Ordovas-Montanes, J. et al. The regulation of immunological processes by peripheral neurons in homeostasis and disease. Trends Immunol.36, 578–604 (2015). ArticleCASPubMedPubMed Central Google Scholar
Rakoff-Nahoum, S., Paglino, J., Eslami-Varzaneh, F., Edberg, S. & Medzhitov, R. Recognition of commensal microflora by Toll-like receptors is required for intestinal homeostasis. Cell118, 229–241 (2004). ArticleCASPubMed Google Scholar
Arendt, D. et al. The origin and evolution of cell types. Nat. Rev. Genet.17, 744–757 (2016). ArticleCASPubMed Google Scholar
Okabe, Y. & Medzhitov, R. Tissue biology perspective on macrophages. Nat. Immunol.17, 9–17 (2015). This Review discusses the role of macrophages in tissue biology with a focus on cell-type diversification and specialization from an evolutionary and transcriptional perspective. ArticleCAS Google Scholar
Natoli, G. & Ostuni, R. Adaptation and memory in immune responses. Nat. Immunol.20, 783–792 (2019). This Review discusses the important concepts of adaptation and memory, providing definitions and molecular properties for these processes. ArticleCASPubMed Google Scholar
Schneider, D. & Tate, A. T. Innate immune memory: activation of macrophage killing ability by developmental duties. Curr. Biol.26, R503–R505 (2016). This Perspective outlines a framework through which to consider memory responses based on the relationship between stimulus levels and response levels. ArticleCASPubMed Google Scholar
Netea, M. G. et al. Trained immunity: a program of innate immune memory in health and disease. Science352, aaf1098 (2016). This Review outlines the properties of trained immunity, and the similarities to and differences from adaptive immunity. ArticlePubMedPubMed CentralCAS Google Scholar
Farber, D. L., Netea, M. G., Radbruch, A., Rajewsky, K. & Zinkernagel, R. M. Immunological memory: lessons from the past and a look to the future. Nat. Rev. Immunol.16, 124–128 (2016). ArticleCASPubMed Google Scholar
Naik, S., Larsen, S. B., Cowley, C. J. & Fuchs, E. Two to tango: dialog between immunity and stem cells in health and disease. Cell175, 908–920 (2018). ArticleCASPubMedPubMed Central Google Scholar
Ordovas-Montanes, J. et al. Allergic inflammatory memory in human respiratory epithelial progenitor cells. Nature560, 649–654 (2018). This study demonstrates that human epithelial stem cells may contribute to the persistence of disease by serving as repositories for allergic inflammatory memories. ArticleCASPubMedPubMed Central Google Scholar
Naik, S. et al. Inflammatory memory sensitizes skin epithelial stem cells to tissue damage. Nature550, 475–480 (2017). This study identifies a prolonged memory to acute inflammation that allows murine epidermal stem cells to repair wounds more rapidly on subsequent damage. ArticleCASPubMedPubMed Central Google Scholar
Hayday, A., Theodoridis, E., Ramsburg, E. & Shires, J. Intraepithelial lymphocytes: exploring the third way in immunology. Nat. Immunol.2, 997–1003 (2001). ArticleCASPubMed Google Scholar
Mueller, S. N. & Mackay, L. K. Tissue-resident memory T cells: local specialists in immune defence. Nat. Rev. Immunol.16, 79–89 (2016). ArticleCASPubMed Google Scholar
Shalek, A. K. et al. Single-cell transcriptomics reveals bimodality in expression and splicing in immune cells. Nature498, 236–240 (2013). ArticleCASPubMedPubMed Central Google Scholar
Prakadan, S. M., Shalek, A. K. & Weitz, D. A. Scaling by shrinking: empowering single-cell ‘omics’ with microfluidic devices. Nat. Rev. Genet.18, 345–361 (2017). ArticleCASPubMedPubMed Central Google Scholar
Nunez, J. K., Bai, L., Harrington, L. B., Hinder, T. L. & Doudna, J. A. CRISPR immunological memory requires a host factor for specificity. Mol. Cell62, 824–833 (2016). ArticleCASPubMed Google Scholar
Conrath, U., Beckers, G. J., Langenbach, C. J. & Jaskiewicz, M. R. Priming for enhanced defense. Annu. Rev. Phytopathol.53, 97–119 (2015). ArticleCASPubMed Google Scholar
