GABAA receptor trafficking and its role in the dynamic modulation of neuronal inhibition (original) (raw)
Sieghart, W. & Sperk, G. Subunit composition, distribution and function of GABAA receptor subtypes. Curr. Top. Med. Chem.2, 795–816 (2002). ArticleCASPubMed Google Scholar
Rudolph, U. & Mohler, H. Analysis of GABAA receptor function and dissection of the pharmacology of benzodiazepines and general anesthetics through mouse genetics. Annu. Rev. Pharmacol. Toxicol.44, 475–498 (2004). ArticleCASPubMed Google Scholar
Couve, A., Moss, S. J. & Pangalos, M. N. GABAB receptors: a new paradigm in G protein signaling. Mol. Cell. Neurosci.16, 296–312 (2000). ArticleCASPubMed Google Scholar
Bettler, B. & Tiao, J. Y. Molecular diversity, trafficking and subcellular localization of GABAB receptors. Pharmacol. Ther.110, 533–543 (2006). ArticleCASPubMed Google Scholar
Barnard, E. A. et al. International Union of Pharmacology. XV. Subtypes of γ-aminobutyric acidA receptors: classification on the basis of subunit structure and receptor function. Pharmacol. Rev.50, 291–313 (1998). CASPubMed Google Scholar
Unwin, N. The structure of ion channels in membranes of excitable cells. Neuron3, 665–676 (1989). ArticleCASPubMed Google Scholar
Fritschy, J. M., Johnson, D. K., Mohler, H. & Rudolph, U. Independent assembly and subcellular targeting of GABAA-receptor subtypes demonstrated in mouse hippocampal and olfactory neurons in vivo. Neurosci. Lett.249, 99–102 (1998). ArticleCASPubMed Google Scholar
Brunig, I., Scotti, E., Sidler, C. & Fritschy, J. M. Intact sorting, targeting, and clustering of γ-aminobutyric acidA receptor subtypes in hippocampal neurons in vitro. J. Comp. Neurol.443, 43–55 (2002). ArticleCASPubMed Google Scholar
Draguhn, A., Axmacher, N. & Kolbaev, S. Presynaptic ionotropic GABA receptors. Results Probl. Cell Differ.44, 69–85 (2008). ArticleCASPubMed Google Scholar
McKernan, R. M. & Whiting, P. J. Which GABAA-receptor subtypes really occur in the brain? Trends Neurosci.19, 139–143 (1996). ArticleCASPubMed Google Scholar
Kittler, J. T., McAinsh, K. & Moss, S. J. Mechanisms of GABAA receptor assembly and trafficking: implications for the modulation of inhibitory neurotransmission. Mol. Neurobiol.26, 251–268 (2002). ArticleCASPubMed Google Scholar
Connolly, C. N., Krishek, B. J., McDonald, B. J., Smart, T. G. & Moss, S. J. Assembly and cell surface expression of heteromeric and homomeric γ-aminobutyric acidA receptors. J. Biol. Chem.271, 89–96 (1996). ArticleCASPubMed Google Scholar
Gorrie, G. H. et al. Assembly of GABAA receptors composed of α1 and β2 subunits in both cultured neurons and fibroblasts. J. Neurosci.17, 6587–6596 (1997). ArticleCASPubMedPubMed Central Google Scholar
Nusser, Z. et al. Alterations in the expression of GABAA receptor subunits in cerebellar granule cells after the disruption of the α6 subunit gene. Eur. J. Neurosci.11, 1685–1697 (1999). ArticleCASPubMed Google Scholar
Peng, Z. et al. GABAA receptor changes in δ subunit-deficient mice: altered expression of α4 and γ2 subunits in the forebrain. J. Comp. Neurol.446, 179–197 (2002). ArticleCASPubMed Google Scholar
Korpi, E. R. et al. Altered receptor subtypes in the forebrain of GABAA receptor δ subunit-deficient mice: recruitment of γ2 subunits. Neuroscience109, 733–743 (2002). ArticleCASPubMed Google Scholar
Bedford, F. K. et al. GABAA receptor cell surface number and subunit stability are regulated by the ubiquitin-like protein Plic-1. Nature Neurosci.4, 908–916 (2001). This was the first report to demonstrate that GABAARs are stabilized by a direct interaction with the ubiquitin-like protein PLIC1. ArticleCASPubMed Google Scholar
Yi, J. J. & Ehlers, M. D. Emerging roles for ubiquitin and protein degradation in neuronal function. Pharmacol. Rev.59, 14–39 (2007). ArticleCASPubMed Google Scholar
Saliba, R. S., Michels, G., Jacob, T. C., Pangalos, M. N. & Moss, S. J. Activity-dependent ubiquitination of GABAA receptors regulates their accumulation at synaptic sites. J. Neurosci.27, 13341–13351 (2007). This paper reported activity-dependent ubiquitylation of GABAARs and subsequent degradation by the proteasome as a mechanism that regulates GABAAR accumulation at synaptic sites. ArticleCASPubMedPubMed Central Google Scholar
