Tissue repair and regeneration with endogenous stem cells (original) (raw)
Porrello, E. R. et al. Transient regenerative potential of the neonatal mouse heart. Science331, 1078–1080 (2011). ArticleCAS Google Scholar
Tsonis, P. A. & Fox, T. P. Regeneration according to Spallanzani. Dev. Dynam.238, 2357–2363 (2009). Article Google Scholar
Michalopoulos, G. K. Liver regeneration. J. Cell. Physiol.213, 286–300 (2007). ArticleCAS Google Scholar
Thomas, E. D., Lochte, H. L. Jr, Lu, W. C. & Ferrebee, J. W. Intravenous infusion of bone marrow in patients receiving radiation and chemotherapy. N. Engl. J. Med.257, 491–496 (1957). ArticleCAS Google Scholar
Brockes, J. P. & Kumar, A. Comparative aspects of animal regeneration. Annu. Rev. Cell Dev. Biol.24, 525–549 (2008). ArticleCAS Google Scholar
Carlson, M. E. & Conboy, I. M. Regulating the Notch pathway in embryonic, adult and old stem cells. Curr. Opin. Pharmacol.7, 303–309 (2007). ArticleCAS Google Scholar
Tanaka, E. M. & Reddien, P. W. The cellular basis for animal regeneration. Dev. Cell21, 172–185 (2011). ArticleCAS Google Scholar
Godwin, J. W. & Rosenthal, N. Scar-free wound healing and regeneration in amphibians: immunological influences on regenerative success. Differentiation87, 66–75 (2014). ArticleCAS Google Scholar
Daar, A. S. & Greenwood, H. L. A proposed definition of regenerative medicine. J. Tissue Eng. Regen Med.1, 179–184 (2007). ArticleCAS Google Scholar
Lee, A. S., Tang, C., Rao, M. S., Weissman, I. L. & Wu, J. C. Tumorigenicity as a clinical hurdle for pluripotent stem cell therapies. Nat. Med.19, 998–1004 (2013). ArticleCAS Google Scholar
Squillaro, T., Peluso, G. & Galderisi, U. Clinical trials with mesenchymal stem cells: an update. Cell Transplant25, 829–848 (2016). Article Google Scholar
Lister, R. et al. Hotspots of aberrant epigenomic reprogramming in human induced pluripotent stem cells. Nature471, 68–73 (2011). ArticleCAS Google Scholar
Harland, R. M. & Grainger, R. M. Xenopus research: metamorphosed by genetics and genomics. Trends Genet.27, 507–515 (2011). ArticleCAS Google Scholar
Yokoyama, H. et al. Prx-1 expression in Xenopus laevis scarless skin-wound healing and its resemblance to epimorphic regeneration. J. Invest. Dermatol.131, 2477–2485 (2011). ArticleCAS Google Scholar
Henry, J. J. & Tsonis, P. A. Molecular and cellular aspects of amphibian lens regeneration. Prog. Retin. Eye Res.29, 543–555 (2010). ArticleCAS Google Scholar
Bettencourt-Dias, M., Mittnacht, S. & Brockes, J. P. Heterogeneous proliferative potential in regenerative adult newt cardiomyocytes. J. Cell Sci.116, 4001–4009 (2003). ArticleCAS Google Scholar
Love, N. R. et al. Genome-wide analysis of gene expression during Xenopus tropicalis tadpole tail regeneration. Bmc Dev. Biol.11, 70 (2011). ArticleCAS Google Scholar
Hui, S. P. et al. Zebrafish regulatory T cells mediate organ-specific regenerative programs. Dev. Cell43, 659–672 (2017). ArticleCAS Google Scholar
Rigamonti, E., Zordan, P., Sciorati, C., Rovere-Querini, P. & Brunelli, S. Macrophage plasticity in skeletal muscle repair. Biomed. Res. Int.2014, 560629 (2014). Article Google Scholar
Iismaa, S. E. et al. Comparative regenerative mechanisms across different mammalian tissues. NPJ Regen. Med.3, 6 (2018). Article Google Scholar
Petrie, T. A., Strand, N. S., Tsung-Yang, C., Rabinowitz, J. S. & Moon, R. T. Macrophages modulate adult zebrafish tail fin regeneration. Development141, 2581–2591 (2014). ArticleCAS Google Scholar
Banaei-Bouchareb, L. et al. Insulin cell mass is altered in Csf1op/Csf1op macrophage-deficient mice. J. Leukocyte Biol.76, 359–367 (2004). ArticleCAS Google Scholar
Lucas, T. et al. Differential roles of macrophages in diverse phases of skin repair. J. Immunol.184, 3964–3977 (2010). ArticleCAS Google Scholar
Godwin, J., Kuraitis, D. & Rosenthal, N. Extracellular matrix considerations for scar-free repair and regeneration: insights from regenerative diversity among vertebrates. Int. J. Biochem. Cell Biol.56, 47–55 (2014). ArticleCAS Google Scholar
Corona, B. T. et al. Autologous minced muscle grafts: a tissue engineering therapy for the volumetric loss of skeletal muscle. Am. J. Physiol. Cell Physiol.305, C761–775 (2013). ArticleCAS Google Scholar
Kishi, K., Okabe, K., Shimizu, R. & Kubota, Y. Fetal skin possesses the ability to regenerate completely: complete regeneration of skin. Keio J. Med.61, 101–108 (2012). Article Google Scholar
Sattler, S. & Rosenthal, N. The neonate versus adult mammalian immune system in cardiac repair and regeneration. Biochim. Biophys. Acta1863, 1813–1821 (2016). ArticleCAS Google Scholar