Pradeu, T. & Du Pasquier, L. Immunological memory: what’s in a name? Immunol. Rev.283, 7–20 (2018). ArticleCASPubMed Google Scholar
Ahmed, R. & Gray, D. Immunological memory and protective immunity: understanding their relation. Science272, 54–60 (1996). ArticleCASPubMed Google Scholar
Sun, J. C., Ugolini, S. & Vivier, E. Immunological memory within the innate immune system. EMBO J.33, 1295–1303 (2014). CASPubMedPubMed Central Google Scholar
von Andrian, U. H. & Mackay, C. R. T-cell function and migration. Two sides of the same coin. N. Engl. J. Med.343, 1020–1034 (2000). Article Google Scholar
Steinert, E. M. et al. Quantifying memory CD8 T cells reveals regionalization of immunosurveillance. Cell161, 737–749 (2015). This study finds that tissue dissociation techniques underestimate cellular recovery, and quantifies the ratio of parenchymal to tissue-resident CD8+T cells in selected organs. ArticleCASPubMedPubMed Central Google Scholar
Gebhardt, T. et al. Memory T cells in nonlymphoid tissue that provide enhanced local immunity during infection with herpes simplex virus. Nat. Immunol.10, 524–530 (2009). ArticleCASPubMed Google Scholar
Teijaro, J. R. et al. Cutting edge: tissue-retentive lung memory CD4 T cells mediate optimal protection to respiratory virus infection. J. Immunol.187, 5510–5514 (2011). ArticleCASPubMed Google Scholar
Jiang, X. et al. Skin infection generates non-migratory memory CD8+ T(RM) cells providing global skin immunity. Nature483, 227–231 (2012). ArticleCASPubMedPubMed Central Google Scholar
Zhou, X. et al. Circuit design features of a stable two-cell system. Cell172, 744–757.e17 (2018). This study uses computational predictions and experiments to identify the features of macrophage–fibroblast circuits based on growth factor exchange. ArticleCASPubMedPubMed Central Google Scholar
Saeed, S. et al. Epigenetic programming of monocyte-to-macrophage differentiation and trained innate immunity. Science345, 1251086 (2014). ArticlePubMedPubMed CentralCAS Google Scholar
Sohn, C. et al. Prolonged tumor necrosis factor α primes fibroblast-like synoviocytes in a gene-specific manner by altering chromatin. Arthritis Rheumatol.67, 86–95 (2015). ArticleCASPubMedPubMed Central Google Scholar
Wolff, B., Burns, A. R., Middleton, J. & Rot, A. Endothelial cell “memory” of inflammatory stimulation: human venular endothelial cells store interleukin 8 in Weibel-Palade bodies. J. Exp. Med.188, 1757–1762 (1998). ArticleCASPubMedPubMed Central Google Scholar
Foster, S. L., Hargreaves, D. C. & Medzhitov, R. Gene-specific control of inflammation by TLR-induced chromatin modifications. Nature447, 972–978 (2007). ArticleCASPubMed Google Scholar
Masopust, D. et al. Dynamic T cell migration program provides resident memory within intestinal epithelium. J. Exp. Med.207, 553–564 (2010). ArticleCASPubMedPubMed Central Google Scholar
Clark, R. A. et al. The vast majority of CLA+ T cells are resident in normal skin. J. Immunol.176, 4431–4439 (2006). ArticleCASPubMed Google Scholar
Cheroutre, H. & Madakamutil, L. Acquired and natural memory T cells join forces at the mucosal front line. Nat. Rev. Immunol.4, 290–300 (2004). ArticleCASPubMed Google Scholar
Mackay, L. K. & Kallies, A. Transcriptional regulation of tissue-resident lymphocytes. Trends Immunol.38, 94–103 (2017). ArticleCASPubMed Google Scholar
Milner, J. J. & Goldrath, A. W. Transcriptional programming of tissue-resident memory CD8+ T cells. Curr. Opin. Immunol.51, 162–169 (2018). ArticleCASPubMedPubMed Central Google Scholar
Iwasaki, A., Foxman, E. F. & Molony, R. D. Early local immune defences in the respiratory tract. Nat. Rev. Immunol.17, 7–20 (2017). ArticleCASPubMed Google Scholar
Radbruch, A. et al. Competence and competition: the challenge of becoming a long-lived plasma cell. Nat. Rev. Immunol.6, 741–750 (2006). ArticleCASPubMed Google Scholar
