The stressed synapse: the impact of stress and glucocorticoids on glutamate transmission (original) (raw)
Selye, H. A syndrome produced by diverse nocuous agents. Nature138, 32 (1936). Article Google Scholar
Lazarus, R. S. & Folkman, S. Stress, Appraisal and Coping (Springer, New York, 1984). Google Scholar
McEwen, B. S. Protective and damaging effects of stress mediators. N. Engl. J. Med.338, 171–179 (1998). ArticleCASPubMed Google Scholar
McEwen, B. S. & Gianaros, P. J. Stress- and allostasis-induced brain plasticity. Annu. Rev. Med.62, 431–445 (2011). A recent overview of plasticity of the brain based on animal model studies and human brain research. The overview is based on the conceptual model of allostasis and allostatic load (see reference 3), in which the brain is the central organ of stress and adaptation and regulates and responds to stress hormones and other stress mediators. ArticleCASPubMedPubMed Central Google Scholar
Liston, C. et al. Stress-induced alterations in prefrontal cortical dendritic morphology predict selective impairments in perceptual attentional set-shifting. J. Neurosci.26, 7870–7874 (2006). A key paper that showed reversible stress-induced plasticity of the PFC along with the resultant stress-induced behavioural deficits in an animal model. This paper led to a study in humans (reference 115) that showed stress-induced disruption of PFC processing and attentional control. ArticleCASPubMedPubMed Central Google Scholar
Vyas, A., Mitra, R., Shankaranarayana Rao, B. S. & Chattarji, S. Chronic stress induces contrasting patterns of dendritic remodeling in hippocampal and amygdaloid neurons. J. Neurosci.22, 6810–6818 (2002). ArticleCASPubMedPubMed Central Google Scholar
Lupien, S. J., McEwen, B. S., Gunnar, M. R. & Heim, C. Effects of stress throughout the lifespan on the brain, behaviour and cognition. Nature Rev. Neurosci.10, 434–445 (2009). ArticleCAS Google Scholar
Diamond, D. M., Campbell, A. M., Park, C. R., Halonen, J. & Zoladz, P. R. The temporal dynamics model of emotional memory processing: a synthesis on the neurobiological basis of stress-induced amnesia, flashbulb and traumatic memories, and the Yerkes-Dodson law. Neural Plast.2007, 60803 (2007). ArticlePubMedPubMed Central Google Scholar
Arnsten, A. F. Stress signalling pathways that impair prefrontal cortex structure and function. Nature Rev. Neurosci.10, 410–422 (2009). ArticleCAS Google Scholar
Lisman, J. E., Fellous, J. M. & Wang, X. J. A role for NMDA-receptor channels in working memory. Nature Neurosci.1, 273–275 (1998). ArticleCASPubMed Google Scholar
Milad, M. R. et al. Recall of fear extinction in humans activates the ventromedial prefrontal cortex and hippocampus in concert. Biol. Psychiatry62, 446–454 (2007). ArticlePubMed Google Scholar
Milad, M. R. & Quirk, G. J. Neurons in medial prefrontal cortex signal memory for fear extinction. Nature420, 70–74 (2002). ArticleCASPubMed Google Scholar
Goto, Y., Yang, C. R. & Otani, S. Functional and dysfunctional synaptic plasticity in prefrontal cortex: roles in psychiatric disorders. Biol. Psychiatry67, 199–207 (2010). ArticlePubMed Google Scholar
Hains, A. B. & Arnsten, A. F. Molecular mechanisms of stress-induced prefrontal cortical impairment: implications for mental illness. Learn. Mem.15, 551–564 (2008). ArticlePubMed Google Scholar
Moghaddam, B. Bringing order to the glutamate chaos in schizophrenia. Neuron40, 881–884 (2003). ArticleCASPubMed Google Scholar
Joels, M. & Baram, T. Z. The neuro-symphony of stress. Nature Rev. Neurosci.10, 459–466 (2009). ArticleCAS Google Scholar
Roozendaal, B., McEwen, B. S. & Chattarji, S. Stress, memory and the amygdala. Nature Rev. Neurosci.10, 423–433 (2009). ArticleCAS Google Scholar
Joiner, M. L. et al. Assembly of a β2-adrenergic receptor-GluR1 signalling complex for localized cAMP signalling. EMBO J.29, 482–495 (2010). ArticleCASPubMed Google Scholar
Erecinska, M. & Silver, I. A. Metabolism and role of glutamate in mammalian brain. Prog. Neurobiol.35, 245–296 (1990). ArticleCASPubMed Google Scholar
Lang, T. & Jahn, R. Core proteins of the secretory machinery. Handb. Exp. Pharmacol.184, 107–127 (2008). ArticleCAS Google Scholar
Rizo, J. & Rosenmund, C. Synaptic vesicle fusion. Nature Struct. Mol. Biol.15, 665–674 (2008). ArticleCAS Google Scholar
Roche, K. W. et al. Molecular determinants of NMDA receptor internalization. Nature Neurosci.4, 794–802 (2001). ArticleCASPubMed Google Scholar
Hayashi, Y. et al. Driving AMPA receptors into synapses by LTP and CaMKII: requirement for GluR1 and PDZ domain interaction. Science287, 2262–2267 (2000). ArticleCASPubMed Google Scholar
Elias, G. M. et al. Synapse-specific and developmentally regulated targeting of AMPA receptors by a family of MAGUK scaffolding proteins. Neuron52, 307–320 (2006). ArticleCASPubMed Google Scholar
Lee, S. H., Liu, L., Wang, Y. T. & Sheng, M. Clathrin adaptor AP2 and NSF interact with overlapping sites of GluR2 and play distinct roles in AMPA receptor trafficking and hippocampal LTD. Neuron36, 661–674 (2002). ArticleCASPubMed Google Scholar
Prybylowski, K. et al. The synaptic localization of NR2B-containing NMDA receptors is controlled by interactions with PDZ proteins and AP-2. Neuron47, 845–857 (2005). ArticleCASPubMedPubMed Central Google Scholar
Bhattacharyya, S., Biou, V., Xu, W., Schluter, O. & Malenka, R. C. A critical role for PSD-95/AKAP interactions in endocytosis of synaptic AMPA receptors. Nature Neurosci.12, 172–181 (2009). ArticleCASPubMed Google Scholar
Setou, M., Nakagawa, T., Seog, D. H. & Hirokawa, N. Kinesin superfamily motor protein KIF17 and mLin-10 in NMDA receptor-containing vesicle transport. Science288, 1796–1802 (2000). ArticleCASPubMed Google Scholar
Setou, M. et al. Glutamate-receptor-interacting protein GRIP1 directly steers kinesin to dendrites. Nature417, 83–87 (2002). ArticleCASPubMed Google Scholar