Aurora, A. B. et al. Macrophages are required for neonatal heart regeneration. J. Clin. Invest.124, 1382–1392 (2014). ArticleCAS Google Scholar
Wilgus, T. A. Regenerative healing in fetal skin: a review of the literature. Ostomy Wound Manage.53, 16–31; quiz 32–33 (2007). Google Scholar
Colwell, A. S., Longaker, M. T. & Lorenz, H. P. Fetal wound healing. Front. Biosci.8, s1240–1248 (2003). ArticleCAS Google Scholar
Lorenz, H. P., Lin, R. Y., Longaker, M. T., Whitby, D. J. & Adzick, N. S. The fetal fibroblast: the effector cell of scarless fetal skin repair. Plast. Reconstr Surg.96, 1251–1259; discussion 1260–1261 (1995). ArticleCAS Google Scholar
Colwell, A. S., Krummel, T. M., Longaker, M. T. & Lorenz, H. P. An in vivo mouse excisional wound model of scarless healing. Plast. Reconstr Surg.117, 2292–2296 (2006). ArticleCAS Google Scholar
Lorenz, H. P., Whitby, D. J., Longaker, M. T. & Adzick, N. S. Fetal wound healing. The ontogeny of scar formation in the non-human primate. Ann. Surg.217, 391–396 (1993). ArticleCAS Google Scholar
Peake, M. A. et al. Identification of a transcriptional signature for the wound healing continuum. Wound Repair Regen22, 399–405 (2014). Article Google Scholar
Wulff, B. C. et al. Mast cells contribute to scar formation during fetal wound healing. J. Invest. Dermatol.132, 458–465 (2012). ArticleCAS Google Scholar
Wilgus, T. A., Ferreira, A. M., Oberyszyn, T. M., Bergdall, V. K. & Dipietro, L. A. Regulation of scar formation by vascular endothelial growth factor. Lab Invest.88, 579–590 (2008). ArticleCAS Google Scholar
Liechty, K. W., Adzick, N. S. & Crombleholme, T. M. Diminished interleukin 6 (IL-6) production during scarless human fetal wound repair. Cytokine12, 671–676 (2000). ArticleCAS Google Scholar
Liechty, K. W., Crombleholme, T. M., Cass, D. L., Martin, B. & Adzick, N. S. Diminished interleukin-8 (IL-8) production in the fetal wound healing response. J. Surg. Res.77, 80–84 (1998). ArticleCAS Google Scholar
Ozturk, S., Deveci, M., Sengezer, M. & Gunhan, O. Results of artificial inflammation in scarless foetal wound healing: an experimental study in foetal lambs. Br. J. Plast. Surg.54, 47–52 (2001). ArticleCAS Google Scholar
Gawronska-Kozak, B., Grabowska, A., Kopcewicz, M. & Kur, A. Animal models of skin regeneration. Reprod. Biol.14, 61–67 (2014). Article Google Scholar
Sawai, T. et al. Hyaluronic acid of wound fluid in adult and fetal rabbits. J. Pediatr. Surg.32, 41–43 (1997). ArticleCAS Google Scholar
Ferguson, M. W. et al. Prophylactic administration of avotermin for improvement of skin scarring: three double-blind, placebo-controlled, phase I/II studies. Lancet373, 1264–1274 (2009). ArticleCAS Google Scholar
Seok, J. et al. Genomic responses in mouse models poorly mimic human inflammatory diseases. Proc. Natl Acad. Sci. USA110, 3507–3512 (2013). Article Google Scholar
Fu, X. et al. Combination of inflammation-related cytokines promotes long-term muscle stem cell expansion. Cell Res.25, 655–673 (2015). ArticleCAS Google Scholar
Lee, E. H. & Hui, J. H. The potential of stem cells in orthopaedic surgery. J. Bone Joint Surg. Br.88, 841–851 (2006). ArticleCAS Google Scholar
Lu, L., Finegold, M. J. & Johnson, R. L. Hippo pathway coactivators Yap and Taz are required to coordinate mammalian liver regeneration. Exp. Mol. Med.50, e423 (2018). Article Google Scholar
Sackstein, R. et al. Ex vivo glycan engineering of CD44 programs human multipotent mesenchymal stromal cell trafficking to bone. Nat. Med.14, 181–187 (2008). ArticleCAS Google Scholar
De Coppi, P. et al. Isolation of amniotic stem cell lines with potential for therapy. Nat. Biotechnol.25, 100–106 (2007). ArticleCAS Google Scholar
Wang, H. S. et al. Mesenchymal stem cells in the Wharton’s jelly of the human umbilical cord. Stem Cells22, 1330–1337 (2004). Article Google Scholar
Zuk, P. A. et al. Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng.7, 211–228 (2001). ArticleCAS Google Scholar
Horner, P. J. & Gage, F. H. Regenerating the damaged central nervous system. Nature407, 963–970 (2000). ArticleCAS Google Scholar
Tropepe, V. et al. Retinal stem cells in the adult mammalian eye. Science287, 2032–2036 (2000). ArticleCAS Google Scholar
Toma, J. G. et al. Isolation of multipotent adult stem cells from the dermis of mammalian skin. Nat. Cell Biol.3, 778–784 (2001). ArticleCAS Google Scholar
Mohamed, T. M. A. et al. Regulation of cell cycle to stimulate adult cardiomyocyte proliferation and cardiac regeneration. Cell173, 104–116 (2018). ArticleCAS Google Scholar
Srivastava, D. & DeWitt, N. In vivo cellular reprogramming: the next generation. Cell166, 1386–1396 (2016). ArticleCAS Google Scholar