Onodera, T. et al. Memory B cells in the lung participate in protective humoral immune responses to pulmonary influenza virus reinfection. Proc. Natl Acad. Sci. USA109, 2485–2490 (2012). ArticleCASPubMedPubMed Central Google Scholar
Adachi, Y. et al. Distinct germinal center selection at local sites shapes memory B cell response to viral escape. J. Exp. Med.212, 1709–1723 (2015). ArticleCASPubMedPubMed Central Google Scholar
Allie, S. R. et al. The establishment of resident memory B cells in the lung requires local antigen encounter. Nat. Immunol.20, 97–108 (2019). ArticleCASPubMed Google Scholar
Foster, K. R., Schluter, J., Coyte, K. Z. & Rakoff-Nahoum, S. The evolution of the host microbiome as an ecosystem on a leash. Nature548, 43–51 (2017). This Perspective provides an evolutionarily-based framework to understand host–microorganism interactions with an emphasis on studying the axes of microbial competition and host control. ArticleCASPubMedPubMed Central Google Scholar
Mora, J. R. et al. Selective imprinting of gut-homing T cells by Peyer’s patch dendritic cells. Nature424, 88–93 (2003). ArticleCASPubMed Google Scholar
Gerlach, C. et al. The chemokine receptor CX3CR1 defines three antigen-experienced CD8 T cell subsets with distinct roles in immune surveillance and homeostasis. Immunity45, 1270–1284 (2016). ArticleCASPubMedPubMed Central Google Scholar
Mackay, L. K. et al. The developmental pathway for CD103+CD8+ tissue-resident memory T cells of skin. Nat. Immunol.14, 1294–1301 (2013). ArticleCASPubMed Google Scholar
Schenkel, J. M. et al. T cell memory. Resident memory CD8 T cells trigger protective innate and adaptive immune responses. Science346, 98–101 (2014). ArticleCASPubMedPubMed Central Google Scholar
Ariotti, S. et al. T cell memory. Skin-resident memory CD8+ T cells trigger a state of tissue-wide pathogen alert. Science346, 101–105 (2014). Together with Schenkel et al. (2014), this study reports how CD8+tissue-resident memory T cells activate an alarm function in a tissue, providing protection from an unrelated pathogen. ArticleCASPubMed Google Scholar
Gebhardt, T. et al. Different patterns of peripheral migration by memory CD4+ and CD8+ T cells. Nature477, 216–219 (2011). ArticleCASPubMed Google Scholar
Roychoudhury, P. et al. Elimination of HSV-2 infected cells is mediated predominantly by paracrine effects of tissue-resident T cell derived cytokines. Preprint at bioRxivhttps://doi.org/10.1101/610634 (2019). Article Google Scholar
Pizzolla, A. et al. Resident memory CD8+ T cells in the upper respiratory tract prevent pulmonary influenza virus infection. Sci. Immunol.2, eaam6970 (2017). ArticlePubMed Google Scholar
Khan, T. N., Mooster, J. L., Kilgore, A. M., Osborn, J. F. & Nolz, J. C. Local antigen in nonlymphoid tissue promotes resident memory CD8+ T cell formation during viral infection. J. Exp. Med.213, 951–966 (2016). ArticleCASPubMedPubMed Central Google Scholar
Casey, K. A. et al. Antigen-independent differentiation and maintenance of effector-like resident memory T cells in tissues. J. Immunol.188, 4866–4875 (2012). ArticleCASPubMed Google Scholar
Mackay, L. K. et al. Long-lived epithelial immunity by tissue-resident memory T (TRM) cells in the absence of persisting local antigen presentation. Proc. Natl Acad. Sci. USA109, 7037–7042 (2012). ArticleCASPubMedPubMed Central Google Scholar
Mackay, L. K. et al. T-box transcription factors combine with the cytokines TGF-β and IL-15 to control tissue-resident memory T cell fate. Immunity43, 1101–1111 (2015). ArticleCASPubMed Google Scholar
Mortier, E. et al. Macrophage- and dendritic-cell-derived interleukin-15 receptor α supports homeostasis of distinct CD8+ T cell subsets. Immunity31, 811–822 (2009). ArticleCASPubMed Google Scholar