Pfeffer, S. & Aivazian, D. Targeting Rab GTPases to distinct membrane compartments. Nature Rev. Mol. Cell Biol.5, 886–896 (2004). ArticleCAS Google Scholar
Brown, T. C., Tran, I. C., Backos, D. S. & Esteban, J. A. NMDA receptor-dependent activation of the small GTPase Rab5 drives the removal of synaptic AMPA receptors during hippocampal LTD. Neuron45, 81–94 (2005). ArticleCASPubMed Google Scholar
Park, M., Penick, E. C., Edwards, J. G., Kauer, J. A. & Ehlers, M. D. Recycling endosomes supply AMPA receptors for LTP. Science305, 1972–1975 (2004). ArticleCASPubMed Google Scholar
Liu, Y. et al. A single fear-inducing stimulus induces a transcription-dependent switch in synaptic AMPAR phenotype. Nature Neurosci.13, 223–231 (2010). ArticleCASPubMed Google Scholar
Hawasli, A. H. et al. Cyclin-dependent kinase 5 governs learning and synaptic plasticity via control of NMDAR degradation. Nature Neurosci.10, 880–886 (2007). CASPubMed Google Scholar
O'Shea, R. D. Roles and regulation of glutamate transporters in the central nervous system. Clin. Exp. Pharmacol. Physiol.29, 1018–1023 (2002). ArticleCASPubMed Google Scholar
Lowy, M. T., Gault, L. & Yamamoto, B. K. Adrenalectomy attenuates stress-induced elevations in extracellular glutamate concentrations in the hippocampus. J. Neurochem.61, 1957–1960 (1993). ArticleCASPubMed Google Scholar
Lowy, M. T., Wittenberg, L. & Yamamoto, B. K. Effect of acute stress on hippocampal glutamate levels and spectrin proteolysis in young and aged rats. J. Neurochem.65, 268–274 (1995). ArticleCASPubMed Google Scholar
Venero, C. & Borrell, J. Rapid glucocorticoid effects on excitatory amino acid levels in the hippocampus: a microdialysis study in freely moving rats. Eur. J. Neurosci.11, 2465–2473 (1999). ArticleCASPubMed Google Scholar
Reznikov, L. R. et al. Acute stress-mediated increases in extracellular glutamate levels in the rat amygdala: differential effects of antidepressant treatment. Eur. J. Neurosci.25, 3109–3114 (2007). ArticlePubMed Google Scholar
Bagley, J. & Moghaddam, B. Temporal dynamics of glutamate efflux in the prefrontal cortex and in the hippocampus following repeated stress: effects of pretreatment with saline or diazepam. Neuroscience77, 65–73 (1997). ArticleCASPubMed Google Scholar
Moghaddam, B. Stress preferentially increases extraneuronal levels of excitatory amino acids in the prefrontal cortex: comparison to hippocampus and basal ganglia. J. Neurochem.60, 1650–1657 (1993). ArticleCASPubMed Google Scholar
Westerink, B. H. Brain microdialysis and its application for the study of animal behaviour. Behav. Brain Res.70, 103–124 (1995). ArticleCASPubMed Google Scholar
Timmerman, W. & Westerink, B. H. Brain microdialysis of GABA and glutamate: what does it signify? Synapse27, 242–261 (1997). ArticleCASPubMed Google Scholar
Hascup, E. R. et al. Rapid microelectrode measurements and the origin and regulation of extracellular glutamate in rat prefrontal cortex. J. Neurochem.115, 1608–1620 (2010). ArticleCASPubMedPubMed Central Google Scholar
Karst, H. et al. Mineralocorticoid receptors are indispensable for nongenomic modulation of hippocampal glutamate transmission by corticosterone. Proc. Natl Acad. Sci. USA102, 19204–19207 (2005). This study used patch-clamp recordings to show that applying corticosterone onto hippocampal slices rapidly and reversibly enhances glutamate release and transmission through a non-genomic pathway involving membrane-located mineralocorticoid receptors. ArticleCASPubMedPubMed Central Google Scholar
de Kloet, E. R., Karst, H. & Joels, M. Corticosteroid hormones in the central stress response: quick-and-slow. Front. Neuroendocrinol.29, 268–272 (2008). ArticleCASPubMed Google Scholar
Mallei, A. et al. Synaptoproteomics of learned helpless rats involve energy metabolism and cellular remodeling pathways in depressive-like behavior and antidepressant response. Neuropharmacology60, 1243–1253 (2011). ArticleCASPubMed Google Scholar
Musazzi, L. et al. Acute stress increases depolarization-evoked glutamate release in the rat prefrontal/frontal cortex: the dampening action of antidepressants. PLoS ONE5, e8566 (2010). This study used purified synaptosomes in superfusion and patch-clamp recordings to show that acute stress, through increased corticosterone levels, glucocorticoid receptor activation and accumulation of presynaptic SNARE complexes in synaptic membranes, rapidly enhances depolarization-evoked release of glutamate in the PFC and frontal cortex. The enhancement of glutamate release was prevented by previous treatments with antidepressant agents. ArticleCASPubMedPubMed Central Google Scholar
Wang, C. C. & Wang, S. J. Modulation of presynaptic glucocorticoid receptors on glutamate release from rat hippocampal nerve terminals. Synapse63, 745–751 (2009). ArticleCASPubMed Google Scholar
Hill, M. N. et al. Recruitment of prefrontal cortical endocannabinoid signaling by glucocorticoids contributes to termination of the stress response. J. Neurosci.31, 10506–10515 (2011). ArticleCASPubMedPubMed Central Google Scholar
Rizzoli, S. O. & Betz, W. J. Synaptic vesicle pools. Nature Rev. Neurosci.6, 57–69 (2005). ArticleCAS Google Scholar
Sorensen, J. B. Formation, stabilisation and fusion of the readily releasable pool of secretory vesicles. Pflugers Arch.448, 347–362 (2004). ArticleCASPubMed Google Scholar
Matz, J., Gilyan, A., Kolar, A., McCarvill, T. & Krueger, S. R. Rapid structural alterations of the active zone lead to sustained changes in neurotransmitter release. Proc. Natl Acad. Sci. USA107, 8836–8841 (2010). ArticleCASPubMedPubMed Central Google Scholar
Lonart, G. & Sudhof, T. C. Assembly of SNARE core complexes prior to neurotransmitter release sets the readily releasable pool of synaptic vesicles. J. Biol. Chem.275, 27703–27707 (2000). CASPubMed Google Scholar
Popoli, M. et al. Acute behavioural stress affects the readily releasable pool of vesicles in prefrontal/frontal cortex. Soc. Neurosci. Abstr. 667.7 (San Diego, California, 13–17 Nov 2010).