Mahla, R. S. Stem cells applications in regenerative medicine and disease therapeutics. Int. J. Cell Biol.2016, 6940283 (2016). ArticleCAS Google Scholar
Ankrum, J. & Karp, J. M. Mesenchymal stem cell therapy: two steps forward, one step back. Trends Mol. Med.16, 203–209 (2010). Article Google Scholar
Dexter, T. M., Wright, E. G., Krizsa, F. & Lajtha, L. G. Regulation of haemopoietic stem cell proliferation in long term bone marrow cultures. Biomedicine27, 344–349 (1977). CAS Google Scholar
Allen, T. D. & Dexter, T. M. Ultrastructural aspects of erythropoietic differentiation in long-term bone marrow culture. Differentiation21, 86–94 (1982). ArticleCAS Google Scholar
Tavassoli, M. & Friedenstein, A. Hemopoietic stromal microenvironment. Am. J. Hematol.15, 195–203 (1983). ArticleCAS Google Scholar
Owen, M. & Friedenstein, A. J. Stromal stem cells: marrow-derived osteogenic precursors. Ciba Found. Symp.136, 42–60 (1988). CAS Google Scholar
Gnecchi, M. & Melo, L. G. Bone marrow-derived mesenchymal stem cells: isolation, expansion, characterization, viral transduction, and production of conditioned medium. Methods Mol. Biol.482, 281–294 (2009). ArticleCAS Google Scholar
Friedenstein, A. J., Piatetzky, S., I. I. & Petrakova, K. V. Osteogenesis in transplants of bone marrow cells. J. Embryol. Exp. Morphol.16, 381–390 (1966). CAS Google Scholar
Owen, M. The origin of bone cells in the postnatal organism. Arthritis Rheum.23, 1073–1080 (1980). ArticleCAS Google Scholar
Bruder, S. P., Fink, D. J. & Caplan, A. I. Mesenchymal stem cells in bone development, bone repair, and skeletal regeneration therapy. J. Cell. Biochem.56, 283–294 (1994). ArticleCAS Google Scholar
Caplan, A. I. Review: mesenchymal stem cells: cell-based reconstructive therapy in orthopedics. Tissue Eng.11, 1198–1211 (2005). ArticleCAS Google Scholar
Beresford, J. N., Graves, S. E. & Smoothy, C. A. Formation of mineralized nodules by bone derived cells in vitro: a model of bone formation? Am. J. Med. Genet.45, 163–178 (1993). ArticleCAS Google Scholar
Altman, G. H. et al. Silk matrix for tissue engineered anterior cruciate ligaments. Biomaterials23, 4131–4141 (2002). ArticleCAS Google Scholar
Beresford, J. N., Bennett, J. H., Devlin, C., Leboy, P. S. & Owen, M. E. Evidence for an inverse relationship between the differentiation of adipocytic and osteogenic cells in rat marrow stromal cell cultures. J. Cell Sci.102, 341–351 (1992). CAS Google Scholar
Johnstone, B. & Yoo, J. U. Autologous mesenchymal progenitor cells in articular cartilage repair. Clin. Orthop. Relat. Res.367, S156–S162 (1999). Article Google Scholar
Yoo, J. U. & Johnstone, B. The role of osteochondral progenitor cells in fracture repair. Clin. Orthop. Relat. Res.355, S73–S81 (1998). Article Google Scholar
Wakitani, S., Saito, T. & Caplan, A. I. Myogenic cells derived from rat bone marrow mesenchymal stem cells exposed to 5-azacytidine. Muscle Nerve18, 1417–1426 (1995). ArticleCAS Google Scholar
Friedenstein, A. J., Latzinik, N. W., Grosheva, A. G. & Gorskaya, U. F. Marrow microenvironment transfer by heterotopic transplantation of freshly isolated and cultured cells in porous sponges. Exp. Hematol.10, 217–227 (1982). CAS Google Scholar
Ashton, B. A. et al. Formation of bone and cartilage by marrow stromal cells in diffusion chambers in vivo. Clin. Orthop. Relat. Res.151, 294–307 (1980). Google Scholar
Casser-Bette, M., Murray, A. B., Closs, E. I., Erfle, V. & Schmidt, J. Bone formation by osteoblast-like cells in a three-dimensional cell culture. Calcif. Tissue Int.46, 46–56 (1990). ArticleCAS Google Scholar
Wakitani, S. et al. Mesenchymal cell-based repair of large, full-thickness defects of articular cartilage. J. Bone Joint Surg. Am.76, 579–592 (1994). ArticleCAS Google Scholar
De Bari, C. et al. Skeletal muscle repair by adult human mesenchymal stem cells from synovial membrane. J. Cell Biol.160, 909–918 (2003). ArticleCAS Google Scholar
Salingcarnboriboon, R. et al. Establishment of tendon-derived cell lines exhibiting pluripotent mesenchymal stem cell-like property. Exp. Cell Res.287, 289–300 (2003). ArticleCAS Google Scholar
Bosch, P. et al. Osteoprogenitor cells within skeletal muscle. J. Orthop. Res.18, 933–944 (2000). ArticleCAS Google Scholar
Zuk, P. A. et al. Human adipose tissue is a source of multipotent stem cells. Mol. Biol. Cell13, 4279–4295 (2002). ArticleCAS Google Scholar
Erickson, G. R. et al. Chondrogenic potential of adipose tissue-derived stromal cells in vitro and in vivo. Biochem. Biophys. Res. Commun.290, 763–769 (2002). ArticleCAS Google Scholar
