).
Article CAS PubMed Google Scholar
- Maier, H., Colbert, J., Fitzsimmons, D., Clark, D. R. & Hagman, J. Activation of the early B-cell-specific mb-1 (Ig-α) gene by Pax-5 is dependent on an unmethylated Ets binding site. Mol. Cell. Biol. 23, 1946–1960 (2003).
Article CAS PubMed PubMed Central Google Scholar
- Bell, A. C. & Felsenfeld, G. Methylation of a CTCF-dependent boundary controls imprinted expression of the Igf2 gene. Nature 405, 482–485 (2000).
Article CAS PubMed Google Scholar
- Hendrich, B. & Bird, A. Identification and characterization of a family of mammalian methyl-CpG binding proteins. Mol. Cell. Biol. 18, 6538–6547 (1998).
Article CAS PubMed PubMed Central Google Scholar
- Prokhortchouk, A. et al. The p120 catenin partner Kaiso is a DNA methylation-dependent transcriptional repressor. Genes Dev. 15, 1613–1618 (2001).
Article CAS PubMed PubMed Central Google Scholar
- Jones, P. L. et al. Methylated DNA and MeCP2 recruit histone deacetylase to repress transcription. Nature Genet. 19, 187–191 (1998).
Article CAS PubMed Google Scholar
- Nan, X. et al. Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex. Nature 393, 386–389 (1998).
Article CAS PubMed Google Scholar
- Montgomery, M. K., Xu, S. & Fire, A. RNA as a target of double-stranded RNA-mediated genetic interference in Caenorhabditis elegans. Proc. Natl Acad. Sci. USA 95, 15502–15507 (1998).
Article CAS PubMed PubMed Central Google Scholar
- Volpe, T. A. et al. Regulation of heterochromatic silencing and histone H3 lysine-9 methylation by RNAi. Science 297, 1833–1837 (2002).
Article CAS PubMed Google Scholar
- Hall, I. M. et al. Establishment and maintenance of a heterochromatin domain. Science 297, 2232–2237 (2002).
Article CAS PubMed Google Scholar
- Verdel, A. et al. RNAi-mediated targeting of heterochromatin by the RITS complex. Science 303, 672–676 (2004).
Article CAS PubMed PubMed Central Google Scholar
- Brown, C. J. & Chow, J. C. Beyond sense: the role of antisense RNA in controlling Xist expression. Semin. Cell Dev. Biol. 14, 341–347 (2003).
Article CAS PubMed Google Scholar
- Chow, J. C. & Brown, C. J. Forming facultative heterochromatin: silencing of an X chromosome in mammalian females. Cell. Mol. Life Sci. 60, 2586–2603 (2003).
Article CAS PubMed Google Scholar
- Sauman, I. & Reppert, S. M. Circadian clock neurons in the silkmoth Antheraea pernyi: novel mechanisms of Period protein regulation. Neuron 17, 889–900 (1996).
Article CAS PubMed Google Scholar
- Crosthwaite, S. K. Circadian clocks and natural antisense RNA. FEBS Lett. 567, 49–54 (2004).
Article CAS PubMed Google Scholar
- Ambros, V. The functions of animal microRNAs. Nature 431, 350–355 (2004).
Article CAS PubMed Google Scholar
- Maue, R. A., Kraner, S. D., Goodman, R. H. & Mandel, G. Neuron-specific expression of the rat brain type II sodium channel gene is directed by upstream regulatory elements. Neuron 4, 223–231 (1990).
Article CAS PubMed Google Scholar
- Li, L., Suzuki, T., Mori, N. & Greengard, P. Identification of a functional silencer element involved in neuron-specific expression of the synapsin I gene. Proc. Natl Acad. Sci. USA 90, 1460–1464 (1993).
Article CAS PubMed PubMed Central Google Scholar
- Mori, N., Schoenherr, C., Vandenbergh, D. J. & Anderson, D. J. A common silencer element in the SCG10 and type II Na+ channel genes binds a factor present in nonneuronal cells but not in neuronal cells. Neuron 9, 45–54 (1992).