Martens, S., Kozlov, M. M. & McMahon, H. T. How synaptotagmin promotes membrane fusion. Science316, 1205–1208 (2007). ArticleCASPubMed Google Scholar
Chicka, M. C., Hui, E., Liu, H. & Chapman, E. R. Synaptotagmin arrests the SNARE complex before triggering fast, efficient membrane fusion in response to Ca2+. Nature Struct. Mol. Biol.15, 827–835 (2008). ArticleCAS Google Scholar
Xue, M. et al. Complexins facilitate neurotransmitter release at excitatory and inhibitory synapses in mammalian central nervous system. Proc. Natl Acad. Sci. USA105, 7875–7880 (2008). ArticleCASPubMedPubMed Central Google Scholar
Sanacora, G., Treccani, G. & Popoli, M. Towards a glutamate hypothesis of depression: an emerging frontier of neuropsychopharmacology for mood disorders. Neuropharmacology62, 63–77 (2012). This review summarizes the compelling evidence for a primary involvement of the glutamate system in the pathophysiology of mood and anxiety disorders and in psychotropic drug action. The article proposes a paradigm shift from the traditional monoaminergic hypothesis to a neuroplasticity hypothesis focussed on glutamate, which may represent a substantial advancement for research on new drugs and therapies. ArticleCASPubMed Google Scholar
Moghaddam, B. Stress activation of glutamate neurotransmission in the prefrontal cortex: implications for dopamine-associated psychiatric disorders. Biol. Psychiatry51, 775–787 (2002). ArticleCASPubMed Google Scholar
Yamamoto, B. K. & Reagan, L. P. The glutamatergic system in neuronal plasticity and vulnerability in mood disorders. Neuropsychiatr. Dis. Treat.2, 7–14 (2006). Google Scholar
Yuen, E. Y. et al. Acute stress enhances glutamatergic transmission in prefrontal cortex and facilitates working memory. Proc. Natl Acad. Sci. USA106, 14075–14079 (2009). ArticleCASPubMedPubMed Central Google Scholar
Yuen, E. Y. et al. Mechanisms for acute stress-induced enhancement of glutamatergic transmission and working memory. Mol. Psychiatry16, 156–170 (2011). This paper, together with reference 67, shows that acute stress increases glutamatergic synaptic transmission and membrane trafficking of NMDARs and AMPARs in PFC neurons via glucocorticoid receptor–SGK–RAB4 signalling, thus facilitating cognitive processes mediated by the PFC. ArticleCASPubMed Google Scholar
Liu, W., Yuen, E. Y. & Yan, Z. The stress hormone corticosterone increases synaptic α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors via serum- and glucocorticoid-inducible kinase (SGK) regulation of the GDI–Rab4 complex. J. Biol. Chem.285, 6101–6108 (2010). ArticleCASPubMedPubMed Central Google Scholar
Olijslagers, J. E. et al. Rapid changes in hippocampal CA1 pyramidal cell function via pre- as well as postsynaptic membrane mineralocorticoid receptors. Eur. J. Neurosci.27, 2542–2550 (2008). ArticleCASPubMed Google Scholar
de Kloet, E. R., Joels, M. & Holsboer, F. Stress and the brain: from adaptation to disease. Nature Rev. Neurosci.6, 463–475 (2005). ArticleCAS Google Scholar
Karst, H. & Joels, M. Corticosterone slowly enhances miniature excitatory postsynaptic current amplitude in mice CA1 hippocampal cells. J. Neurophysiol.94, 3479–3486 (2005). ArticleCASPubMed Google Scholar
Saal, D., Dong, Y., Bonci, A. & Malenka, R. C. Drugs of abuse and stress trigger a common synaptic adaptation in dopamine neurons. Neuron37, 577–582 (2003). ArticleCASPubMed Google Scholar
Campioni, M. R., Xu, M. & McGehee, D. S. Stress-induced changes in nucleus accumbens glutamate synaptic plasticity. J. Neurophysiol.101, 3192–3198 (2009). ArticleCASPubMedPubMed Central Google Scholar
Yuen, E. Y., Wei, J. & Yan, Z. Repeated stress suppresses glutamate receptor expression and function in prefrontal cortex and impairs object recognition memory. Soc. Neurosci. Abstr. 389.21 (San Diego, California, 13–17 Nov 2010).
Karst, H. & Joels, M. Effect of chronic stress on synaptic currents in rat hippocampal dentate gyrus neurons. J. Neurophysiol.89, 625–633 (2003). ArticlePubMed Google Scholar
Maroun, M. & Richter-Levin, G. Exposure to acute stress blocks the induction of long-term potentiation of the amygdala-prefrontal cortex pathway in vivo. J. Neurosci.23, 4406–4409 (2003). ArticleCASPubMedPubMed Central Google Scholar
Rocher, C., Spedding, M., Munoz, C. & Jay, T. M. Acute stress-induced changes in hippocampal/prefrontal circuits in rats: effects of antidepressants. Cereb. Cortex14, 224–229 (2004). ArticlePubMed Google Scholar
Mailliet, F. et al. Protection of stress-induced impairment of hippocampal/prefrontal LTP through blockade of glucocorticoid receptors: implication of MEK signaling. Exp. Neurol.211, 593–596 (2008). ArticleCASPubMed Google Scholar
Richter-Levin, G. & Maroun, M. Stress and amygdala suppression of metaplasticity in the medial prefrontal cortex. Cereb. Cortex20, 2433–2441 (2010). ArticlePubMed Google Scholar
Hirata, R. et al. Possible relationship between the stress-induced synaptic response and metaplasticity in the hippocampal CA1 field of freely moving rats. Synapse63, 549–556 (2009). ArticleCASPubMed Google Scholar
Chaouloff, F., Hemar, A. & Manzoni, O. Acute stress facilitates hippocampal CA1 metabotropic glutamate receptor-dependent long-term depression. J. Neurosci.27, 7130–7135 (2007). ArticleCASPubMedPubMed Central Google Scholar
Zhong, P., Liu, W., Gu, Z. & Yan, Z. Serotonin facilitates long-term depression induction in prefrontal cortex via p38 MAPK/Rab5-mediated enhancement of AMPA receptor internalization. J. Physiol.586, 4465–4479 (2008). ArticleCASPubMedPubMed Central Google Scholar
Quan, M. et al. Impairments of behavior, information flow between thalamus and cortex, and prefrontal cortical synaptic plasticity in an animal model of depression. Brain Res. Bull.85, 109–116 (2011). ArticlePubMed Google Scholar
Cerqueira, J. J., Mailliet, F., Almeida, O. F., Jay, T. M. & Sousa, N. The prefrontal cortex as a key target of the maladaptive response to stress. J. Neurosci.27, 2781–2787 (2007). This paper shows that chronic stress impairs synaptic plasticity in the hippocampal–PFC connection, induces selective atrophy in the PFC and disrupts working memory and behavioural flexibility, thus establishing a fundamental role of the PFC in maladaptive responses to chronic stress. ArticleCASPubMedPubMed Central Google Scholar