Dragoo, J. L. et al. Tissue-engineered cartilage and bone using stem cells from human infrapatellar fat pads. J. Bone Joint Surg. Br.85, 740–747 (2003). ArticleCAS Google Scholar
Kuznetsov, S. A. et al. Circulating skeletal stem cells. J. Cell Biol.153, 1133–1140 (2001). ArticleCAS Google Scholar
Trounson, A. & McDonald, C. Stem cell therapies in clinical trials: progress and challenges. Cell Stem Cell17, 11–22 (2015). ArticleCAS Google Scholar
Borlongan, C. V. Age of PISCES: stem-cell clinical trials in stroke. Lancet388, 736–738 (2016). Article Google Scholar
Halvorsen, Y. D. et al. Extracellular matrix mineralization and osteoblast gene expression by human adipose tissue-derived stromal cells. Tissue Eng.7, 729–741 (2001). ArticleCAS Google Scholar
Strem, B. M. et al. Multipotential differentiation of adipose tissue-derived stem cells. Keio J. Med.54, 132–141 (2005). ArticleCAS Google Scholar
Huang, J. I. et al. Chondrogenic potential of multipotential cells from human adipose tissue. Plast. Reconstr Surg.113, 585–594 (2004). Article Google Scholar
Rodriguez, A. M., Elabd, C., Amri, E. Z., Ailhaud, G. & Dani, C. The human adipose tissue is a source of multipotent stem cells. Biochimie87, 125–128 (2005). ArticleCAS Google Scholar
Seo, M. J., Suh, S. Y., Bae, Y. C. & Jung, J. S. Differentiation of human adipose stromal cells into hepatic lineage in vitro and in vivo. Biochem. Biophys. Res. Commun.328, 258–264 (2005). ArticleCAS Google Scholar
Safford, K. M. et al. Neurogenic differentiation of murine and human adipose-derived stromal cells. Biochem. Biophys. Res. Commun.294, 371–379 (2002). ArticleCAS Google Scholar
Rangappa, S., Fen, C., Lee, E. H., Bongso, A. & Sim, E. K. Transformation of adult mesenchymal stem cells isolated from the fatty tissue into cardiomyocytes. Ann. Thorac Surg.75, 775–779 (2003). Article Google Scholar
Charriere, G. et al. Preadipocyte conversion to macrophage. Evidence of plasticity. J. Biol. Chem.278, 9850–9855 (2003). ArticleCAS Google Scholar
Tholpady, S. S. et al. Adipose tissue: stem cells and beyond. Clin. Plast. Surg.33, 55–62 (2006). Article Google Scholar
Afizah, H., Yang, Z., Hui, J. H., Ouyang, H. W. & Lee, E. H. A comparison between the chondrogenic potential of human bone marrow stem cells (BMSCs) and adipose-derived stem cells (ADSCs) taken from the same donors. Tissue Eng.13, 659–666 (2007). ArticleCAS Google Scholar
Bartholomew, A. et al. Mesenchymal stem cells suppress lymphocyte proliferation in vitro and prolong skin graft survival in vivo. Exp. Hematol.30, 42–48 (2002). Article Google Scholar
Rosenwald, A. et al. The use of molecular profiling to predict survival after chemotherapy for diffuse large-B cell lymphoma. N. Engl. J. Med.346, 1937–1947 (2002). Article Google Scholar
Puissant, B. et al. Immunomodulatory effect of human adipose tissue-derived adult stem cells: comparison with bone marrow mesenchymal stem cells. Br. J. Haematol.129, 118–129 (2005). Article Google Scholar
Lendeckel, S. et al. Autologous stem cells (adipose) and fibrin glue used to treat widespread traumatic calvarial defects: case report. J. Craniomaxillofac. Surg.32, 370–373 (2004). Article Google Scholar
Fu, X. & Sun, X. Can hematopoietic stem cells be an alternative source for skin regeneration? Ageing Res. Rev.8, 244–249 (2009). ArticleCAS Google Scholar
Inokuma, D. et al. CTACK/CCL27 accelerates skin regeneration via accumulation of bone marrow-derived keratinocytes. Stem Cells24, 2810–2816 (2006). ArticleCAS Google Scholar
Kroeze, K. L. et al. Chemokine-mediated migration of skin-derived stem cells: predominant role for CCL5/RANTES. J. Invest. Dermatol.129, 1569–1581 (2009). ArticleCAS Google Scholar
Blanpain, C. Stem cells: skin regeneration and repair. Nature464, 686–687 (2010). ArticleCAS Google Scholar
Wu, Y., Zhao, R. C. & Tredget, E. E. Concise review: bone marrow-derived stem/progenitor cells in cutaneous repair and regeneration. Stem Cells28, 905–915 (2010). CAS Google Scholar
Barbosa-Sabanero, K. et al. Lens and retina regeneration: new perspectives from model organisms. Biochem. J.447, 321–334 (2012). ArticleCAS Google Scholar
Gwon, A. Lens regeneration in mammals: a review. Surv. Ophthalmol.51, 51–62 (2006). Article Google Scholar
Gwon, A. E., Gruber, L. J. & Mundwiler, K. E. A histologic study of lens regeneration in aphakic rabbits. Invest. Ophthalmol. Vis. Sci.31, 540–547 (1990). CAS Google Scholar
Cocteau, M. M. & D’Etoille. L. Reproduction du crystallin. J. Physiol. Exp. Pathol.7, 30–744 (1827). Google Scholar
Henry, J. J. & Hamilton, P. W. Diverse evolutionary origins and mechanisms of lens regeneration. Mol. Biol. Evol. https://doi.org/10.1093/molbev/msy045 (2018).