Mani, V. et al. Migratory DCs activate TGF-β to precondition naive CD8+ T cells for tissue-resident memory fate. Science366, eaav5728 (2019). ArticleCASPubMedPubMed Central Google Scholar
Turner, D. L. et al. Lung niches for the generation and maintenance of tissue-resident memory T cells. Mucosal. Immunol.7, 501–510 (2014). ArticleCASPubMed Google Scholar
Turner, D. L. et al. Biased generation and in situ activation of lung tissue-resident memory CD4 T cells in the pathogenesis of allergic asthma. J. Immunol.200, 1561–1569 (2018). CASPubMed Google Scholar
Borges da Silva, H. et al. The purinergic receptor P2RX7 directs metabolic fitness of long-lived memory CD8+ T cells. Nature559, 264–268 (2018). ArticleCASPubMed Google Scholar
Stark, R. et al. TRM maintenance is regulated by tissue damage via P2RX7. Sci Immunol.3, eaau1022 (2018). ArticlePubMed Google Scholar
Kumar, B. V. et al. Human tissue-resident memory T cells are defined by core transcriptional and functional signatures in lymphoid and mucosal sites. Cell Rep.20, 2921–2934 (2017). ArticleCASPubMedPubMed Central Google Scholar
Clark, R. A. et al. Skin effector memory T cells do not recirculate and provide immune protection in alemtuzumab-treated CTCL patients. Sci. Transl Med.4, 117ra117 (2012). ArticleCAS Google Scholar
Collins, N. et al. Skin CD4+ memory T cells exhibit combined cluster-mediated retention and equilibration with the circulation. Nat. Commun.7, 11514 (2016). ArticleCASPubMedPubMed Central Google Scholar
Oja, A. E. et al. Trigger-happy resident memory CD4+ T cells inhabit the human lungs. Mucosal Immunol.11, 654–667 (2018). ArticleCASPubMed Google Scholar
Carbone, F. R. & Gebhardt, T. Should I stay or should I go—reconciling clashing perspectives on CD4+ tissue-resident memory T cells. Sci Immunol.4, eaax5595 (2019). ArticleCASPubMed Google Scholar
Klicznik, M. M. et al. Human CD4+CD103+ cutaneous resident memory T cells are found in the circulation of healthy individuals. Sci Immunol.4, eaav8995 (2019). ArticleCASPubMedPubMed Central Google Scholar
Beura, L. K. et al. CD4+ resident memory T cells dominate immunosurveillance and orchestrate local recall responses. J. Exp. Med.216, 1214–1229 (2019). ArticleCASPubMedPubMed Central Google Scholar
DiSpirito, J. R. et al. Molecular diversification of regulatory T cells in nonlymphoid tissues. Sci Immunol.3, eaat5861 (2018). ArticlePubMedPubMed Central Google Scholar
Rosenblum, M. D. et al. Response to self antigen imprints regulatory memory in tissues. Nature480, 538–542 (2011). This study uses tissue-specific autoantigen expression to identify that regulatory T cells are maintained in tissues and provide enhanced suppression to subsequent autoimmune reactions. ArticleCASPubMedPubMed Central Google Scholar
Kadoki, M. et al. Organism-level analysis of vaccination reveals networks of protection across tissues. Cell171, 398–413.e21 (2017). This study provides a characterization of intra-tissue networks of communication after vaccination and viral infection. ArticleCASPubMedPubMed Central Google Scholar
Beura, L. K. et al. Intravital mucosal imaging of CD8+ resident memory T cells shows tissue-autonomous recall responses that amplify secondary memory. Nat. Immunol.19, 173–182 (2018). ArticleCASPubMedPubMed Central Google Scholar
Linehan, J. L. et al. Non-classical immunity controls microbiota impact on skin immunity and tissue repair. Cell172, 784–796.e18 (2018). ArticleCASPubMedPubMed Central Google Scholar
Mao, K. et al. Innate and adaptive lymphocytes sequentially shape the gut microbiota and lipid metabolism. Nature554, 255–259 (2018). ArticleCASPubMed Google Scholar
Harrison, O. J. et al. Commensal-specific T cell plasticity promotes rapid tissue adaptation to injury. Science363, eaat6280 (2019). ArticleCASPubMed Google Scholar
Martinez-Gonzalez, I. et al. Allergen-experienced group 2 innate lymphoid cells acquire memory-like properties and enhance allergic lung inflammation. Immunity45, 198–208 (2016). ArticleCASPubMed Google Scholar