Goldwater, D. S. et al. Structural and functional alterations to rat medial prefrontal cortex following chronic restraint stress and recovery. Neuroscience164, 798–808 (2009). ArticleCASPubMed Google Scholar
Judo, C. et al. Early stress exposure impairs synaptic potentiation in the rat medial prefrontal cortex underlying contextual fear extinction. Neuroscience169, 1705–1714 (2010). ArticleCASPubMed Google Scholar
Malinow, R. & Malenka, R. C. AMPA receptor trafficking and synaptic plasticity. Annu. Rev. Neurosci.25, 103–126 (2002). ArticleCASPubMed Google Scholar
Wenthold, R. J., Prybylowski, K., Standley, S., Sans, N. & Petralia, R. S. Trafficking of NMDA receptors. Annu. Rev. Pharmacol. Toxicol.43, 335–358 (2003). ArticleCASPubMed Google Scholar
Groc, L., Choquet, D. & Chaouloff, F. The stress hormone corticosterone conditions AMPAR surface trafficking and synaptic potentiation. Nature Neurosci.11, 868–870 (2008). This paper used single quantum-dot imaging to show that corticosterone triggers time-dependent increases in GluR2 surface mobility and synaptic content via distinct corticosteroid receptors, thus revealing the influence of corticosterone on AMPAR trafficking in hippocampal cultures. ArticleCASPubMed Google Scholar
Conboy, L. & Sandi, C. Stress at learning facilitates memory formation by regulating AMPA receptor trafficking through a glucocorticoid action. Neuropsychopharmacology35, 674–685 (2010). ArticleCASPubMed Google Scholar
Gourley, S. L., Kedves, A. T., Olausson, P. & Taylor, J. R. A history of corticosterone exposure regulates fear extinction and cortical NR2B, GluR2/3, and BDNF. Neuropsychopharmacology34, 707–716 (2009). ArticleCASPubMed Google Scholar
Funder, J. W. Glucocorticoid and mineralocorticoid receptors: biology and clinical relevance. Annu. Rev. Med.48, 231–240 (1997). ArticleCASPubMed Google Scholar
Firestone, G. L., Giampaolo, J. R. & O'Keeffe, B. A. Stimulus-dependent regulation of serum and glucocorticoid inducible protein kinase (SGK) transcription, subcellular localization and enzymatic activity. Cell. Physiol. Biochem.13, 1–12 (2003). ArticleCASPubMed Google Scholar
Lang, F. et al. (Patho)physiological significance of the serum- and glucocorticoid-inducible kinase isoforms. Physiol. Rev.86, 1151–1178 (2006). ArticleCASPubMed Google Scholar
Tsai, K. J., Chen, S. K., Ma, Y. L., Hsu, W. L. & Lee, E. H. sgk, a primary glucocorticoid-induced gene, facilitates memory consolidation of spatial learning in rats. Proc. Natl Acad. Sci. USA99, 3990–3995 (2002). ArticleCASPubMedPubMed Central Google Scholar
van der Sluijs, P. et al. The small GTP-binding protein rab4 controls an early sorting event on the endocytic pathway. Cell70, 729–740 (1992). ArticleCASPubMed Google Scholar
Zerial, M. & McBride, H. Rab proteins as membrane organizers. Nature Rev. Mol. Cell Biol.2, 107–117 (2001). ArticleCAS Google Scholar
Sasaki, T. et al. Purification and characterization from bovine brain cytosol of a protein that inhibits the dissociation of GDP from and the subsequent binding of GTP to smg p25A, a ras p21-like GTP-binding protein. J. Biol. Chem.265, 2333–2337 (1990). CASPubMed Google Scholar
Wu, Y. W. et al. Membrane targeting mechanism of Rab GTPases elucidated by semisynthetic protein probes. Nature Chem. Biol.6, 534–540 (2010). ArticleCAS Google Scholar
van Gemert, N. G., Meijer, O. C., Morsink, M. C. & Joels, M. Effect of brief corticosterone administration on SGK1 and RGS4 mRNA expression in rat hippocampus. Stress9, 165–170 (2006). ArticleCASPubMed Google Scholar
Revest, J. M. et al. The MAPK pathway and Egr-1 mediate stress-related behavioral effects of glucocorticoids. Nature Neurosci.8, 664–672 (2005). ArticleCASPubMed Google Scholar
Fumagalli, F. et al. AMPA GluR-A receptor subunit mediates hippocampal responsiveness in mice exposed to stress. Hippocampus21, 1028–1035 (2011). CASPubMed Google Scholar
Chowdhury, S. et al. Arc/Arg3.1 interacts with the endocytic machinery to regulate AMPA receptor trafficking. Neuron52, 445–459 (2006). ArticleCASPubMedPubMed Central Google Scholar
Messaoudi, E. et al. Sustained Arc/Arg3.1 synthesis controls long-term potentiation consolidation through regulation of local actin polymerization in the dentate gyrus in vivo. J. Neurosci.27, 10445–10455 (2007). ArticleCASPubMedPubMed Central Google Scholar
Krugers, H. J., Hoogenraad, C. C. & Groc, L. Stress hormones and AMPA receptor trafficking in synaptic plasticity and memory. Nature Rev. Neurosci.11, 675–681 (2010). ArticleCAS Google Scholar
Van den Oever, M. C. et al. Prefrontal cortex AMPA receptor plasticity is crucial for cue-induced relapse to heroin-seeking. Nature Neurosci.11, 1053–1058 (2008). ArticleCASPubMed Google Scholar
Lupien, S. J. et al. The modulatory effects of corticosteroids on cognition: studies in young human populations. Psychoneuroendocrinology27, 401–416 (2002). ArticleCASPubMed Google Scholar
Henckens, M. J., van Wingen, G. A., Joels, M. & Fernandez, G. Time-dependent corticosteroid modulation of prefrontal working memory processing. Proc. Natl Acad. Sci. USA108, 5801–5806 (2011). ArticleCASPubMedPubMed Central Google Scholar
Smeets, T., Giesbrecht, T., Jelicic, M. & Merckelbach, H. Context-dependent enhancement of declarative memory performance following acute psychosocial stress. Biol. Psychol.76, 116–123 (2007). ArticleCASPubMed Google Scholar
Cerqueira, J. J. et al. Morphological correlates of corticosteroid-induced changes in prefrontal cortex-dependent behaviors. J. Neurosci.25, 7792–7800 (2005). ArticleCASPubMedPubMed Central Google Scholar
Young, A. H., Sahakian, B. J., Robbins, T. W. & Cowen, P. J. The effects of chronic administration of hydrocortisone on cognitive function in normal male volunteers. Psychopharmacology145, 260–266 (1999). ArticleCASPubMed Google Scholar
Liston, C., McEwen, B. S. & Casey, B. J. Psychosocial stress reversibly disrupts prefrontal processing and attentional control. Proc. Natl Acad. Sci. USA106, 912–917 (2009). ArticleCASPubMedPubMed Central Google Scholar