Beebe, D. C., Feagans, D. E. & Jebens, H. A. Lentropin: a factor in vitreous humor which promotes lens fiber cell differentiation. Proc. Natl Acad. Sci. USA77, 490–493 (1980). ArticleCAS Google Scholar
Lin, H. T. et al. Lens regeneration using endogenous stem cells with gain of visual function. Nature531, 323–328 (2016). ArticleCAS Google Scholar
Kaur, S., Siddiqui, H. & Bhat, M. H. Hepatic progenitor cells in action: liver regeneration or fibrosis? Am. J. Pathol.185, 2342–2350 (2015). ArticleCAS Google Scholar
Chen, J. et al. The diversity and plasticity of adult hepatic progenitor cells and their niche. Liver Int.37, 1260–1271 (2017). Article Google Scholar
Heidenreich, P. A. et al. Forecasting the impact of heart failure in the United States: a policy statement from the American Heart Association. Circ. Heart Fail.6, 606–619 (2013). ArticleCAS Google Scholar
Laflamme, M. A. & Murry, C. E. Heart regeneration. Nature473, 326–335 (2011). ArticleCAS Google Scholar
Senyo, S. E. et al. Mammalian heart renewal by pre-existing cardiomyocytes. Nature493, 433–436 (2013). ArticleCAS Google Scholar
Nakada, Y. et al. Hypoxia induces heart regeneration in adult mice. Nature541, 222–227 (2017). ArticleCAS Google Scholar
Beltrami, A. P. et al. Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell114, 763–776 (2003). ArticleCAS Google Scholar
Fransioli, J. et al. Evolution of the c-kit-positive cell response to pathological challenge in the myocardium. Stem Cells26, 1315–1324 (2008). ArticleCAS Google Scholar
van Berlo, J. H. et al. c-Kit+cells minimally contribute cardiomyocytes to the heart. Nature509, 337–341 (2014). ArticleCAS Google Scholar
Garbern, J. C. & Lee, R. T. Cardiac stem cell therapy and the promise of heart regeneration. Cell Stem Cell12, 689–698 (2013). ArticleCAS Google Scholar
Schofield, R. The relationship between the spleen colony-forming cell and the haemopoietic stem cell. Blood Cells4, 7–25 (1978). CAS Google Scholar
Fuchs, E., Tumbar, T. & Guasch, G. Socializing with the neighbors: stem cells and their niche. Cell116, 769–778 (2004). ArticleCAS Google Scholar
Orford, K. W. & Scadden, D. T. Deconstructing stem cell self-renewal: genetic insights into cell-cycle regulation. Nat. Rev. Genet.9, 115–128 (2008). ArticleCAS Google Scholar
Jones, D. L. & Wagers, A. J. No place like home: anatomy and function of the stem cell niche. Nat. Rev. Mol. Cell Biol.9, 11–21 (2008). ArticleCAS Google Scholar
Lander, A. D. et al. What does the concept of the stem cell niche really mean today? BMC Biol.10, 19 (2012). Article Google Scholar
Wagers, A. J. The stem cell niche in regenerative medicine. Cell Stem Cell10, 362–369 (2012). ArticleCAS Google Scholar
Watt, F. M. & Fujiwara, H. Cell-extracellular matrix interactions in normal and diseased skin. Cold Spring Harb. Perspect. Biol.3, a005124 (2011). ArticleCAS Google Scholar
Nakayama, K. H., Batchelder, C. A., Lee, C. I. & Tarantal, A. F. Decellularized rhesus monkey kidney as a three-dimensional scaffold for renal tissue engineering. Tissue Eng. Part A16, 2207–2216 (2010). ArticleCAS Google Scholar
Soto-Gutierrez, A. et al. Cell delivery: from cell transplantation to organ engineering. Cell Transplant.19, 655–665 (2010). Article Google Scholar
Song, J. J. & Ott, H. C. Organ engineering based on decellularized matrix scaffolds. Trends Mol. Med.17, 424–432 (2011). ArticleCAS Google Scholar
Avigdor, A. et al. CD44 and hyaluronic acid cooperate with SDF-1 in the trafficking of human CD34+stem/progenitor cells to bone marrow. Blood103, 2981–2989 (2004). ArticleCAS Google Scholar
Smith-Berdan, S. et al. Robo4 cooperates with CXCR4 to specify hematopoietic stem cell localization to bone marrow niches. Cell Stem Cell8, 72–83 (2011). ArticleCAS Google Scholar
Morrison, S. J. & Spradling, A. C. Stem cells and niches: mechanisms that promote stem cell maintenance throughout life. Cell132, 598–611 (2008). ArticleCAS Google Scholar
Engler, A. J., Sen, S., Sweeney, H. L. & Discher, D. E. Matrix elasticity directs stem cell lineage specification. Cell126, 677–689 (2006). ArticleCAS Google Scholar
Flaim, C. J., Chien, S. & Bhatia, S. N. An extracellular matrix microarray for probing cellular differentiation. Nat. Methods2, 119–125 (2005). ArticleCAS Google Scholar
Khetan, S. & Burdick, J. A. Patterning network structure to spatially control cellular remodeling and stem cell fate within 3-dimensional hydrogels. Biomaterials31, 8228–8234 (2010). ArticleCAS Google Scholar
Park, D. et al. Endogenous bone marrow MSCs are dynamic, fate-restricted participants in bone maintenance and regeneration. Cell Stem Cell10, 259–272 (2012). ArticleCAS Google Scholar
Formiga, F. R. et al. Controlled delivery of fibroblast growth factor-1 and neuregulin-1 from biodegradable microparticles promotes cardiac repair in a rat myocardial infarction model through activation of endogenous regeneration. J. Control. Release173, 132–139 (2014). ArticleCAS Google Scholar
Herberg, S. et al. Development of an injectable composite as a carrier for growth factor-enhanced periodontal regeneration. J. Clin. Periodontol35, 976–984 (2008). ArticleCAS Google Scholar