Spencer, S. P. et al. Adaptation of innate lymphoid cells to a micronutrient deficiency promotes type 2 barrier immunity. Science343, 432–437 (2014). This study illustrates how diet can shift barrier tissues between type 17 and type 2 immunity based on the state of tissue-resident ILCs. ArticleCASPubMedPubMed Central Google Scholar
Gosselin, D. et al. Environment drives selection and function of enhancers controlling tissue-specific macrophage identities. Cell159, 1327–1340 (2014). ArticleCASPubMedPubMed Central Google Scholar
Quintin, J. et al. Candida albicans infection affords protection against reinfection via functional reprogramming of monocytes. Cell Host Microbe12, 223–232 (2012). ArticleCASPubMed Google Scholar
Monticelli, S. & Natoli, G. Short-term memory of danger signals and environmental stimuli in immune cells. Nat. Immunol.14, 777–784 (2013). ArticleCASPubMed Google Scholar
Ostuni, R. & Natoli, G. Lineages, cell types and functional states: a genomic view. Curr. Opin. Cell Biol.25, 759–764 (2013). ArticleCASPubMed Google Scholar
Ostuni, R. et al. Latent enhancers activated by stimulation in differentiated cells. Cell152, 157–171 (2013). This study identifies latent enhancers in macrophages as regions of the genome in terminally differentiated cells that acquire enhancer-like characteristics after initial stimulation. ArticleCASPubMed Google Scholar
Smale, S. T., Tarakhovsky, A. & Natoli, G. Chromatin contributions to the regulation of innate immunity. Annu. Rev. Immunol.32, 489–511 (2014). ArticleCASPubMed Google Scholar
Yao, Y. et al. Induction of autonomous memory alveolar macrophages requires T cell help and is critical to trained immunity. Cell175, 1634–1650.e17 (2018). ArticleCASPubMed Google Scholar
Guilliams, M. & Scott, C. L. Does niche competition determine the origin of tissue-resident macrophages? Nat. Rev. Immunol.17, 451–460 (2017). ArticleCASPubMed Google Scholar
Kaufmann, E. et al. BCG educates hematopoietic stem cells to generate protective innate immunity against tuberculosis. Cell172, 176–190.e19 (2018). ArticleCASPubMed Google Scholar
Mitroulis, I. et al. Modulation of myelopoiesis progenitors is an integral component of trained immunity. Cell172, 147–161.e12 (2018). ArticleCASPubMedPubMed Central Google Scholar
Daniel, B. et al. The nuclear receptor PPARγ controls progressive macrophage polarization as a ligand-insensitive epigenomic ratchet of transcriptional memory. Immunity49, 615–626.e6 (2018). ArticleCASPubMedPubMed Central Google Scholar
Hogan, B. L. et al. Repair and regeneration of the respiratory system: complexity, plasticity, and mechanisms of lung stem cell function. Cell Stem Cell15, 123–138 (2014). ArticleCASPubMedPubMed Central Google Scholar
Mackay, L. K. et al. Hobit and Blimp1 instruct a universal transcriptional program of tissue residency in lymphocytes. Science352, 459–463 (2016). ArticleCASPubMed Google Scholar
Clevers, H., Loh, K. M. & Nusse, R. Stem cell signaling. An integral program for tissue renewal and regeneration: Wnt signaling and stem cell control. Science346, 1248012 (2014). ArticlePubMedCAS Google Scholar
Palm, N. W., Rosenstein, R. K. & Medzhitov, R. Allergic host defences. Nature484, 465–472 (2012). ArticleCASPubMed Google Scholar
Beyaz, S. et al. High-fat diet enhances stemness and tumorigenicity of intestinal progenitors. Nature531, 53–58 (2016). This study illustrates how high-fat diet can alter the intrinsic properties of intestinal epithelial stem and progenitor cells, enhancing stemness and tumorigenic potential. ArticleCASPubMedPubMed Central Google Scholar
Swamy, M., Jamora, C., Havran, W. & Hayday, A. Epithelial decision makers: in search of the ‘epimmunome’. Nat. Immunol.11, 656–665 (2010). ArticleCASPubMedPubMed Central Google Scholar