McEwen, B. S. Physiology and neurobiology of stress and adaptation: central role of the brain. Physiol. Rev.87, 873–904 (2007). ArticlePubMed Google Scholar
Tzingounis, A. V. & Wadiche, J. I. Glutamate transporters: confining runaway excitation by shaping synaptic transmission. Nature Rev. Neurosci.8, 935–947 (2007). ArticleCAS Google Scholar
Zheng, K., Scimemi, A. & Rusakov, D. A. Receptor actions of synaptically released glutamate: the role of transporters on the scale from nanometers to microns. Biophys. J.95, 4584–4596 (2008). ArticleCASPubMedPubMed Central Google Scholar
Piet, R., Vargova, L., Sykova, E., Poulain, D. A. & Oliet, S. H. Physiological contribution of the astrocytic environment of neurons to intersynaptic crosstalk. Proc. Natl Acad. Sci. USA101, 2151–2155 (2004). ArticleCASPubMedPubMed Central Google Scholar
Hardingham, G. E. & Bading, H. Synaptic versus extrasynaptic NMDA receptor signalling: implications for neurodegenerative disorders. Nature Rev. Neurosci.11, 682–696 (2010). The Review provides a comprehensive overview of the converging evidence supporting the unique and sometimes opposing roles of synaptic and extrasynaptic NMDARs in mediating effects on neuronal plasticity and resiliency. ArticleCAS Google Scholar
Hardingham, G. E., Fukunaga, Y. & Bading, H. Extrasynaptic NMDARs oppose synaptic NMDARs by triggering CREB shut-off and cell death pathways. Nature Neurosci.5, 405–414 (2002). ArticleCASPubMed Google Scholar
Vanhoutte, P. & Bading, H. Opposing roles of synaptic and extrasynaptic NMDA receptors in neuronal calcium signalling and BDNF gene regulation. Curr. Opin. Neurobiol.13, 366–371 (2003). ArticleCASPubMed Google Scholar
Ivanov, A. et al. Opposing role of synaptic and extrasynaptic NMDA receptors in regulation of the extracellular signal-regulated kinases (ERK) activity in cultured rat hippocampal neurons. J. Physiol.572, 789–798 (2006). ArticleCASPubMedPubMed Central Google Scholar
Leveille, F. et al. Neuronal viability is controlled by a functional relation between synaptic and extrasynaptic NMDA receptors. FASEB J.22, 4258–4271 (2008). ArticleCASPubMed Google Scholar
Xu, J. et al. Extrasynaptic NMDA receptors couple preferentially to excitotoxicity via calpain-mediated cleavage of STEP. J. Neurosci.29, 9330–9343 (2009). ArticleCASPubMedPubMed Central Google Scholar
Beart, P. M. & O'Shea, R. D. Transporters for L-glutamate: an update on their molecular pharmacology and pathological involvement. Br. J. Pharmacol.150, 5–17 (2007). ArticleCASPubMed Google Scholar
Bushong, E. A., Martone, M. E., Jones, Y. Z. & Ellisman, M. H. Protoplasmic astrocytes in CA1 stratum radiatum occupy separate anatomical domains. J. Neurosci.22, 183–192 (2002). ArticleCASPubMedPubMed Central Google Scholar
Ogata, K. & Kosaka, T. Structural and quantitative analysis of astrocytes in the mouse hippocampus. Neuroscience113, 221–233 (2002). ArticleCASPubMed Google Scholar
Ongur, D., Drevets, W. C. & Price, J. L. Glial reduction in the subgenual prefrontal cortex in mood disorders. Proc. Natl Acad. Sci. USA95, 13290–13295 (1998). ArticleCASPubMedPubMed Central Google Scholar
Cotter, D. et al. Reduced neuronal size and glial cell density in area 9 of the dorsolateral prefrontal cortex in subjects with major depressive disorder. Cereb. Cortex12, 386–394 (2002). ArticlePubMed Google Scholar
Rajkowska, G. & Miguel-Hidalgo, J. J. Gliogenesis and glial pathology in depression. CNS Neurol. Disord. Drug Targets6, 219–233 (2007). ArticleCASPubMedPubMed Central Google Scholar
Miguel-Hidalgo, J. J. et al. Glial fibrillary acidic protein immunoreactivity in the prefrontal cortex distinguishes younger from older adults in major depressive disorder. Biol. Psychiatry48, 861–873 (2000). ArticleCASPubMed Google Scholar
Webster, M. J. et al. Immunohistochemical localization of phosphorylated glial fibrillary acidic protein in the prefrontal cortex and hippocampus from patients with schizophrenia, bipolar disorder, and depression. Brain Behav. Immun.15, 388–400 (2001). ArticleCASPubMed Google Scholar
Fatemi, S. H. et al. Glial fibrillary acidic protein is reduced in cerebellum of subjects with major depression, but not schizophrenia. Schizophr. Res.69, 317–323 (2004). ArticlePubMed Google Scholar
Miguel-Hidalgo, J. J. et al. Glial and glutamatergic markers in depression, alcoholism, and their comorbidity. J. Affect. Disord.127, 230–240 (2010). ArticleCASPubMedPubMed Central Google Scholar
Altshuler, L. L. et al. Amygdala astrocyte reduction in subjects with major depressive disorder but not bipolar disorder. Bipolar Disord.12, 541–549 (2010). ArticlePubMed Google Scholar
Sanacora, G. et al. Reduced cortical γ-aminobutyric acid levels in depressed patients determined by proton magnetic resonance spectroscopy. Arch. Gen. Psychiatry56, 1043–1047 (1999). ArticleCASPubMed Google Scholar
Sanacora, G. et al. Subtype-specific alterations of GABA and glutamate in major depression. Arch. Gen. Psychiatry61, 705–713 (2004). ArticleCASPubMed Google Scholar
Banasr, M. et al. Chronic unpredictable stress decreases cell proliferation in the cerebral cortex of the adult rat. Biol. Psychiatry62, 496–504 (2007). ArticleCASPubMed Google Scholar
Banasr, M. & Duman, R. S. glial loss in the prefrontal cortex is sufficient to induce depressive-like behaviors. Biol. Psychiatry64, 863–870 (2008). ArticlePubMedPubMed Central Google Scholar
Leventopoulos, M. et al. Long-term effects of early life deprivation on brain glia in Fischer rats. Brain Res.1142, 119–126 (2007). ArticleCASPubMed Google Scholar
Fuchs, E. Social stress in tree shrews as an animal model of depression: an example of a behavioral model of a CNS disorder. CNS Spectr.10, 182–190 (2005). ArticlePubMed Google Scholar
Liu, Q. et al. Glia atrophy in the hippocampus of chronic unpredictable stress-induced depression model rats is reversed by electroacupuncture treatment. J. Affect. Disord.128, 309–313 (2011). ArticleCASPubMed Google Scholar
Kwon, S. K. et al. Stress and traumatic brain injury: a behavioral, proteomics, and histological study. Front. Neurol.2, 12 (2011). ArticlePubMedPubMed Central Google Scholar