Article CAS PubMed Google Scholar
- Chong, J. A. et al. REST: a mammalian silencer protein that restricts sodium channel gene expression to neurons. Cell 80, 949–957 (1995).
Article CAS PubMed Google Scholar
- Chen, Z. F., Paquette, A. J. & Anderson, D. J. NRSF/REST is required in vivo for repression of multiple neuronal target genes during embryogenesis. Nature Genet. 20, 136–142 (1998).
Article CAS PubMed Google Scholar
- Paquette, A. J., Perez, S. E. & Anderson, D. J. Constitutive expression of the neuron-restrictive silencer factor (NRSF)/REST in differentiating neurons disrupts neuronal gene expression and causes axon pathfinding errors in vivo. Proc. Natl Acad. Sci. USA 97, 12318–12323 (2000).
Article CAS PubMed PubMed Central Google Scholar
- Andres, M. E. et al. CoREST: a functional co-repressor required for regulation of neural-specific gene expression. Proc. Natl Acad. Sci. USA 96, 9873–9878 (1999).
Article CAS PubMed PubMed Central Google Scholar
- Huang, Y., Myers, S. J. & Dingledine, R. Transcriptional repression by REST: recruitment of Sin3A and histone deacetylase to neuronal genes. Nature Neurosci. 2, 867–872 (1999).
Article CAS PubMed Google Scholar
- Naruse, Y., Aoki, T., Kojima, T. & Mori, N. Neural restrictive silencer factor recruits mSin3 and histone deacetylase complex to repress neuron-specific target genes. Proc. Natl Acad. Sci. USA 96, 13691–13696 (1999).
Article CAS PubMed PubMed Central Google Scholar
- Grimes, J. A. et al. The co-repressor mSin3A is a functional component of the REST–CoREST repressor complex. J. Biol. Chem. 275, 9461–9467 (2000).
Article CAS PubMed Google Scholar
- Roopra, A. et al. Transcriptional repression by neuron-restrictive silencer factor is mediated via the Sin3–histone deacetylase complex. Mol. Cell. Biol. 20, 2147–2157 (2000).
Article CAS PubMed PubMed Central Google Scholar
- Ballas, N. et al. Regulation of neuronal traits by a novel transcriptional complex. Neuron 31, 353–365 (2001).
Article CAS PubMed Google Scholar
- Battaglioli, E. et al. REST repression of neuronal genes requires components of the hSWI.SNF complex. J. Biol. Chem. 277, 41038–41045 (2002).
Article CAS PubMed Google Scholar
- Lunyak, V. V. et al. Co-repressor-dependent silencing of chromosomal regions encoding neuronal genes. Science 298, 1747–1752 (2002).
Article CAS PubMed Google Scholar
- Reppert, S. M. & Weaver, D. R. Coordination of circadian timing in mammals. Nature 418, 935–941 (2002).
Article CAS PubMed Google Scholar
- Klein, D. C., Moore, R. Y. & Reppert, S. M. Suprachiasmatic Nucleus: The Mind's Clock (Oxford Univ. Press, New York, 1991).
Google Scholar
- Zylka, M. J., Shearman, L. P., Weaver, D. R. & Reppert, S. M. Three period homologs in mammals: differential light responses in the suprachiasmatic circadian clock and oscillating transcripts outside of brain. Neuron 20, 1103–1110 (1998).
Article CAS PubMed Google Scholar
- Balsalobre, A., Damiola, F. & Schibler, U. A serum shock induces circadian gene expression in mammalian tissue culture cells. Cell 93, 929–937 (1998).
Article CAS PubMed Google Scholar
- Naruse, Y. et al. Circadian and light-induced transcription of clock gene Per1 depends on histone acetylation and deacetylation. Mol. Cell. Biol. 24, 6278–6287 (2004).
Article CAS PubMed PubMed Central Google Scholar
- Crosio, C., Cermakian, N., Allis, C. D. & Sassone-Corsi, P. Light induces chromatin modification in cells of the mammalian circadian clock. Nature Neurosci. 3, 1241–1247 (2000).