Kleijnen, M. F. et al. The hPLIC proteins may provide a link between the ubiquitination machinery and the proteasome. Mol. Cell6, 409–419 (2000). ArticleCASPubMed Google Scholar
Wang, H., Bedford, F. K., Brandon, N. J., Moss, S. J. & Olsen, R. W. GABAA receptor-associated protein links GABAA receptors and the cytoskeleton. Nature397, 69–72 (1999). This was the first identification of GABARAP as a protein that interacts with theγ2 subunit of GABAARs. ArticleCASPubMed Google Scholar
Wang, H. & Olsen, R. W. Binding of the GABAA receptor-associated protein (GABARAP) to microtubules and microfilaments suggests involvement of the cytoskeleton in GABARAP-GABAA receptor interaction. J. Neurochem.75, 644–655 (2000). ArticleCASPubMed Google Scholar
Kittler, J. T. et al. The subcellular distribution of GABARAP and its ability to interact with NSF suggest a role for this protein in the intracellular transport of GABAA receptors. Mol. Cell. Neurosci.18, 13–25 (2001). ArticleCASPubMed Google Scholar
Kneussel, M. et al. The γ-aminobutyric acidA receptor (GABAAR)-associated protein GABARAP interacts with gephyrin but is not involved in receptor anchoring at the synapse. Proc. Natl Acad. Sci. USA97, 8594–8599 (2000). ArticleCASPubMedPubMed Central Google Scholar
Chen, L., Wang, H., Vicini, S. & Olsen, R. W. The γ-aminobutyric acid type A (GABAA) receptor-associated protein (GABARAP) promotes GABAA receptor clustering and modulates the channel kinetics. Proc. Natl Acad. Sci. USA97, 11557–11562 (2000). ArticleCASPubMedPubMed Central Google Scholar
Chen, Z. W., Chang, C. S., Leil, T. A., Olcese, R. & Olsen, R. W. GABAA receptor-associated protein regulates GABAA receptor cell-surface number in Xenopus laevis oocytes. Mol. Pharmacol.68, 152–159 (2005). ArticleCASPubMed Google Scholar
Leil, T. A., Chen, Z. W., Chang, C. S. & Olsen, R. W. GABAA receptor-associated protein traffics GABAA receptors to the plasma membrane in neurons. J. Neurosci.24, 11429–11438 (2004). ArticleCASPubMedPubMed Central Google Scholar
Chen, Z. W., Chang, C. S., Leil, T. A. & Olsen, R. W. C-terminal modification is required for GABARAP-mediated GABAA receptor trafficking. J. Neurosci.27, 6655–6663 (2007). This paper demonstrated that a post-translational lipid modification of GABARAP is essential for the proper localization of GABARAP and for its function as a trafficking protein of GABAARs. ArticleCASPubMedPubMed Central Google Scholar
O'Sullivan, G. A., Kneussel, M., Elazar, Z. & Betz, H. GABARAP is not essential for GABAA receptor targeting to the synapse. Eur. J. Neurosci.22, 2644–2648 (2005). ArticlePubMed Google Scholar
Mansuy, V. et al. GEC1, a protein related to GABARAP, interacts with tubulin and GABAA receptor. Biochem. Biophys. Res. Commun.325, 639–648 (2004). ArticleCASPubMed Google Scholar
Marsden, K. C., Beattie, J. B., Friedenthal, J. & Carroll, R. C. NMDA receptor activation potentiates inhibitory transmission through GABAA receptor-associated protein-dependent exocytosis of GABAA receptors. J. Neurosci.27, 14326–14337 (2007). ArticleCASPubMedPubMed Central Google Scholar
Goto, H. et al. Direct interaction of _N_-ethylmaleimide-sensitive factor with GABAA receptor β subunits. Mol. Cell. Neurosci.30, 197–206 (2005). ArticleCASPubMed Google Scholar
Nishimune, A. et al. NSF binding to GluR2 regulates synaptic transmission. Neuron21, 87–97 (1998). ArticleCASPubMed Google Scholar
Song, I. et al. Interaction of the _N_-ethylmaleimide-sensitive factor with AMPA receptors. Neuron21, 393–400 (1998). ArticleCASPubMed Google Scholar
Kanematsu, T. et al. Domain organization of p130, PLC-related catalytically inactive protein, and structural basis for the lack of enzyme activity. Eur. J. Biochem.267, 2731–2737 (2000). ArticleCASPubMed Google Scholar
Uji, A. et al. Molecules interacting with PRIP-2, a novel Ins(1,4,5)P3 binding protein type 2: comparison with PRIP-1. Life Sci.72, 443–453 (2002). ArticleCASPubMed Google Scholar