Jang, S., Suh, S. H., Yoo, H. S., Lee, Y. M. & Oh, S. Changes in iNOS, GFAP and NR1 expression in various brain regions and elevation of sphingosine-1-phosphate in serum after immobilized stress. Neurochem. Res.33, 842–851 (2008). ArticleCASPubMed Google Scholar
O'Callaghan, J. P., Brinton, R. E. & McEwen, B. S. Glucocorticoids regulate the synthesis of glial fibrillary acidic protein in intact and adrenalectomized rats but do not affect its expression following brain injury. J. Neurochem.57, 860–869 (1991). ArticleCASPubMed Google Scholar
Nichols, N. R., Osterburg, H. H., Masters, J. N., Millar, S. L. & Finch, C. E. Messenger RNA for glial fibrillary acidic protein is decreased in rat brain following acute and chronic corticosterone treatment. Brain Res. Mol. Brain Res.7, 1–7 (1990). ArticleCASPubMed Google Scholar
Ramos-Remus, C., Gonzalez-Castaneda, R. E., Gonzalez-Perez, O., Luquin, S. & Garcia-Estrada, J. Prednisone induces cognitive dysfunction, neuronal degeneration, and reactive gliosis in rats. J. Investig. Med.50, 458–464 (2002). ArticleCASPubMed Google Scholar
Bridges, N., Slais, K. & Sykova, E. The effects of chronic corticosterone on hippocampal astrocyte numbers: a comparison of male and female Wistar rats. Acta Neurobiol. Exp.68, 131–138 (2008). Google Scholar
Hughes, E. G., Maguire, J. L., McMinn, M. T., Scholz, R. E. & Sutherland, M. L. Loss of glial fibrillary acidic protein results in decreased glutamate transport and inhibition of PKA-induced EAAT2 cell surface trafficking. Brain Res. Mol. Brain Res.124, 114–123 (2004). ArticleCASPubMed Google Scholar
Gilad, G. M., Gilad, V. H., Wyatt, R. J. & Tizabi, Y. Region-selective stress-induced increase of glutamate uptake and release in rat forebrain. Brain Res.525, 335–338 (1990). ArticleCASPubMed Google Scholar
Yang, C. H., Huang, C. C. & Hsu, K. S. Behavioral stress enhances hippocampal CA1 long-term depression through the blockade of the glutamate uptake. J. Neurosci.25, 4288–4293 (2005). ArticleCASPubMedPubMed Central Google Scholar
Fontella, F. U. et al. Repeated restraint stress alters hippocampal glutamate uptake and release in the rat. Neurochem. Res.29, 1703–1709 (2004). ArticleCASPubMed Google Scholar
Olivenza, R. et al. Chronic stress induces the expression of inducible nitric oxide synthase in rat brain cortex. J. Neurochem.74, 785–791 (2000). ArticleCASPubMed Google Scholar
de Vasconcellos-Bittencourt, A. P. et al. Chronic stress and lithium treatments alter hippocampal glutamate uptake and release in the rat and potentiate necrotic cellular death after oxygen and glucose deprivation. Neurochem. Res.36, 793–800 (2011). ArticleCASPubMed Google Scholar
Almeida, R. F. et al. Effects of depressive-like behavior of rats on brain glutamate uptake. Neurochem. Res.35, 1164–1171 (2010). ArticleCASPubMed Google Scholar
Zink, M., Vollmayr, B., Gebicke-Haerter, P. J. & Henn, F. A. Reduced expression of glutamate transporters vGluT1, EAAT2 and EAAT4 in learned helpless rats, an animal model of depression. Neuropharmacology58, 465–473 (2010). ArticleCASPubMed Google Scholar
Autry, A. E. et al. Glucocorticoid regulation of GLT-1 glutamate transporter isoform expression in the rat hippocampus. Neuroendocrinology83, 371–379 (2006). ArticleCASPubMed Google Scholar
Zschocke, J. et al. Differential promotion of glutamate transporter expression and function by glucocorticoids in astrocytes from various brain regions. J. Biol. Chem.280, 34924–34932 (2005). ArticleCASPubMed Google Scholar
Allritz, C., Bette, S., Figiel, M. & Engele, J. Comparative structural and functional analysis of the GLT-1/EAAT-2 promoter from man and rat. J. Neurosci. Res.88, 1234–1241 (2010). CASPubMed Google Scholar
Grippo, A. J., Francis, J., Beltz, T. G., Felder, R. B. & Johnson, A. K. Neuroendocrine and cytokine profile of chronic mild stress-induced anhedonia. Physiol. Behav.84, 697–706 (2005). ArticleCASPubMed Google Scholar
Carmen, J., Rothstein, J. D. & Kerr, D. A. Tumor necrosis factor-α modulates glutamate transport in the CNS and is a critical determinant of outcome from viral encephalomyelitis. Brain Res.1263, 143–154 (2009). ArticleCASPubMedPubMed Central Google Scholar
Tolosa, L., Caraballo-Miralles, V., Olmos, G. & Llado, J. TNF-α potentiates glutamate-induced spinal cord motoneuron death via NF-κB. Mol. Cell. Neurosci.46, 176–186 (2011). ArticleCASPubMed Google Scholar
Nakagawa, T., Otsubo, Y., Yatani, Y., Shirakawa, H. & Kaneko, S. Mechanisms of substrate transport-induced clustering of a glial glutamate transporter GLT-1 in astroglial-neuronal cultures. Eur. J. Neurosci.28, 1719–1730 (2008). ArticlePubMed Google Scholar
Zhou, J. & Sutherland, M. L. Glutamate transporter cluster formation in astrocytic processes regulates glutamate uptake activity. J. Neurosci.24, 6301–6306 (2004). ArticleCASPubMedPubMed Central Google Scholar
Choudary, P. V. et al. Altered cortical glutamatergic and GABAergic signal transmission with glial involvement in depression. Proc. Natl Acad. Sci. USA102, 15653–15658 (2005). ArticleCASPubMedPubMed Central Google Scholar
Bernard, R. et al. Altered expression of glutamate signaling, growth factor, and glia genes in the locus coeruleus of patients with major depression. Mol. Psychiatry16, 634–646 (2011). ArticleCASPubMed Google Scholar
Sequeira, A. et al. Global brain gene expression analysis links glutamatergic and GABAergic alterations to suicide and major depression. PLoS ONE4, e6585 (2009). ArticleCASPubMedPubMed Central Google Scholar
Banasr, M. et al. Glial pathology in an animal model of depression: reversal of stress-induced cellular, metabolic and behavioral deficits by the glutamate-modulating drug riluzole. Mol. Psychiatry15, 501–511 (2010). This study shows that chronic unpredictable stress influences glial cell metabolism and amino acid neurotransmitter cycling, and that riluzole — a drug that modulates glutamate release and uptake — can reverse the effects of stress on glial cell metabolism, glutamate–glutamine cycling and behaviour. ArticleCASPubMed Google Scholar
Rajkowska, G. Postmortem studies in mood disorders indicate altered numbers of neurons and glial cells. Biol. Psychiatry48, 766–777 (2000). ArticleCASPubMed Google Scholar