Article CAS PubMed Google Scholar
- Morgan, J. I., Cohen, D. R., Hempstead, J. L. & Curran, T. Mapping patterns of c-fos expression in the central nervous system after seizure. Science 237, 192–197 (1987).
Article CAS PubMed Google Scholar
- Mugnaini, E., Berrebi, A. S., Morgan, J. I. & Curran, T. Fos-like immunoreactivity induced by seizure in mice is specifically associated with euchromatin in neurons. Eur. J. Neurosci. 1, 46–52 (1989).
Article PubMed Google Scholar
- Kokaia, M. et al. Suppressed epileptogenesis in BDNF mutant mice. Exp. Neurol. 133, 215–224 (1995).
Article CAS PubMed Google Scholar
- Binder, D. K., Routbort, M. J., Ryan, T. E., Yancopoulos, G. D. & McNamara, J. O. Selective inhibition of kindling development by intraventricular administration of TrkB receptor body. J. Neurosci. 19, 1424–1436 (1999).
Article CAS PubMed PubMed Central Google Scholar
- Grooms, S. Y., Opitz, T., Bennett, M. V. & Zukin, R. S. Status epilepticus decreases glutamate receptor 2 mRNA and protein expression in hippocampal pyramidal cells before neuronal death. Proc. Natl Acad. Sci. USA 97, 3631–3636 (2000).
Article CAS PubMed PubMed Central Google Scholar
- Sanchez, R. M. et al. Decreased glutamate receptor 2 expression and enhanced epileptogenesis in immature rat hippocampus after perinatal hypoxia-induced seizures. J. Neurosci. 21, 8154–8163 (2001).
Article CAS PubMed PubMed Central Google Scholar
- Isackson, P. J., Huntsman, M. M., Murray, K. D. & Gall, C. M. BDNF mRNA expression is increased in adult rat forebrain after limbic seizures: temporal patterns of induction distinct from NGF. Neuron 6, 937–948 (1991).
Article CAS PubMed Google Scholar
- Ernfors, P., Bengzon, J., Kokaia, Z., Persson, H. & Lindvall, O. Increased levels of messenger RNAs for neurotrophic factors in the brain during kindling epileptogenesis. Neuron 7, 165–176 (1991).
Article CAS PubMed Google Scholar
- Timmusk, T. et al. Multiple promoters direct tissue-specific expression of the rat BDNF gene. Neuron 10, 475–489 (1993).
Article CAS PubMed Google Scholar
- Nibuya, M., Morinobu, S. & Duman, R. S. Regulation of BDNF and trkB mRNA in rat brain by chronic electroconvulsive seizure and antidepressant drug treatments. J. Neurosci. 15, 7539–7547 (1995).
Article CAS PubMed PubMed Central Google Scholar
- Huang, Y., Doherty, J. J. & Dingledine, R. Altered histone acetylation at glutamate receptor 2 and brain-derived neurotrophic factor genes is an early event triggered by status epilepticus. J. Neurosci. 22, 8422–8428 (2002). Using the pilocarpine model for induction of status epilepticus, the authors show that acetylation of histone H4 is reduced at the promoter for GluR2, but increased at the promoter for the BDNF gene.
Article CAS PubMed PubMed Central Google Scholar
- Tsankova, N. M., Kumar, A. & Nestler, E. J. Histone modifications at gene promoter regions in rat hippocampus after acute and chronic electroconvulsive seizures. J. Neurosci. 24, 5603–5610 (2004). This paper comprehensively screens the promoter regions of many genes for several types of modification to histones in the context of electroconvulsive shock.
Article CAS PubMed PubMed Central Google Scholar
- Barondes, S. H. & Jarvik, M. E. The influence of actinomycin-D on brain RNA synthesis and on memory. J. Neurochem. 11, 187–195 (1964).
Article CAS PubMed Google Scholar
- Cohen, H. D. & Barondes, S. H. Further studies of learning and memory after intracerebral actinomycin-D. J. Neurochem. 13, 207–211 (1966).
Article CAS PubMed Google Scholar
- Flood, J. F., Bennett, E. L., Orme, E. & Rosenzweig, M. R. Relation of memory formation to controlled amounts of brain protein synthesis. Physiol. Behav. 15, 97–102 (1975).