Erggelet, C. et al. Formation of cartilage repair tissue in articular cartilage defects pretreated with microfracture and covered with cell-free polymer-based implants. J. Orthopaed. Res.27, 1353–1360 (2009). Article Google Scholar
Thevenot, P. T. et al. The effect of incorporation of SDF-1 alpha into PLGA scaffolds on stem cell recruitment and the inflammatory response. Biomaterials31, 3997–4008 (2010). ArticleCAS Google Scholar
Mendelson, A., Ahn, J. M., Paluch, K., Embree, M. C. & Mao, J. J. Engineered nasal cartilage by cell homing: a model for augmentative and reconstructive rhinoplasty. Plast. Reconstr. Surg.133, 1344–1353 (2014). ArticleCAS Google Scholar
Dupont, K. M. et al. Synthetic scaffold coating with adeno-associated virus encoding BMP2 to promote endogenous bone repair. Cell Tissue Res.347, 575–588 (2012). ArticleCAS Google Scholar
Lee, C. H. et al. Regeneration of the articular surface of the rabbit synovial joint by cell homing: a proof of concept study. Lancet376, 440–448 (2010). ArticleCAS Google Scholar
Schantz, J. T., Chim, H. & Whiteman, M. Cell guidance in tissue engineering: SDF-1 mediates site-directed homing of mesenchymal stem cells within three-dimensional polycaprolactone scaffolds. Tissue Engineer.13, 2615–2624 (2007). ArticleCAS Google Scholar
Lee, C. H. et al. Protein-releasing polymeric scaffolds induce fibrochondrocytic differentiation of endogenous cells for knee meniscus regeneration in sheep. Sci. Transl Med.6, 266ra171 (2014). ArticleCAS Google Scholar
Wang, Y. D., Ameer, G. A., Sheppard, B. J. & Langer, R. A tough biodegradable elastomer. Nat. Biotechnol.20, 602–606 (2002). ArticleCAS Google Scholar
Engelmayr, G. C. et al. Accordion-like honeycombs for tissue engineering of cardiac anisotropy. Nat. Mater.7, 1003–1010 (2008). ArticleCAS Google Scholar
Chen, Q. Z. et al. An elastomeric patch derived from poly(glycerol sebacate) for delivery of embryonic stem cells to the heart. Biomaterials31, 3885–3893 (2010). ArticleCAS Google Scholar
Ravichandran, R., Venugopal, J. R., Sundarrajan, S., Mukherjee, S. & Ramakrishna, S. Cardiogenic differentiation of mesenchymal stem cells on elastomeric poly (glycerol sebacate)/collagen core/shell fibers. World J. Cardiol.5, 28–41 (2013). Article Google Scholar
Zaky, S. H. et al. Poly (glycerol sebacate) elastomer supports bone regeneration by its mechanical properties being closer to osteoid tissue rather than to mature bone. Acta Biomater.54, 95–106 (2017). ArticleCAS Google Scholar
Fischer, K. M. et al. Poly(limonene thioether) scaffold for tissue engineering. Adv. Healthc. Mater.5, 813–821 (2016). ArticleCAS Google Scholar
Zhang, L. et al. Zwitterionic hydrogels implanted in mice resist the foreign-body reaction. Nat. Biotechnol.31, 553–556 (2013). ArticleCAS Google Scholar
Bai, T. et al. Restraint of the differentiation of mesenchymal stem cells by a nonfouling zwitterionic hydrogel. Angew. Chem. Int. Ed.53, 12729–12734 (2014). ArticleCAS Google Scholar
Bai, T. et al. Harnessing isomerization-mediated manipulation of nonspecific cell/matrix interactions to reversibly trigger and suspend stem cell differentiation. Chem. Sci.7, 333–338 (2016). ArticleCAS Google Scholar
Malafaya, P. B., Silva, G. A. & Reis, R. L. Natural-origin polymers as carriers and scaffolds for biomolecules and cell delivery in tissue engineering applications. Adv. Drug Deliv. Rev.59, 207–233 (2007). ArticleCAS Google Scholar
Geesink, R. G. T., Hoefnagels, N. H. & Bulstra, S. K. Osteogenic activity of OP-1 bone morphogenetic protein (BMP-7) in a human fibular defect. J. Bone Joint Surg. Br.81, 710–718 (1999). ArticleCAS Google Scholar
Burkus, J. K., Transfeldt, E. E., Kitchel, S. H., Watkins, R. G. & Balderston, R. A. Clinical and radiographic outcomes of anterior lumbar interbody fusion using recombinant human bone morphogenetic protein-2. Spine27, 2396–2408 (2002). Article Google Scholar
Nakahara, T. et al. Novel approach to regeneration of periodontal tissues based on in situ tissue engineering: effects of controlled release of basic fibroblast growth factor from a sandwich membrane. Tissue Eng.9, 153–162 (2003). ArticleCAS Google Scholar
van de Kamp, J. et al. Mesenchymal stem cells can be recruited to wounded tissue via hepatocyte growth factor-loaded biomaterials. J. Tissue Eng. Regen. Med.11, 2988–2998 (2017). ArticleCAS Google Scholar
Wang, Y. Z., Kim, H. J., Vunjak-Novakovic, G. & Kaplan, D. L. Stem cell-based tissue engineering with silk biomaterials. Biomaterials27, 6064–6082 (2006). ArticleCAS Google Scholar
Ebrahimi, D. et al. Silk-its mysteries, how it is made, and how it is used. ACS Biomater. Sci. Eng.1, 864–876 (2015). ArticleCAS Google Scholar
Li, G. et al. Silk-based biomaterials in biomedical textiles and fiber-based implants. Adv. Healthc. Mater.4, 1134–1151 (2015). ArticleCAS Google Scholar
Dinjaski, N. & Kaplan, D. L. Recombinant protein blends: silk beyond natural design. Curr. Opin. Biotechnol.39, 1–7 (2016). ArticleCAS Google Scholar
Zhang, W. J. et al. VEGF and BMP-2 promote bone regeneration by facilitating bone marrow stem cell homing and differentiation. Eur. Cells Mater.27, 1–12 (2014). Article Google Scholar
Chen, X. et al. Ligament regeneration using a knitted silk scaffold combined with collagen matrix. Biomaterials29, 3683–3692 (2008). ArticleCAS Google Scholar