Kanematsu, T. et al. Role of the PLC-related, catalytically inactive protein p130 in GABAA receptor function. Embo J.21, 1004–1011 (2002). This study was the first to identify PRIP1 as a protein that interacts with GABAAR subunits. It also reported electrophysiological and behavioural studies on PRIP1-knockout mice that demonstrated an essential role for PRIP1 in the normal functioning of GABAARs. ArticleCASPubMedPubMed Central Google Scholar
Mizokami, A. et al. Phospholipase C-related inactive protein is involved in trafficking of γ2 subunit-containing GABAA receptors to the cell surface. J. Neurosci.27, 1692–1701 (2007). ArticleCASPubMedPubMed Central Google Scholar
Kittler, J. T. & Moss, S. J. Modulation of GABAA receptor activity by phosphorylation and receptor trafficking: implications for the efficacy of synaptic inhibition. Curr. Opin. Neurobiol.13, 341–347 (2003). ArticleCASPubMed Google Scholar
Terunuma, M. et al. GABAA receptor phospho-dependent modulation is regulated by phospholipase C-related inactive protein type 1, a novel protein phosphatase 1 anchoring protein. J. Neurosci.24, 7074–7084 (2004). ArticleCASPubMedPubMed Central Google Scholar
Yoshimura, K. et al. Interaction of p130 with, and consequent inhibition of, the catalytic subunit of protein phosphatase 1α. J. Biol. Chem.276, 17908–17913 (2001). ArticleCASPubMed Google Scholar
Kanematsu, T. et al. Phospholipase C-related inactive protein is implicated in the constitutive internalization of GABAA receptors mediated by clathrin and AP2 adaptor complex. J. Neurochem.101, 898–905 (2007). ArticleCASPubMed Google Scholar
Huang, K. & El-Husseini, A. Modulation of neuronal protein trafficking and function by palmitoylation. Curr. Opin. Neurobiol.15, 527–535 (2005). ArticleCASPubMed Google Scholar
Keller, C. A. et al. The γ2 subunit of GABAA receptors is a substrate for palmitoylation by GODZ. J. Neurosci.24, 5881–5891 (2004). This paper provided the first identification of GODZ as a palmitoyltransferase that interacts with and palmitoylates theγ2 subunit of GABAARs. ArticleCASPubMedPubMed Central Google Scholar
Rathenberg, J., Kittler, J. T. & Moss, S. J. Palmitoylation regulates the clustering and cell surface stability of GABAA receptors. Mol. Cell. Neurosci.26, 251–257 (2004). ArticleCASPubMed Google Scholar
Fang, C. et al. GODZ-mediated palmitoylation of GABAA receptors is required for normal assembly and function of GABAergic inhibitory synapses. J. Neurosci.26, 12758–12768 (2006). ArticleCASPubMedPubMed Central Google Scholar
Charych, E. I. et al. The brefeldin A-inhibited GDP/GTP exchange factor 2, a protein involved in vesicular trafficking, interacts with the β subunits of the GABAA receptors. J. Neurochem.90, 173–189 (2004). ArticleCASPubMed Google Scholar
Moss, J. & Vaughan, M. Structure and function of ARF proteins: activators of cholera toxin and critical components of intracellular vesicular transport processes. J. Biol. Chem.270, 12327–12330 (1995). ArticleCASPubMed Google Scholar
Beck, M. et al. Identification, molecular cloning, and characterization of a novel GABAA receptor-associated protein, GRIF-1. J. Biol. Chem.277, 30079–30090 (2002). ArticleCASPubMed Google Scholar
Brickley, K., Smith, M. J., Beck, M. & Stephenson, F. A. GRIF-1 and OIP106, members of a novel gene family of coiled-coil domain proteins: association in vivo and in vitro with kinesin. J. Biol. Chem.280, 14723–14732 (2005). ArticleCASPubMed Google Scholar
Smith, M. J., Pozo, K., Brickley, K. & Stephenson, F. A. Mapping the GRIF-1 binding domain of the kinesin, KIF5C, substantiates a role for GRIF-1 as an adaptor protein in the anterograde trafficking of cargoes. J. Biol. Chem.281, 27216–27228 (2006). ArticleCASPubMed Google Scholar
Gilbert, S. L. et al. Trak1 mutation disrupts GABAA receptor homeostasis in hypertonic mice. Nature Genet.38, 245–250 (2006). ArticleCASPubMed Google Scholar
Thomas, P., Mortensen, M., Hosie, A. M. & Smart, T. G. Dynamic mobility of functional GABAA receptors at inhibitory synapses. Nature Neurosci.8, 889–897 (2005). The authors of this paper developed a novel electrophysiological tracking method to show that GABAAR lateral diffusion in the plasma membrane — not receptor insertion — results in rapid recovery from selective inhibition. ArticleCASPubMed Google Scholar