Fanucchi, S. et al. Immune genes are primed for robust transcription by proximal long noncoding RNAs located in nuclear compartments. Nat. Genet.51, 138–150 (2019). ArticleCASPubMed Google Scholar
Powell, D. W., Pinchuk, I. V., Saada, J. I., Chen, X. & Mifflin, R. C. Mesenchymal cells of the intestinal lamina propria. Annu. Rev. Physiol.73, 213–237 (2011). ArticleCASPubMedPubMed Central Google Scholar
Gieseck, R. L. 3rd, Wilson, M. S. & Wynn, T. A. Type 2 immunity in tissue repair and fibrosis. Nat. Rev. Immunol.18, 62–76 (2017). ArticlePubMedCAS Google Scholar
Klein, K. et al. The epigenetic architecture at gene promoters determines cell type-specific LPS tolerance. J. Autoimmun.83, 122–133 (2017). ArticleCASPubMed Google Scholar
Crowley, T. et al. Priming in response to pro-inflammatory cytokines is a feature of adult synovial but not dermal fibroblasts. Arthritis Res. Ther.19, 35 (2017). ArticlePubMedPubMed CentralCAS Google Scholar
Koch, S. R., Lamb, F. S., Hellman, J., Sherwood, E. R. & Stark, R. J. Potentiation and tolerance of Toll-like receptor priming in human endothelial cells. Transl. Res.180, 53–67.e4 (2017). ArticleCASPubMed Google Scholar
Riol-Blanco, L. et al. Nociceptive sensory neurons drive interleukin-23-mediated psoriasiform skin inflammation. Nature510, 157–161 (2014). ArticleCASPubMedPubMed Central Google Scholar
Godinho-Silva, C., Cardoso, F. & Veiga-Fernandes, H. Neuro-immune cell units: a new paradigm in physiology. Annu. Rev. Immunol.37, 19–46 (2018). ArticlePubMedCAS Google Scholar
Chavan, S. S., Pavlov, V. A. & Tracey, K. J. Mechanisms and therapeutic relevance of neuro-immune communication. Immunity46, 927–942 (2017). ArticleCASPubMedPubMed Central Google Scholar
Cohen, J. A. et al. Cutaneous TRPV1+ neurons trigger protective innate type 17 anticipatory immunity. Cell178, 919–932 (2019). This study uses optogenetic activation of heat-sensing sensory neurons to activate an anticipatory type 17 immune response. ArticleCASPubMedPubMed Central Google Scholar
Pinho-Ribeiro, F. A. et al. Blocking neuronal signaling to immune cells treats streptococcal invasive infection. Cell173, 1083–1097.e22 (2018). ArticleCASPubMedPubMed Central Google Scholar
Klose, C. S. & Artis, D. Neuronal regulation of innate lymphoid cells. Curr. Opin. Immunol.56, 94–99 (2018). ArticlePubMedCAS Google Scholar
Ben-Shaanan, T. L. et al. Activation of the reward system boosts innate and adaptive immunity. Nat. Med.22, 940–944 (2016). ArticleCASPubMed Google Scholar
Byers, D. E. et al. Long-term IL-33-producing epithelial progenitor cells in chronic obstructive lung disease. J. Clin. Invest.123, 3967–3982 (2013). ArticleCASPubMedPubMed Central Google Scholar
Lindemans, C. A. et al. Interleukin-22 promotes intestinal-stem-cell-mediated epithelial regeneration. Nature528, 560–564 (2015). This study shows that IL-22 can act directly on intestinal stem cells, illustrating a role for tissue-resident lymphocytes in providing niche signals to epithelial stem cells. ArticleCASPubMedPubMed Central Google Scholar
Scott, H., Solheim, B. G., Brandtzaeg, P. & Thorsby, E. HLA-DR-like antigens in the epithelium of the human small intestine. Scand. J. Immunol.12, 77–82 (1980). ArticleCASPubMed Google Scholar
von Moltke, J., Ji, M., Liang, H. E. & Locksley, R. M. Tuft-cell-derived IL-25 regulates an intestinal ILC2-epithelial response circuit. Nature529, 221–225 (2016). This study identifies tuft cells as key producers of IL-25, and also describes a proto-typical immune cell–epithelial cell circuit in type 2 immunity. ArticleCAS Google Scholar
Nadjsombati, M. S. et al. Detection of succinate by intestinal tuft cells triggers a type 2 innate immune circuit. Immunity49, 33–41.e7 (2018). ArticleCASPubMedPubMed Central Google Scholar
Adachi, T. et al. Hair follicle-derived IL-7 and IL-15 mediate skin-resident memory T cell homeostasis and lymphoma. Nat. Med.21, 1272–1279 (2015). ArticleCASPubMedPubMed Central Google Scholar