Spector, M. Decellularized tissues and organs: an historical perspective and prospects for the future. Biomed. Mater.11, 020201(2016). ArticleCAS Google Scholar
Fu, R. H. et al. Decellularization and recellularization technologies in tissue engineering. Cell Transplant.23, 621–630 (2014). Article Google Scholar
Badylak, S. F., Freytes, D. O. & Gilbert, T. W. Extracellular matrix as a biological scaffold material: structure and function. Acta Biomater.5, 1–13 (2009). ArticleCAS Google Scholar
Crapo, P. M., Gilbert, T. W. & Badylak, S. F. An overview of tissue and whole organ decellularization processes. Biomaterials32, 3233–3243 (2011). ArticleCAS Google Scholar
Papadimitropoulos, A., Scotti, C., Bourgine, P., Scherberich, A. & Martin, I. Engineered decellularized matrices to instruct bone regeneration processes. Bone70, 66–72 (2015). ArticleCAS Google Scholar
Martino, M. M., Briquez, P. S., Maruyama, K. & Hubbell, J. A. Extracellular matrix-inspired growth factor delivery systems for bone regeneration. Adv. Drug Deliv. Rev.94, 41–52 (2015). ArticleCAS Google Scholar
Samorezov, J. E. & Alsberg, E. Spatial regulation of controlled bioactive factor delivery for bone tissue engineering. Adv. Drug Deliv. Rev.84, 45–67 (2015). ArticleCAS Google Scholar
Wang, Z. S. et al. The use of platelet-rich fibrin combined with periodontal ligament and jaw bone mesenchymal stem cell sheets for periodontal tissue engineering. Sci. Rep.6, 28126 (2016). ArticleCAS Google Scholar
Ji, B. H. et al. The combination use of platelet-rich fibrin and treated dentin matrix for tooth root regeneration by cell homing. Tissue Eng. Part A21, 26–34 (2015). ArticleCAS Google Scholar
Kim, J. Y. et al. Regeneration of dental-pulp-like tissue by chemotaxis-induced cell homing. Tissue Eng. Part A16, 3023–3031 (2010). ArticleCAS Google Scholar
Jordan, J. E. et al. Bioengineered self-seeding heart valves. J. Thorac. Cardiovasc. Surg.143, 201–208 (2012). Article Google Scholar
Place, E. S., Evans, N. D. & Stevens, M. M. Complexity in biomaterials for tissue engineering. Nat. Mater.8, 457–470 (2009). ArticleCAS Google Scholar
Vasita, R., Shanmugam, K. & Katti, D. S. Improved biomaterials for tissue engineering applications: surface modification of polymers. Curr. Top. Med. Chem.8, 341–353 (2008). ArticleCAS Google Scholar
Sionkowska, A. Current research on the blends of natural and synthetic polymers as new biomaterials: review. Prog. Polym. Sci.36, 1254–1276 (2011). ArticleCAS Google Scholar
Doulabi, A. H., Mequanint, K. & Mohammadi, H. Blends and nanocomposite biomaterials for articular cartilage tissue engineering. Materials7, 5327–5355 (2014). ArticleCAS Google Scholar
Zeng, S. et al. Characterization of highly interconnected porous poly(lactic acid) and chitosan-coated poly(lactic acid) scaffold fabricated by vacuum-assisted resin transfer molding and particle leaching. J. Mater. Sci.51, 9958–9970 (2016). ArticleCAS Google Scholar
Salehi, M., Farzamfar, S., Bastami, F. & Tajerian, R. Fabrication and characterization of electrospun PLLA/collagen nanofibrous scaffold coated with chitosan to sustain release of aloe vera gel for skin tissue engineering. Biomed. Eng. Appl. Basis Commun.28, 1650035 (2016). ArticleCAS Google Scholar
Schreinemacher, M. H. F. et al. Degradation of mesh coatings and intraperitoneal adhesion formation in an experimental model. Br. J. Surg.96, 305–313 (2009). ArticleCAS Google Scholar
Chen, M. W., Le, D. Q. S., Kjems, J., Bunger, C. & Lysdahl, H. Improvement of distribution and osteogenic differentiation of human mesenchymal stem cells by hyaluronic acid and beta-tricalcium phosphate-coated polymeric scaffold in vitro. Biores. Open Access4, 363–373 (2015). ArticleCAS Google Scholar
Deepthi, S., Jeevitha, K., Sundaram, M. N., Chennazhi, K. P. & Jayakumar, R. Chitosan-hyaluronic acid hydrogel coated poly(caprolactone) multiscale bilayer scaffold for ligament regeneration. Chem. Engineer. J.260, 478–485 (2015). ArticleCAS Google Scholar
Liao, H. T., Lee, M. Y., Tsai, W. W., Wang, H. C. & Lu, W. C. Osteogenesis of adipose-derived stem cells on polycaprolactone-beta-tricalcium phosphate scaffold fabricated via selective laser sintering and surface coating with collagen type I. J. Tissue Eng. Regen. Med.10, E337–E353 (2016). ArticleCAS Google Scholar
Gottipati, A. & Elder, S. H. Mesenchymal stem cell mediated chondrogenesis on chitosan-calcium phosphate scaffolds: effect of collagen coating. J. Chitin Chitosan Sci.4, 33–40 (2016). Article Google Scholar
Takaoka, R., Hikasa, Y. & Tabata, Y. Vascularization around poly(tetrafluoroethylene) mesh with coating of gelatin hydrogel incorporating basic fibroblast growth factor. J. Biomater. Sci. Polym. Ed.20, 1483–1494 (2009). ArticleCAS Google Scholar
Peh, P. et al. Simultaneous delivery of highly diverse bioactive compounds from blend electrospun fibers for skin wound healing. Bioconjug. Chem.26, 1348–1358 (2015). ArticleCAS Google Scholar
Sampaio, S., Miranda, T. M. R., Santos, J. G. & Soares, G. M. B. Preparation of silk fibroin-poly (ethylene glycol) conjugate films through click chemistry. Polymer Int.60, 1737–1744 (2011). ArticleCAS Google Scholar