Bogdanov, Y. et al. Synaptic GABAA receptors are directly recruited from their extrasynaptic counterparts. Embo J.25, 4381–4389 (2006). ArticleCASPubMedPubMed Central Google Scholar
Danglot, L., Triller, A. & Bessis, A. Association of gephyrin with synaptic and extrasynaptic GABAA receptors varies during development in cultured hippocampal neurons. Mol. Cell. Neurosci.23, 264–278 (2003). ArticleCASPubMed Google Scholar
Sun, C., Sieghart, W. & Kapur, J. Distribution of α1, α4, γ2, and δ subunits of GABAA receptors in hippocampal granule cells. Brain Res.1029, 207–216 (2004). ArticleCASPubMedPubMed Central Google Scholar
Mangan, P. S. et al. Cultured hippocampal pyramidal neurons express two kinds of GABAA receptors. Mol. Pharmacol.67, 775–788 (2005). ArticleCASPubMed Google Scholar
Wei, W., Zhang, N., Peng, Z., Houser, C. R. & Mody, I. Perisynaptic localization of δ subunit-containing GABAA receptors and their activation by GABA spillover in the mouse dentate gyrus. J. Neurosci.23, 10650–10661 (2003). ArticleCASPubMedPubMed Central Google Scholar
Pfeiffer, F., Graham, D. & Betz, H. Purification by affinity chromatography of the glycine receptor of rat spinal cord. J. Biol. Chem.257, 9389–9393 (1982). ArticleCASPubMed Google Scholar
Meyer, G., Kirsch, J., Betz, H. & Langosch, D. Identification of a gephyrin binding motif on the glycine receptor β subunit. Neuron15, 563–572 (1995). ArticleCASPubMed Google Scholar
Kneussel, M., Hermann, A., Kirsch, J. & Betz, H. Hydrophobic interactions mediate binding of the glycine receptor β subunit to gephyrin. J. Neurochem.72, 1323–1326 (1999). ArticleCASPubMed Google Scholar
Feng, G. et al. Dual requirement for gephyrin in glycine receptor clustering and molybdoenzyme activity. Science282, 1321–1324 (1998). ArticleCASPubMed Google Scholar
Levi, S., Logan, S. M., Tovar, K. R. & Craig, A. M. Gephyrin is critical for glycine receptor clustering but not for the formation of functional GABAergic synapses in hippocampal neurons. J. Neurosci.24, 207–217 (2004). ArticleCASPubMedPubMed Central Google Scholar
Kirsch, J., Wolters, I., Triller, A. & Betz, H. Gephyrin antisense oligonucleotides prevent glycine receptor clustering in spinal neurons. Nature366, 745–748 (1993). ArticleCASPubMed Google Scholar
Fritschy, J. M. & Brunig, I. Formation and plasticity of GABAergic synapses: physiological mechanisms and pathophysiological implications. Pharmacol. Ther.98, 299–323 (2003). ArticleCASPubMed Google Scholar
Essrich, C., Lorez, M., Benson, J. A., Fritschy, J. M. & Luscher, B. Postsynaptic clustering of major GABAA receptor subtypes requires the γ2 subunit and gephyrin. Nature Neurosci.1, 563–571 (1998). In this study, an analysis of mice that lacked GABAARγ2 subunits showed significant reductions in synaptic GABAAR and gephyrin clusters, indicating that aγ2-dependent mechanism is involved in the formation of inhibitory synapses. More recently,γ2 was also demonstrated to be required for the maintenance of mature synapses (see reference 75). ArticleCASPubMed Google Scholar
Kneussel, M. et al. Gephyrin-independent clustering of postsynaptic GABAA receptor subtypes. Mol. Cell. Neurosci.17, 973–982 (2001). ArticleCASPubMed Google Scholar
Kins, S., Betz, H. & Kirsch, J. Collybistin, a newly identified brain-specific GEF, induces submembrane clustering of gephyrin. Nature Neurosci.3, 22–29 (2000). ArticleCASPubMed Google Scholar
Harvey, K. et al. The GDP-GTP exchange factor collybistin: an essential determinant of neuronal gephyrin clustering. J. Neurosci.24, 5816–5826 (2004). ArticleCASPubMedPubMed Central Google Scholar
Papadopoulos, T. et al. Impaired GABAergic transmission and altered hippocampal synaptic plasticity in collybistin-deficient mice. Embo J.26, 3888–3899 (2007). ArticleCASPubMedPubMed Central Google Scholar
Schweizer, C. et al. The γ2 subunit of GABAA receptors is required for maintenance of receptors at mature synapses. Mol. Cell. Neurosci.24, 442–450 (2003). ArticleCASPubMed Google Scholar
Alldred, M. J., Mulder-Rosi, J., Lingenfelter, S. E., Chen, G. & Luscher, B. Distinct γ2 subunit domains mediate clustering and synaptic function of postsynaptic GABAA receptors and gephyrin. J. Neurosci.25, 594–603 (2005). ArticleCASPubMedPubMed Central Google Scholar