Nagao, K. et al. Stress-induced production of chemokines by hair follicles regulates the trafficking of dendritic cells in skin. Nat. Immunol.13, 744–752 (2012). ArticleCASPubMedPubMed Central Google Scholar
Zaid, A. et al. Persistence of skin-resident memory T cells within an epidermal niche. Proc. Natl. Acad. Sci. USA111, 5307–5312 (2014). ArticleCASPubMedPubMed Central Google Scholar
Mayassi, T. et al. Chronic inflammation permanently reshapes tissue-resident immunity in celiac disease. Cell176, 967–981.e19 (2019). This study shows how, in coeliac disease, inflammation can deplete innate-like intraepithelial lymphocytes, allowing for accumulation of gluten-reactive cells and an inability to reconstitute the developmentally produced subset. ArticleCASPubMedPubMed Central Google Scholar
Park, S. L. et al. Local proliferation maintains a stable pool of tissue-resident memory T cells after antiviral recall responses. Nat. Immunol.19, 183–191 (2018). ArticleCASPubMed Google Scholar
Iijima, N. & Iwasaki, A. T cell memory. A local macrophage chemokine network sustains protective tissue-resident memory CD4 T cells. Science346, 93–98 (2014). This study identifies how macrophages and tissue-resident memory CD4+T cells cooperate to form stable clusters in tissues. ArticleCASPubMedPubMed Central Google Scholar
Laidlaw, B. J. et al. CD4+ T cell help guides formation of CD103+ lung-resident memory CD8+ T cells during influenza viral infection. Immunity41, 633–645 (2014). ArticleCASPubMedPubMed Central Google Scholar
Bachem, A. et al. Microbiota-derived short-chain fatty acids promote the memory potential of antigen-activated CD8+ T cells. Immunity51, 285–297.e5 (2019). ArticleCASPubMed Google Scholar
Li, Y. et al. Exogenous stimuli maintain intraepithelial lymphocytes via aryl hydrocarbon receptor activation. Cell147, 629–640 (2011). ArticleCASPubMed Google Scholar
Ansaldo, E. et al. Akkermansia muciniphila induces intestinal adaptive immune responses during homeostasis. Science364, 1179–1184 (2019). ArticleCASPubMedPubMed Central Google Scholar
Beura, L. K. et al. Normalizing the environment recapitulates adult human immune traits in laboratory mice. Nature532, 512–516 (2016). ArticleCASPubMedPubMed Central Google Scholar
Omenetti, S. et al. The intestine harbors functionally distinct homeostatic tissue-resident and inflammatory Th17 cells. Immunity51, 77–89.e6 (2019). ArticleCASPubMedPubMed Central Google Scholar
Schulthess, J. et al. The short chain fatty acid butyrate imprints an antimicrobial program in macrophages. Immunity50, 432–445.e7 (2019). ArticleCASPubMedPubMed Central Google Scholar
Campbell, C. et al. Extrathymically generated regulatory T cells establish a niche for intestinal border-dwelling bacteria and affect physiologic metabolite balance. Immunity48, 1245–1257.e9 (2018). ArticleCASPubMedPubMed Central Google Scholar
Janeway, C. A. Jr. Approaching the asymptote? Evolution and revolution in immunology. Cold Spring Harb. Symp. Quant. Biol.54, 1–13 (1989). ArticleCASPubMed Google Scholar
Lingwood, D. et al. Structural and genetic basis for development of broadly neutralizing influenza antibodies. Nature489, 566–570 (2012). This study identifies a ‘pattern-recognition’ function for specific immunoglobulin genes. ArticleCASPubMedPubMed Central Google Scholar
Melandri, D. et al. The γδTCR combines innate immunity with adaptive immunity by utilizing spatially distinct regions for agonist selection and antigen responsiveness. Nat. Immunol.19, 1352–1365 (2018). ArticleCASPubMedPubMed Central Google Scholar
Genshaft, A. S. et al. Multiplexed, targeted profiling of single-cell proteomes and transcriptomes in a single reaction. Genome Biol.17, 188 (2016). ArticlePubMedPubMed CentralCAS Google Scholar