Article CAS PubMed Google Scholar
- Flood, J. F., Bennett, E. L., Orme, A. E. & Rosenzweig, M. R. Effects of protein synthesis inhibition on memory for active avoidance training. Physiol. Behav. 14, 177–184 (1975).
Article CAS PubMed Google Scholar
- Squire, L. R., Emanuel, C. A., Davis, H. P. & Deutsch, J. A. Inhibitors of cerebral protein synthesis: dissociation of aversive and amnesic effects. Behav. Biol. 14, 335–341 (1975).
Article PubMed Google Scholar
- Roberson, E. D. & Sweatt, J. D. A biochemical blueprint for long-term memory. Learn. Mem. 6, 381–388 (1999).
CAS PubMed PubMed Central Google Scholar
- Selcher, J. C., Weeber, E. J., Varga, A. W., Sweatt, J. D. & Swank, M. Protein kinase signal transduction cascades in mammalian associative conditioning. Neuroscientist 8, 122–131 (2002).
Article CAS PubMed Google Scholar
- Levenson, J. M. et al. A bioinformatics analysis of memory consolidation reveals involvement of the transcription factor c-Rel. J. Neurosci. 24, 3933–3943 (2004).
Article CAS PubMed PubMed Central Google Scholar
- Levenson, J. M. et al. Regulation of histone acetylation during memory formation in the hippocampus. J. Biol. Chem. 279, 40545–40559 (2004). This study shows that acetylation of H3 is increased by long-term memory formation and activation of the signalling pathways involved in memory formation, and shows that induction of LTP and formation of long-term memories can be enhanced by administration of HDAC inhibitors.
Article CAS PubMed Google Scholar
- Phillips, R. G. & LeDoux, J. E. Differential contribution of amygdala and hippocampus to cued and contextual fear conditioning. Behav. Neurosci. 106, 274–285 (1992).
Article CAS PubMed Google Scholar
- Kim, J. J., Rison, R. A. & Fanselow, M. S. Effects of amygdala, hippocampus, and periaqueductal gray lesions on short- and long-term contextual fear. Behav. Neurosci. 107, 1093–1098 (1993).
Article CAS PubMed Google Scholar
- Fanselow, M. S., Kim, J. J., Yipp, J. & De Oca, B. Differential effects of the _N_-methyl-D-aspartate antagonist DL-2-amino-5-phosphonovalerate on acquisition of fear of auditory and contextual cues. Behav. Neurosci. 108, 235–240 (1994).
Article CAS PubMed Google Scholar
- Atkins, C. M., Selcher, J. C., Petraitis, J. J., Trzaskos, J. M. & Sweatt, J. D. The MAPK cascade is required for mammalian associative learning. Nature Neurosci. 1, 602–609 (1998).
Article CAS PubMed Google Scholar
- Rampon, C. et al. Enrichment induces structural changes and recovery from nonspatial memory deficits in CA1 NMDAR1-knockout mice. Nature Neurosci. 3, 238–244 (2000).
Article CAS PubMed Google Scholar
- Kalkhoven, E. CBP and p300: HATs for different occasions. Biochem. Pharmacol. 68, 1145–1155 (2004).
Article CAS PubMed Google Scholar
- Oike, Y. et al. Truncated CBP protein leads to classical Rubinstein–Taybi syndrome phenotypes in mice: implications for a dominant-negative mechanism. Hum. Mol. Genet. 8, 387–396 (1999).
Article CAS PubMed Google Scholar
- Bourtchouladze, R. et al. A mouse model of Rubinstein–Taybi syndrome: defective long-term memory is ameliorated by inhibitors of phosphodiesterase 4. Proc. Natl Acad. Sci. USA 100, 10518–10522 (2003).
Article CAS PubMed PubMed Central Google Scholar
- Korzus, E., Rosenfeld, M. G. & Mayford, M. CBP histone acetyltransferase activity is a critical component of memory consolidation. Neuron 42, 961–972 (2004). Using an inducible, dominant-negative form of CBP, the authors show that derangement of CBP function leads to deficits in long-term memory formation and synaptic plasticity, and that these deficits can be rescued through the use of HDAC inhibitors.