Christie, S. B., Li, R. W., Miralles, C. P., Yang, B. Y. & De Blas, A. L. Clustered and non-clustered GABAA receptors in cultured hippocampal neurons. Mol. Cell. Neurosci.31, 1–14 (2006). ArticleCASPubMed Google Scholar
Kirsch, J., Kuhse, J. & Betz, H. Targeting of glycine receptor subunits to gephyrin-rich domains in transfected human embryonic kidney cells. Mol. Cell. Neurosci.6, 450–461 (1995). ArticleCASPubMed Google Scholar
Tretter, V. et al. The clustering of GABAA receptor subtypes at inhibitory synapses is facilitated via the direct binding of receptor α2 subunits to gephyrin. J. Neurosci.28, 1356–1365 (2008). This paper described the first evidence that GABAARs bind directly to gephyrin and that disruption of this binding alters the synaptic targeting of receptor subtypes containingα2 subunits. ArticleCASPubMedPubMed Central Google Scholar
Prior, P. et al. Primary structure and alternative splice variants of gephyrin, a putative glycine receptor-tubulin linker protein. Neuron8, 1161–1170 (1992). ArticleCASPubMed Google Scholar
Hanus, C., Ehrensperger, M. V. & Triller, A. Activity-dependent movements of postsynaptic scaffolds at inhibitory synapses. J. Neurosci.26, 4586–4595 (2006). This paper, along with reference 81, used live imaging of fluorescently tagged gephyrin to reveal constant synaptic movements of gephyrin that could be controlled by activity. This showed that gephyrin is a significant dynamic force at inhibitory synapses. ArticleCASPubMedPubMed Central Google Scholar
Zita, M. M. et al. Post-phosphorylation prolyl isomerisation of gephyrin represents a mechanism to modulate glycine receptors function. Embo J.26, 1761–1771 (2007). ArticleCASPubMed Google Scholar
Loebrich, S., Bahring, R., Katsuno, T., Tsukita, S. & Kneussel, M. Activated radixin is essential for GABAA receptor α5 subunit anchoring at the actin cytoskeleton. Embo J.25, 987–999 (2006). ArticleCASPubMedPubMed Central Google Scholar
Bretscher, A., Edwards, K. & Fehon, R. G. ERM proteins and merlin: integrators at the cell cortex. Nature Rev. Mol. Cell Biol.3, 586–599 (2002). ArticleCAS Google Scholar
Cinar, H. & Barnes, E. M. Jr. Clathrin-independent endocytosis of GABAA receptors in HEK 293 cells. Biochemistry40, 14030–14036 (2001). ArticleCASPubMed Google Scholar
Kittler, J. T. et al. Constitutive endocytosis of GABAA receptors by an association with the adaptin AP2 complex modulates inhibitory synaptic currents in hippocampal neurons. J. Neurosci.20, 7972–7977 (2000). This paper provided the first evidence that GABAARs undergo constitutive endocytosis and described the role that this process has in regulating the efficacy of synaptic inhibition. ArticleCASPubMedPubMed Central Google Scholar
Kittler, J. T. et al. Huntingtin-associated protein 1 regulates inhibitory synaptic transmission by modulating γ-aminobutyric acidA receptor membrane trafficking. Proc. Natl Acad. Sci. USA101, 12736–12741 (2004). This study demonstrated that GABAARs are internalized and either rapidly recycled to the cell-surface membrane or targeted for lysosomal degradation. It also demonstrated that this sorting decision can be regulated by a direct interaction of GABAARs with HAP1. ArticleCASPubMedPubMed Central Google Scholar
Herring, D. et al. Constitutive GABAA receptor endocytosis is dynamin-mediated and dependent on a dileucine AP2 adaptin-binding motif within the β2 subunit of the receptor. J. Biol. Chem.278, 24046–24052 (2003). ArticleCASPubMed Google Scholar
van Rijnsoever, C., Sidler, C. & Fritschy, J. M. Internalized GABAA receptor subunits are transferred to an intracellular pool associated with the postsynaptic density. Eur. J. Neurosci.21, 327–338 (2005). ArticlePubMed Google Scholar
Pearse, B. M. F., Smith, C. J. & Owen, D. J. Clathrin coat construction in endocytosis. Curr. Opin. Struct. Biol.10, 220–228 (2000). ArticleCASPubMed Google Scholar