Rajkowska, G. Cell pathology in mood disorders. Semin. Clin. Neuropsychiatry7, 281–292 (2002). ArticlePubMed Google Scholar
Musazzi, L., Racagni, G. & Popoli, M. Stress, glucocorticoids and glutamate release: effects of antidepressant drugs. Neurochem. Int.59, 138–149 (2011). ArticleCASPubMed Google Scholar
van Tol, M. J. et al. Regional brain volume in depression and anxiety disorders. Arch. Gen. Psychiatry67, 1002–1011 (2010). ArticlePubMed Google Scholar
Cavus, I. et al. Decreased hippocampal volume on MRI is associated with increased extracellular glutamate in epilepsy patients. Epilepsia49, 1358–1366 (2008). ArticlePubMed Google Scholar
Shors, T. J., Weiss, C. & Thompson, R. F. Stress-induced facilitation of classical conditioning. Science257, 537–539 (1992). ArticleCASPubMed Google Scholar
Beylin, A. V. & Shors, T. J. Glucocorticoids are necessary for enhancing the acquisition of associative memories after acute stressful experience. Horm. Behav.43, 124–131 (2003). ArticleCASPubMedPubMed Central Google Scholar
Sanacora, G., Zarate, C. A., Krystal, J. H. & Manji, H. K. Targeting the glutamatergic system to develop novel, improved therapeutics for mood disorders. Nature Rev. Drug Discov.7, 426–437 (2008). ArticleCAS Google Scholar
Fumagalli, E., Funicello, M., Rauen, T., Gobbi, M. & Mennini, T. Riluzole enhances the activity of glutamate transporters GLAST, GLT1 and EAAC1. Eur. J. Pharmacol.578, 171–176 (2008). ArticleCASPubMed Google Scholar
Sung, B., Lim, G. & Mao, J. Altered expression and uptake activity of spinal glutamate transporters after nerve injury contribute to the pathogenesis of neuropathic pain in rats. J. Neurosci.23, 2899–2910 (2003). ArticleCASPubMedPubMed Central Google Scholar
Frizzo, M. E., Dall'Onder, L. P., Dalcin, K. B. & Souza, D. O. Riluzole enhances glutamate uptake in rat astrocyte cultures. Cell. Mol. Neurobiol.24, 123–128 (2004). ArticleCASPubMed Google Scholar
Rothstein, J. D. et al. β-lactam antibiotics offer neuroprotection by increasing glutamate transporter expression. Nature433, 73–77 (2005). ArticleCASPubMed Google Scholar
Mineur, Y. S., Picciotto, M. R. & Sanacora, G. Antidepressant-like effects of ceftriaxone in male C57BL/56J mice. Biol. Psychiatry61, 250–252 (2007). ArticleCASPubMed Google Scholar
Gourley, S. L., Espitia, J. W., Sanacora, G. & Taylor, J. R. Utility and antidepressant-like properties of oral riluzole in mice. Psychopharmacology 21 Jul 2011 (doi:10.1007/s00213-011-2403–2404).
Krystal, J. H. et al. Potential psychiatric applications of metabotropic glutamate receptor agonists and antagonists. CNS Drugs24, 669–693 (2010). ArticleCASPubMed Google Scholar
Machado-Vieira, R., Salvadore, G., Ibrahim, L. A., Diaz-Granados, N. & Zarate, C. A. Jr. Targeting glutamatergic signaling for the development of novel therapeutics for mood disorders. Curr. Pharm. Des.15, 1595–1611 (2009). ArticleCASPubMedPubMed Central Google Scholar
Li, N. et al. mTOR-dependent synapse formation underlies the rapid antidepressant effects of NMDA antagonists. Science329, 959–964 (2010). This study demonstrates AMPAR-mediated effects of NMDAR antagonists on synaptic plasticity and behaviour. The paper provides strong evidence to suggest that the antidepressant and anti-stress effects of NMDAR antagonists such as ketamine are, at least in part, mediated by increased excitation of postsynaptic AMPARs. ArticleCASPubMedPubMed Central Google Scholar
Koike, H., Iijima, M. & Chaki, S. Involvement of AMPA receptor in both the rapid and sustained antidepressant-like effects of ketamine in animal models of depression. Behav. Brain Res.224, 107–111 (2011). ArticleCASPubMed Google Scholar
Li, N. et al. Glutamate _N_-methyl-D-aspartate receptor antagonists rapidly reverse behavioral and synaptic deficits caused by chronic stress exposure. Biol. Psychiatry69, 754–761 (2011). ArticleCASPubMedPubMed Central Google Scholar
Farley, S., Apazoglou, K., Witkin, J. M., Giros, B. & Tzavara, E. T. Antidepressant-like effects of an AMPA receptor potentiator under a chronic mild stress paradigm. Int. J. Neuropsychopharmacol.13, 1207–1218 (2010). ArticleCASPubMed Google Scholar
Haller, J., Mikics, E. & Makara, G. B. The effects of non-genomic glucocorticoid mechanisms on bodily functions and the central neural system. A critical evaluation of findings. Front. Neuroendocrinol.29, 273–291 (2008). ArticleCASPubMed Google Scholar
Yamamoto, K. R. Steroid receptor regulated transcription of specific genes and gene networks. Annu. Rev. Genet.19, 209–252 (1985). ArticleCASPubMed Google Scholar
Pietras, R. J., Nemere, I. & Szego, C. M. Steroid hormone receptors in target cell membranes. Endocrine14, 417–427 (2001). ArticleCASPubMed Google Scholar
Ahima, R., Krozowski, Z. & Harlan, R. Type I corticosteroid receptor-like immunoreactivity in the rat CNS: distribution and regulation by corticosteroids. J. Comp. Neurol.313, 522–538 (1991). ArticleCASPubMed Google Scholar
Ahima, R. S. & Harlan, R. E. Charting of type II glucocorticoid receptor-like immunoreactivity in the rat central nervous system. Neuroscience39, 579–604 (1990). ArticleCASPubMed Google Scholar
Johnson, L. R., Farb, C., Morrison, J. H., McEwen, B. S. & LeDoux, J. E. Localization of glucocorticoid receptors at postsynaptic membranes in the lateral amygdala. Neuroscience136, 289–299 (2005). ArticleCASPubMed Google Scholar
Orchinik, M., Murray, T. F., Franklin, P. H. & Moore, F. L. Guanyl nucleotides modulate binding to steroid receptors in neuronal membranes. Proc. Natl Acad. Sci. USA89, 3830–3834 (1992). A key paper showing G-protein-like glucocorticoid receptors in the brain of a newt,Taricha granulosa, which led to the finding of rapid glucocorticoid signalling for the endocannabinoid systems summarized in reference 201. However, recent work (reference 209) showing Ru486 antagonism in the glucocorticoid regulation of endocannabinoids raises questions about the involvement of classical glucocorticoid receptors. ArticleCASPubMedPubMed Central Google Scholar
Tasker, J. G., Di, S. & Malcher-Lopes, R. Minireview: rapid glucocorticoid signaling via membrane-associated receptors. Endocrinology147, 5549–5556 (2006). ArticleCASPubMed Google Scholar