Article CAS PubMed PubMed Central Google Scholar
- Alarcon, J. M. et al. Chromatin acetylation, memory, and LTP are impaired in CBP+/− mice: a model for the cognitive deficit in Rubinstein–Taybi syndrome and its amelioration. Neuron 42, 947–959 (2004). Modelling Rubinstein–Taybi syndrome through CBP haploinsufficiency, this study shows that loss of CBP function leads to deficits in memory formation, and that these deficits can be ameliorated through treatment with an HDAC inhibitor.
Article CAS PubMed Google Scholar
- Yeh, S. H., Lin, C. H. & Gean, P. W. Acetylation of nuclear factor-κB in rat amygdala improves long-term but not short-term retention of fear memory. Mol. Pharmacol. 65, 1286–1292 (2004).
Article CAS PubMed Google Scholar
- Malenka, R. C. & Bear, M. F. LTP and LTD; an embarrassment of riches. Neuron 44, 5–21 (2004).
Article CAS PubMed Google Scholar
- Klann, E., Antion, M. D., Banko, J. L. & Hou, L. Synaptic plasticity and translation initiation. Learn. Mem. 11, 365–372 (2004).
Article PubMed Google Scholar
- Pittenger, C. & Kandel, E. R. In search of general mechanisms for long-lasting plasticity: Aplysia and the hippocampus. Philos. Trans. R. Soc. Lond. B 358, 757–763 (2003).
Article Google Scholar
- Guan, Z. et al. Integration of long-term-memory-related synaptic plasticity involves bidirectional regulation of gene expression and chromatin structure. Cell 111, 483–493 (2002). This study shows that in Aplysia , treatments that induce synaptic facilitation lead to increases in histone acetylation and that treatments that induce synaptic depression lead to decreases in histone acetylation.
Article CAS PubMed Google Scholar
- Harris, E. W., Ganong, A. H. & Cotman, C. W. Long-term potentiation in the hippocampus involves activation of _N_-methyl-D-aspartate receptors. Brain Res. 323, 132–137 (1984).
Article CAS PubMed Google Scholar
- Morris, R. G., Anderson, E., Lynch, G. S. & Baudry, M. Selective impairment of learning and blockade of long-term potentiation by an _N_-methyl-D-aspartate receptor antagonist, AP5. Nature 319, 774–776 (1986).
Article CAS PubMed Google Scholar
- English, J. D. & Sweatt, J. D. A requirement for the mitogen-activated protein kinase cascade in hippocampal long term potentiation. J. Biol. Chem. 272, 19103–19106 (1997).
Article CAS PubMed Google Scholar
- Crosio, C., Heitz, E., Allis, C. D., Borrelli, E. & Sassone-Corsi, P. Chromatin remodeling and neuronal response: multiple signaling pathways induce specific histone H3 modifications and early gene expression in hippocampal neurons. J. Cell Sci. 116, 4905–4914 (2003).
Article CAS PubMed Google Scholar
- Petrij, F. et al. Rubinstein–Taybi syndrome caused by mutations in the transcriptional co-activator CBP. Nature 376, 348–351 (1995).
Article CAS PubMed Google Scholar
- Blough, R. I. et al. Variation in microdeletions of the cyclic AMP-responsive element-binding protein gene at chromosome band 16p13.3 in the Rubinstein–Taybi syndrome. Am. J. Med. Genet. 90, 29–34 (2000).
Article CAS PubMed Google Scholar
- Ellaway, C. & Christodoulou, J. Rett syndrome: clinical characteristics and recent genetic advances. Disabil. Rehabil. 23, 98–106 (2001).
Article CAS PubMed Google Scholar
- Sirianni, N., Naidu, S., Pereira, J., Pillotto, R. F. & Hoffman, E. P. Rett syndrome: confirmation of X-linked dominant inheritance, and localization of the gene to Xq28. Am. J. Hum. Genet. 63, 1552–1558 (1998).