Kittler, J. T. et al. Phospho-dependent binding of the clathrin AP2 adaptor complex to GABAA receptors regulates the efficacy of inhibitory synaptic transmission. Proc. Natl Acad. Sci. USA102, 14871–14876 (2005). This paper identified a novel AP2 binding motif inβ3 GABAAR subunits. Furthermore, phosphorylation of this motif was demonstrated to decrease AP2 binding, showing that phospho-dependent modulation of AP2 binding to GABAARs can regulate endocytosis and receptor cell-surface levels. ArticleCASPubMedPubMed Central Google Scholar
Kittler, J. T. et al. Regulation of synaptic inhibition by phospho-dependent binding of the AP2 complex to a YECL motif in the GABAA receptor γ2 subunit. Proc. Natl Acad. Sci. USA105, 3616–3621 (2008). ArticleCASPubMedPubMed Central Google Scholar
Moss, S. J., Gorrie, G. H., Amato, A. & Smart, T. G. Modulation of GABAA receptors by tyrosine phosphorylation. Nature377, 344–348 (1995). ArticleCASPubMed Google Scholar
Chen, G., Kittler, J. T., Moss, S. J. & Yan, Z. Dopamine D3 receptors regulate GABAA receptor function through a phospho-dependent endocytosis mechanism in nucleus accumbens. J. Neurosci.26, 2513–2521 (2006). ArticleCASPubMedPubMed Central Google Scholar
Feng, J., Cai, X., Zhao, J. & Yan, Z. Serotonin receptors modulate GABAA receptor channels through activation of anchored protein kinase C in prefrontal cortical neurons. J. Neurosci.21, 6502–6511 (2001). ArticleCASPubMedPubMed Central Google Scholar
Yan, Z. & Surmeier, D. J. D5 dopamine receptors enhance Zn2+-sensitive GABAA currents in striatal cholinergic interneurons through a PKA/PP1 cascade. Neuron19, 1115–1126 (1997). ArticleCASPubMed Google Scholar
Li, X.-J. et al. A huntingtin-associated protein enriched in brain with implications for pathology. Nature378, 398–402 (1995). ArticleCASPubMed Google Scholar
Sheng, G. et al. Hypothalamic huntingtin-associated protein 1 as a mediator of feeding behavior. Nature Med.12, 526–533 (2006). This elegant study demonstrated that decreases in HAP1 affect the activity of GABAARs in the hypothalamus and result in a functional change in food intake and body weight in rodents. ArticleCASPubMed Google Scholar
Benarroch, E. E. GABAA receptor heterogeneity, function, and implications for epilepsy. Neurology68, 612–614 (2007). ArticleCASPubMed Google Scholar
Thompson-Vest, N. M., Waldvogel, H. J., Rees, M. I. & Faull, R. L. GABAA receptor subunit and gephyrin protein changes differ in the globus pallidus in Huntington's diseased brain. Brain Res.994, 265–270 (2003). ArticleCASPubMed Google Scholar
DeLorey, T. M. & Olsen, R. W. GABA and epileptogenesis: comparing gabrb3 gene-deficient mice with Angelman syndrome in man. Epilepsy Res.36, 123–132 (1999). ArticleCASPubMed Google Scholar
D'Hulst, C. & Kooy, R. F. The GABAA receptor: a novel target for treatment of fragile X? Trends Neurosci.30, 425–431 (2007). ArticleCASPubMed Google Scholar
Lewis, D. A. & Gonzalez-Burgos, G. Pathophysiologically based treatment interventions in schizophrenia. Nature Med.12, 1016–1022 (2006). ArticleCASPubMed Google Scholar
Krystal, J. H. et al. γ-aminobutyric acidA receptors and alcoholism: intoxication, dependence, vulnerability, and treatment. Arch. Gen. Psychiatry63, 957–968 (2006). ArticleCASPubMed Google Scholar
Coulter, D. A. Epilepsy-associated plasticity in γ-aminobutyric acid receptor expression, function, and inhibitory synaptic properties. Int. Rev. Neurobiol.45, 237–252 (2001). ArticleCASPubMed Google Scholar
Chen, J. W., Naylor, D. E. & Wasterlain, C. G. Advances in the pathophysiology of status epilepticus. Acta Neurol. Scand. Suppl.186, 7–15 (2007). ArticleCASPubMed Google Scholar
Naylor, D. E., Liu, H. & Wasterlain, C. G. Trafficking of GABAA receptors, loss of inhibition, and a mechanism for pharmacoresistance in status epilepticus. J. Neurosci.25, 7724–7733 (2005). ArticleCASPubMedPubMed Central Google Scholar
Goodkin, H. P., Yeh, J. L. & Kapur, J. Status epilepticus increases the intracellular accumulation of GABAA receptors. J. Neurosci.25, 5511–5520 (2005). ArticleCASPubMedPubMed Central Google Scholar
Terunuma, M. et al. Deficits in phosphorylation of GABAA receptors by intimately associated protein kinase C activity underlies compromised synaptic inhibition during status epilepticus. J. Neurosci.28, 37–84 (2008). ArticleCAS Google Scholar