Psarra, A. M. & Sekeris, C. E. Glucocorticoid receptors and other nuclear transcription factors in mitochondria and possible functions. Biochim. Biophys. Acta1787, 431–436 (2009). An important paper that shows translocation and actions of glucocorticoid receptors into mitochondria. This study illustrates the broadening of views of how glucocorticoids and other steroid hormones affect cellular functions. ArticleCASPubMed Google Scholar
Groeneweg, F. L., Karst, H., de Kloet, E. R. & Joels, M. Rapid non-genomic effects of corticosteroids and their role in the central stress response. J. Endocrinol.209, 153–167 (2011). ArticleCASPubMed Google Scholar
Katona, I. & Freund, T. F. Endocannabinoid signaling as a synaptic circuit breaker in neurological disease. Nature Med.14, 923–930 (2008). ArticleCASPubMed Google Scholar
Chavez, A. E., Chiu, C. Q. & Castillo, P. E. TRPV1 activation by endogenous anandamide triggers postsynaptic long-term depression in dentate gyrus. Nature Neurosci.13, 1511–1518 (2010). ArticleCASPubMed Google Scholar
Hill, M. N. et al. Endogenous cannabinoid signaling is essential for stress adaptation. Proc. Natl Acad. Sci. USA107, 9406–9411 (2010). ArticleCASPubMedPubMed Central Google Scholar
Di, S., Maxson, M. M., Franco, A. & Tasker, J. G. Glucocorticoids regulate glutamate and GABA synapse-specific retrograde transmission via divergent nongenomic signaling pathways. J. Neurosci.29, 393–401 (2009). ArticleCASPubMedPubMed Central Google Scholar
Hill, M. N. et al. Functional interactions between stress and the endocannabinoid system: from synaptic signaling to behavioral output. J. Neurosci.30, 14980–14986 (2010). ArticleCASPubMedPubMed Central Google Scholar
Raiteri, M., Angelini, F. & Levi, G. A simple apparatus for studying the release of neurotransmitters from synaptosomes. Eur. J. Pharmacol.25, 411–414 (1974). ArticleCASPubMed Google Scholar
Raiteri, L. & Raiteri, M. Synaptosomes still viable after 25 years of superfusion. Neurochem. Res.25, 1265–1274 (2000). ArticleCASPubMed Google Scholar
Bonanno, G. et al. Chronic antidepressants reduce depolarization-evoked glutamate release and protein interactions favoring formation of SNARE complex in hippocampus. J. Neurosci.25, 3270–3279 (2005). ArticleCASPubMedPubMed Central Google Scholar
Joels, M. Corticosteroid effects in the brain: U-shape it. Trends Pharmacol. Sci.27, 244–250 (2006). ArticleCASPubMed Google Scholar
Sapolsky, R. M. Stress, the Aging Brain and the Mechanisms of Neuron Death (MIT Press, 1992). Google Scholar
Conrad, C. D., LeDoux, J. E., Magarinos, A. M. & McEwen, B. S. Repeated restraint stress facilitates fear conditioning independently of causing hippocampal CA3 dendritic atrophy. Behav. Neurosci.113, 902–913 (1999). ArticleCASPubMed Google Scholar
Radley, J. J. et al. Reversibility of apical dendritic retraction in the rat medial prefrontal cortex following repeated stress. Exp. Neurol.196, 199–203 (2005). ArticlePubMed Google Scholar
Vyas, A., Pillai, A. G. & Chattarji, S. Recovery after chronic stress fails to reverse amygdaloid neuronal hypertrophy and enhanced anxiety-like behavior. Neuroscience128, 667–673 (2004). ArticleCASPubMed Google Scholar
Bloss, E. B., Janssen, W. G., McEwen, B. S. & Morrison, J. H. Interactive effects of stress and aging on structural plasticity in the prefrontal cortex. J. Neurosci.30, 6726–6731 (2010). ArticleCASPubMedPubMed Central Google Scholar
Mitra, R., Jadhav, S., McEwen, B. S., Vyas, A. & Chattarji, S. Stress duration modulates the spatiotemporal patterns of spine formation in the basolateral amygdala. Proc. Natl Acad. Sci. USA102, 9371–9376 (2005). ArticleCASPubMedPubMed Central Google Scholar
Mitra, R. & Sapolsky, R. M. Acute corticosterone treatment is sufficient to induce anxiety and amygdaloid dendritic hypertrophy. Proc. Natl Acad. Sci. USA105, 5573–5578 (2008). ArticleCASPubMedPubMed Central Google Scholar
Magarinos, A. M. & McEwen, B. S. Stress-induced atrophy of apical dendrites of hippocampal CA3c neurons: involvement of glucocorticoid secretion and excitatory amino acid receptors. Neuroscience69, 89–98 (1995). ArticleCASPubMed Google Scholar
Reagan, L. P. et al. Chronic restraint stress up-regulates GLT-1 mRNA and protein expression in the rat hippocampus: reversal by tianeptine. Proc. Natl Acad. Sci. USA101, 2179–2184 (2004). ArticleCASPubMedPubMed Central Google Scholar
Magarinos, A. M. et al. Effect of brain-derived neurotrophic factor haploinsufficiency on stress-induced remodeling of hippocampal neurons. Hippocampus21, 253–264 (2011). ArticleCASPubMedPubMed Central Google Scholar
Pawlak, R. et al. Tissue plasminogen activator and plasminogen mediate stress-induced decline of neuronal and cognitive functions in the mouse hippocampus. Proc. Natl Acad. Sci. USA102, 18201–18206 (2005). ArticleCASPubMedPubMed Central Google Scholar
Martin, K. P. & Wellman, C. L. NMDA receptor blockade alters stress-induced dendritic remodeling in medial prefrontal cortex. Cereb. Cortex21, 2366–2373 (2011). ArticlePubMedPubMed Central Google Scholar
Kim, K. et al. Role of excitatory amino acid transporter-2 (EAAT2) and glutamate in neurodegeneration: opportunities for developing novel therapeutics. J. Cell. Physiol.226, 2484–2493 (2011). ArticleCASPubMedPubMed Central Google Scholar
Bowden, C. L. et al. A placebo-controlled 18-month trial of lamotrigine and lithium maintenance treatment in recently manic or hypomanic patients with bipolar I disorder. Arch. Gen. Psychiatry60, 392–400 (2003). ArticleCASPubMed Google Scholar
Brennan, B. P. et al. Rapid enhancement of glutamatergic neurotransmission in bipolar depression following treatment with riluzole. Neuropsychopharmacology35, 834–846 (2010). ArticleCASPubMed Google Scholar
Gallagher, P. et al. Antiglucocorticoid treatments for mood disorders. Cochrane Database Syst. Rev. 21 Jan 2009 (doi:10.1002/14651858.CD005168.pub2).
McLaughlin, R. J. & Gobbi, G. Cannabinoids and emotionality: a neuroanatomical perspective. Neuroscience 27 Jul 2011 (doi:10.1016/j.neuroscience.2011.07.052). ArticleCASPubMed Google Scholar