Article CAS PubMed PubMed Central Google Scholar
- Amir, R. E. et al. Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2. Nature Genet. 23, 185–188 (1999).
Article CAS PubMed Google Scholar
- Collins, A. L. et al. Mild overexpression of MeCP2 causes a progressive neurological disorder in mice. Hum. Mol. Genet. 13, 2679–2689 (2004).
Article CAS PubMed Google Scholar
- Turner, G., Webb, T., Wake, S. & Robinson, H. Prevalence of fragile X syndrome. Am. J. Med. Genet. 64, 196–197 (1996).
Article CAS PubMed Google Scholar
- Ashley, C. T. et al. Human and murine FMR-1: alternative splicing and translational initiation downstream of the CGG-repeat. Nature Genet. 4, 244–251 (1993).
Article CAS PubMed Google Scholar
- Gecz, J., Gedeon, A. K., Sutherland, G. R. & Mulley, J. C. Identification of the gene FMR2, associated with FRAXE mental retardation. Nature Genet. 13, 105–108 (1996).
Article CAS PubMed Google Scholar
- Gu, Y., Shen, Y., Gibbs, R. A. & Nelson, D. L. Identification of FMR2, a novel gene associated with the FRAXE CCG repeat and CpG island. Nature Genet. 13, 109–113 (1996).
Article CAS PubMed Google Scholar
- Kuo, Y. M. et al. Water-soluble Aβ (N-40, N-42) oligomers in normal and Alzheimer disease brains. J. Biol. Chem. 271, 4077–4081 (1996).
Article CAS PubMed Google Scholar
- Selkoe, D. J. The cell biology of β-amyloid precursor protein and presenilin in Alzheimer's disease. Trends Cell Biol. 8, 447–453 (1998).
Article CAS PubMed Google Scholar
- Sastre, M. et al. Presenilin-dependent γ-secretase processing of β-amyloid precursor protein at a site corresponding to the S3 cleavage of Notch. EMBO Rep. 2, 835–841 (2001).
Article CAS PubMed PubMed Central Google Scholar
- Kimberly, W. T., Zheng, J. B., Guenette, S. Y. & Selkoe, D. J. The intracellular domain of the β-amyloid precursor protein is stabilized by Fe65 and translocates to the nucleus in a Notch-like manner. J. Biol. Chem. 276, 40288–40292 (2001).
Article CAS PubMed Google Scholar
- Cao, X. & Sudhof, T. C. A transcriptionally [correction of transcriptively] active complex of APP with Fe65 and histone acetyltransferase Tip60. Science 293, 115–120 (2001).
Article CAS PubMed Google Scholar
- Von Rotz, R. C. et al. The APP intracellular domain forms nuclear multiprotein complexes and regulates the transcription of its own precursor. J. Cell Sci. 117, 4435–4448 (2004).
Article CAS PubMed Google Scholar
- Costa, E. et al. REELIN and schizophrenia: a disease at the interface of the genome and the epigenome. Mol. Intervent. 2, 47–57 (2002).
Article CAS Google Scholar
- Chen, Y., Sharma, R. P., Costa, R. H., Costa, E. & Grayson, D. R. On the epigenetic regulation of the human reelin promoter. Nucleic Acids Res. 30, 2930–2939 (2002).
Article CAS PubMed PubMed Central Google Scholar
- Weaver, I. C. et al. Epigenetic programming by maternal behavior. Nature Neurosci. 7, 847–854 (2004). This study is one of the first to show that events in early postnatal development result in epigenetic tagging of the genome and can lead to long-term changes in behaviour.
Article CAS PubMed Google Scholar
- Shahbazian, M. et al. Mice with truncated MeCP2 recapitulate many Rett syndrome features and display hyperacetylation of histone H3. Neuron 35, 243 (2002).
Article CAS PubMed Google Scholar
- Zhao, X. et al. Mice lacking methyl-CpG binding protein 1 have deficits in adult neurogenesis and hippocampal function. Proc. Natl Acad. Sci. USA 100, 6777–6782 (2003).
Article CAS PubMed PubMed Central Google Scholar