Bouilleret, V., Loup, F., Kiener, T., Marescaux, C. & Fritschy, J. M. Early loss of interneurons and delayed subunit-specific changes in GABAA receptor expression in a mouse model of mesial temporal lobe epilepsy. Hippocampus10, 305–324 (2000). ArticleCASPubMed Google Scholar
Knuesel, I., Zuellig, R. A., Schaub, M. C. & Fritschy, J. M. Alterations in dystrophin and utrophin expression parallel the reorganization of GABAergic synapses in a mouse model of temporal lobe epilepsy. Eur. J. Neurosci.13, 1113–1124 (2001). ArticleCASPubMed Google Scholar
Fritschy, J. M., Kiener, T., Bouilleret, V. & Loup, F. GABAergic neurons and GABAA receptors in temporal lobe epilepsy. Neurochem. Int.34, 435–445 (1999). ArticleCASPubMed Google Scholar
Brooks-Kayal, A. R., Shumate, M. D., Jin, H., Rikhter, T. Y. & Coulter, D. A. Selective changes in single cell GABAA receptor subunit expression and function in temporal lobe epilepsy. Nature Med.4, 1166–1172 (1998). ArticleCASPubMed Google Scholar
Schwarzer, C. et al. GABAA receptor subunits in the rat hippocampus II: altered distribution in kainic acid-induced temporal lobe epilepsy. Neuroscience80, 1001–1017 (1997). ArticleCASPubMed Google Scholar
Peng, Z., Huang, C. S., Stell, B. M., Mody, I. & Houser, C. R. Altered expression of the δ subunit of the GABAA receptor in a mouse model of temporal lobe epilepsy. J. Neurosci.24, 8629–8639 (2004). ArticleCASPubMedPubMed Central Google Scholar
Pirker, S. et al. Increased expression of GABAA receptor β subunits in the hippocampus of patients with temporal lobe epilepsy. J. Neuropathol. Exp. Neurol.62, 820–834 (2003). ArticleCASPubMed Google Scholar
Loup, F., Wieser, H. G., Yonekawa, Y., Aguzzi, A. & Fritschy, J. M. Selective alterations in GABAA receptor subtypes in human temporal lobe epilepsy. J. Neurosci.20, 5401–5419 (2000). This paper reported that there are marked changes in the expression of major GABAAR subtypes in the hippocampus of temporal lobe epilepsy patients. ArticleCASPubMedPubMed Central Google Scholar
Wallace, R. H. et al. Mutant GABAA receptor γ2 subunit in childhood absence epilepsy and febrile seizures. Nature Genet.28, 49–52 (2001). CASPubMed Google Scholar
Baulac, S. et al. First genetic evidence of GABAA receptor dysfunction in epilepsy: a mutation in the γ2 subunit gene. Nature Genet.28, 46–48 (2001). This paper, together with reference 119, provided the first report of mutations in the genes that encode GABAAR subunits being associated with human epilepsy. CASPubMed Google Scholar
Kananura, C. et al. A splice-site mutation in GABRG2 associated with childhood absence epilepsy and febrile convulsions. Arch. Neurol.59, 1137–1141 (2002). ArticlePubMed Google Scholar
Cossette, P. et al. Mutation of GABRA1 in an autosomal dominant form of juvenile myoclonic epilepsy. Nature Genet.31, 184–189 (2002). ArticleCASPubMed Google Scholar
Maljevic, S. et al. A mutation in the GABAA receptor α1 subunit is associated with absence epilepsy. Ann. Neurol.59, 983–987 (2006). ArticleCASPubMed Google Scholar
Feng, H. J. et al. δ subunit susceptibility variants E177A and R220H associated with complex epilepsy alter channel gating and surface expression of α4β2δ GABAA receptors. J. Neurosci.26, 1499–1506 (2006). ArticleCASPubMedPubMed Central Google Scholar
Hirose, S. A new paradigm of channelopathy in epilepsy syndromes: intracellular trafficking abnormality of channel molecules. Epilepsy Res.70 (Suppl. 1), S206–S217 (2006). ArticleCASPubMed Google Scholar
Bianchi, M. T., Song, L., Zhang, H. & Macdonald, R. L. Two different mechanisms of disinhibition produced by GABAA receptor mutations linked to epilepsy in humans. J. Neurosci.22, 5321–5327 (2002). ArticleCASPubMedPubMed Central Google Scholar
Eugene, E. et al. GABAA receptor γ2 subunit mutations linked to human epileptic syndromes differentially affect phasic and tonic inhibition. J. Neurosci.27, 14108–14116 (2007). ArticleCASPubMedPubMed Central Google Scholar