Shema, E., Bernstein, B. E. & Buenrostro, J. D. Single-cell and single-molecule epigenomics to uncover genome regulation at unprecedented resolution. Nat. Genet.51, 19–25 (2019). ArticleCASPubMed Google Scholar
Cao, J. et al. Joint profiling of chromatin accessibility and gene expression in thousands of single cells. Science361, 1380–1385 (2018). ArticleCASPubMedPubMed Central Google Scholar
Gerner, M. Y., Kastenmuller, W., Ifrim, I., Kabat, J. & Germain, R. N. Histo-cytometry: a method for highly multiplex quantitative tissue imaging analysis applied to dendritic cell subset microanatomy in lymph nodes. Immunity37, 364–376 (2012). ArticleCASPubMedPubMed Central Google Scholar
Chen, K. H., Boettiger, A. N., Moffitt, J. R., Wang, S. & Zhuang, X. RNA imaging. Spatially resolved, highly multiplexed RNA profiling in single cells. Science348, aaa6090 (2015). ArticlePubMedPubMed CentralCAS Google Scholar
Lin, J. R., Fallahi-Sichani, M. & Sorger, P. K. Highly multiplexed imaging of single cells using a high-throughput cyclic immunofluorescence method. Nat. Commun.6, 8390 (2015). ArticleCASPubMed Google Scholar
Baron, C. S. & van Oudenaarden, A. Unravelling cellular relationships during development and regeneration using genetic lineage tracing. Nat. Rev. Mol. Cell Biol.20, 753–765 (2019). ArticleCASPubMed Google Scholar
Adamson, B. et al. A multiplexed single-cell CRISPR screening platform enables systematic dissection of the unfolded protein response. Cell167, 1867–1882.e21 (2016). ArticleCASPubMedPubMed Central Google Scholar
Dixit, A. et al. Perturb-seq: dissecting molecular circuits with scalable single-cell RNA profiling of pooled genetic screens. Cell167, 1853–1866.e17 (2016). ArticleCASPubMedPubMed Central Google Scholar
Rubin, A. J. et al. Coupled single-cell CRISPR screening and epigenomic profiling reveals causal gene regulatory networks. Cell176, 361–376.e17 (2019). ArticleCASPubMed Google Scholar
Seder, R. A., Darrah, P. A. & Roederer, M. T-cell quality in memory and protection: implications for vaccine design. Nat. Rev. Immunol.8, 247–258 (2008). ArticleCASPubMed Google Scholar
Martin-Gayo, E. et al. A reproducibility-based computational framework identifies an inducible, enhanced antiviral state in dendritic cells from HIV-1 elite controllers. Genome Biol.19, 10 (2018). ArticlePubMedPubMed CentralCAS Google Scholar
Hughes, T. K. et al. Highly efficient, massively-parallel single-cell RNA-seq reveals cellular states and molecular features of human skin pathology. Preprint at bioRxivhttps://doi.org/10.1101/689273 (2019). Article Google Scholar
Schleimer, R. P. Immunopathogenesis of chronic rhinosinusitis and nasal polyposis. Annu. Rev. Pathol.12, 331–357 (2017). ArticleCASPubMed Google Scholar
Neurath, M. F. Targeting immune cell circuits and trafficking in inflammatory bowel disease. Nat. Immunol.20, 970–979 (2019). ArticleCASPubMed Google Scholar
Arijs, I. et al. Mucosal gene signatures to predict response to infliximab in patients with ulcerative colitis. Gut58, 1612–1619 (2009). ArticleCASPubMed Google Scholar
Feagan, B. G. et al. Vedolizumab as induction and maintenance therapy for ulcerative colitis. N. Engl. J. Med.369, 699–710 (2013). ArticleCASPubMed Google Scholar
Henikoff, S. & Greally, J. M. Epigenetics, cellular memory and gene regulation. Curr. Biol.26, R644–R648 (2016). ArticleCASPubMed Google Scholar
Heinz, S. et al. Simple combinations of lineage-determining transcription factors prime _cis_-regulatory elements required for macrophage and B cell identities. Mol. Cell38, 576–589 (2010). ArticleCASPubMedPubMed Central Google Scholar
Beyaz, S. et al. The histone demethylase UTX regulates the lineage-specific epigenetic program of invariant natural killer T cells. Nat. Immunol.18, 184–195 (2017). ArticleCASPubMed Google Scholar
Zaret, K. S. & Carroll, J. S. Pioneer transcription factors: establishing competence for gene expression. Genes. Dev.25, 2227–2241 (2011). ArticleCASPubMedPubMed Central Google Scholar