Gallagher, M. J., Ding, L., Maheshwari, A. & Macdonald, R. L. The GABAA receptor α1 subunit epilepsy mutation A322D inhibits transmembrane helix formation and causes proteasomal degradation. Proc. Natl Acad. Sci. USA104, 12999–13004 (2007). This paper presented a biochemical mechanism for how a mutation in the GABAARα1 subunit might result in a form of human epilepsy. The mutation was demonstrated to lead to subunit misfolding followed by ER-associated degradation, which resulted in reduced GABAAR cell-surface expression. ArticleCASPubMedPubMed Central Google Scholar
Kalivas, P. W. Neurobiology of cocaine addiction: implications for new pharmacotherapy. Am. J. Addict.16, 71–78 (2007). ArticlePubMed Google Scholar
Kumar, S., Fleming, R. L. & Morrow, A. L. Ethanol regulation of γ-aminobutyric acidA receptors: genomic and nongenomic mechanisms. Pharmacol. Ther.101, 211–226 (2004). ArticleCASPubMed Google Scholar
Wafford, K. A. GABAA receptor subtypes: any clues to the mechanism of benzodiazepine dependence? Curr. Opin. Pharmacol.5, 47–52 (2005). ArticleCASPubMed Google Scholar
Liang, J. et al. Chronic intermittent ethanol-induced switch of ethanol actions from extrasynaptic to synaptic hippocampal GABAA receptors. J. Neurosci.26, 1749–1758 (2006). ArticleCASPubMedPubMed Central Google Scholar
Kumar, S., Sieghart, W. & Morrow, A. L. Association of protein kinase C with GABAA receptors containing α1 and α4 subunits in the cerebral cortex: selective effects of chronic ethanol consumption. J. Neurochem.82, 110–117 (2002). ArticleCASPubMed Google Scholar
Kumar, S., Kralic, J. E., O'Buckley, T. K., Grobin, A. C. & Morrow, A. L. Chronic ethanol consumption enhances internalization of α1 subunit-containing GABAA receptors in cerebral cortex. J. Neurochem.86, 700–708 (2003). ArticleCASPubMed Google Scholar
Khanna, J. M., Kalant, H., Chau, A. & Shah, G. Rapid tolerance and crosstolerance to motor impairment effects of benzodiazepines, barbiturates, and ethanol. Pharmacol. Biochem. Behav.59, 511–519 (1998). ArticleCASPubMed Google Scholar
Volk, D. W. et al. Reciprocal alterations in pre- and postsynaptic inhibitory markers at chandelier cell inputs to pyramidal neurons in schizophrenia. Cereb. Cortex12, 1063–1070 (2002). ArticlePubMed Google Scholar
Wassef, A., Baker, J. & Kochan, L. D. GABA and schizophrenia: a review of basic science and clinical studies. J. Clin. Psychopharmacol.23, 601–640 (2003). ArticleCASPubMed Google Scholar
Yee, B. K. et al. A schizophrenia-related sensorimotor deficit links α3-containing GABAA receptors to a dopamine hyperfunction. Proc. Natl Acad. Sci. USA102, 17154–17159 (2005). ArticleCASPubMedPubMed Central Google Scholar
Braff, D. L., Geyer, M. A. & Swerdlow, N. R. Human studies of prepulse inhibition of startle: normal subjects, patient groups, and pharmacological studies. Psychopharmacology (Berl.)156, 234–258 (2001). ArticleCAS Google Scholar
Studer, R. et al. Alteration of GABAergic synapses and gephyrin clusters in the thalamic reticular nucleus of GABAA receptor α3 subunit-null mice. Eur. J. Neurosci.24, 1307–1315 (2006). ArticlePubMed Google Scholar
Fritschy, J. M. & Mohler, H. GABAA receptor heterogeneity in the adult rat brain: differential regional and cellular distribution of seven major subunits. J. Comp. Neurol.359, 154–194 (1995). ArticleCASPubMed Google Scholar
Hauser, J. et al. Hippocampal α5 subunit-containing GABAA receptors modulate the expression of prepulse inhibition. Mol. Psychiatry10, 201–207 (2005). ArticleCASPubMed Google Scholar
Moss, S. J. & Smart, T. G. Constructing inhibitory synapses. Nature Rev. Neurosci.2, 240–250 (2001). ArticleCAS Google Scholar
Belelli, D. & Lambert, J. J Neurosteroids: endogenous regulators of the GABAA receptor. Nature Rev. Neurosci.6, 565–575 (2005). ArticleCAS Google Scholar
Arancibia-Carcamo, I. L. & Moss, S. J. Molecular organization and assembly of the central inhibitory postsynapse. Results Probl. Cell Differ.43, 25–47 (2006). ArticleCASPubMed Google Scholar
Giesemann, T. et al. Complex formation between the postsynaptic scaffolding protein gephyrin, profilin, and mena: a possible link to the microfilament system. J. Neurosci.23, 8330–8339 (2003). ArticleCASPubMedPubMed Central Google Scholar
Mammoto, A. et al. Interactions of drebrin and gephyrin with profilin. Biochem. Biophys. Res. Commun.243, 86–89 (1998). ArticleCASPubMed Google Scholar