Ibusuki, S., Fujii, Y., Iwamoto, Y. & Matsuda, T. Tissue-engineered cartilage using an injectable and in situ gelable thermoresponsive gelatin: fabrication and in vitro performance. Tissue Eng.9, 371–384 (2003). ArticleCAS Google Scholar
Cho, J. H. et al. Chondrogenic differentiation of human mesenchymal stem cells using a thermosensitive poly(N-isopropylacrylamide) and water-soluble chitosan copolymer. Biomaterials25, 5743–5751 (2004). ArticleCAS Google Scholar
Burdick, J. A., Mauck, R. L. & Gerecht, S. To serve and protect: hydrogels to improve stem cell-based therapies. Cell Stem Cell18, 13–15 (2016). ArticleCAS Google Scholar
Espinosa-Jeffrey, A. et al. Strategies for endogenous spinal cord repair: HPMA hydrogel to recruit migrating endogenous stem cells. Regen. Biol. Spine Spinal Cord760, 25–52 (2012). Article Google Scholar
Wang, Y., Cooke, M. J., Morshead, C. M. & Shoichet, M. S. Hydrogel delivery of erythropoietin to the brain for endogenous stem cell stimulation after stroke injury. Biomaterials33, 2681–2692 (2012). ArticleCAS Google Scholar
Hennink, W. E. & van Nostrum, C. F. Novel crosslinking methods to design hydrogels. Adv. Drug Deliv. Rev.54, 13–36 (2002). ArticleCAS Google Scholar
Tong, X. M. & Yang, F. Sliding hydrogels with mobile molecular ligands and crosslinks as 3D stem cell niche. Adv. Mater.28, 7257–7263 (2016). ArticleCAS Google Scholar
Lin, Y. D. et al. Instructive nanofiber scaffolds with VEGF create a microenvironment for arteriogenesis and cardiac repair. Sci. Transl Med.4, 146ra109 (2012). Google Scholar
Zhang, Z. P., Hu, J. & Ma, P. X. Nanofiber-based delivery of bioactive agents and stem cells to bone sites. Adv. Drug Deliv. Rev.64, 1129–1141 (2012). ArticleCAS Google Scholar
Xie, J. W. et al. Radially aligned, electrospun nanofibers as dural substitutes for wound closure and tissue regeneration applications. ACS Nano4, 5027–5036 (2010). ArticleCAS Google Scholar
Han, L. H., Yu, S., Wang, T. Y., Behn, A. W. & Yang, F. Microribbon-like elastomers for fabricating macroporous and highly flexible scaffolds that support cell proliferation in 3D. Adv. Funct. Mater.23, 346–358 (2013). ArticleCAS Google Scholar
Raic, A., Rodling, L., Kalbacher, H. & Lee-Thedieck, C. Biomimetic macroporous PEG hydrogels as 3D scaffolds for the multiplication of human hematopoietic stem and progenitor cells. Biomaterials35, 929–940 (2014). ArticleCAS Google Scholar
Murphy, S. V. & Atala, A. 3D bioprinting of tissues and organs. Nat. Biotechnol.32, 773–785 (2014). ArticleCAS Google Scholar
Pati, F., Gantelius, J. & Svahn, H. A. 3D bioprinting of tissue/organ models. Angew. Chem. Int. Ed.55, 4650–4665 (2016). ArticleCAS Google Scholar
Lee, C. H. et al. Three-dimensional printed multiphase scaffolds for regeneration of periodontium complex. Tissue Eng. Part A20, 1342–1351 (2014). ArticleCAS Google Scholar
Abraham, A. C., Edwards, C. R., Odegard, G. M. & Donahue, T. L. H. Regional and fiber orientation dependent shear properties and anisotropy of bovine meniscus. J. Mechan. Behav. Biomed. Mater.4, 2024–2030 (2011). Article Google Scholar
Pati, F. et al. Printing three-dimensional tissue analogues with decellularized extracellular matrix bioink. Nat. Commun.5, 3935 (2014). ArticleCAS Google Scholar
Miller, J. S. et al. Rapid casting of patterned vascular networks for perfusable engineered three-dimensional tissues. Nat. Mater.11, 768–774 (2012). ArticleCAS Google Scholar
Kretlow, J. D., Klouda, L. & Mikos, A. G. Injectable matrices and scaffolds for drug delivery in tissue engineering. Adv. Drug Deliv. Rev.59, 263–273 (2007). ArticleCAS Google Scholar
Seliktar, D. Designing cell-compatible hydrogels for biomedical applications. Science336, 1124–1128 (2012). ArticleCAS Google Scholar
Kim, J. H., Jung, Y., Kim, B. S. & Kim, S. H. Stem cell recruitment and angiogenesis of neuropeptide substance P coupled with self-assembling peptide nanofiber in a mouse hind limb ischemia model. Biomaterials34, 1657–1668 (2013). ArticleCAS Google Scholar
Zhang, Z. P. Injectable biomaterials for stem cell delivery and tissue regeneration. Expert Opin. Biol. Ther.17, 49–62 (2017). ArticleCAS Google Scholar
Douglas, A. M. et al. Dynamic assembly of ultrasoft colloidal networks enables cell invasion within restrictive fibrillar polymers. Proc. Natl Acad. Sci. USA114, 885–890 (2017). ArticleCAS Google Scholar
Bencherif, S. A. et al. Injectable preformed scaffolds with shape-memory properties. Proc. Natl Acad. Sci. USA109, 19590–19595 (2012). Article Google Scholar
Andreas, K., Sittinger, M. & Ringe, J. Toward in situ tissue engineering: chemokine-guided stem cell recruitment. Trends Biotechnol.32, 483–492 (2014). ArticleCAS Google Scholar
Shafiq, M., Jung, Y. & Kim, S. H. In situ vascular regeneration using substance P-immobilised poly (l-lactide-co-epsilon-caprolactone) scaffolds: stem cell recruitment, angiogenesis, and tissue regeneration. Eur. Cell. Mater.30, 282–302 (2015). ArticleCAS Google Scholar
Yamamoto, M., Takahashi, Y. & Tabata, Y. Enhanced bone regeneration at a segmental bone defect by controlled release of bone morphogenetic protein-2 from a biodegradable hydrogel. Tissue Engineer.12, 1305–1311 (2006). ArticleCAS Google Scholar
Osathanon, T. et al. Microporous nanofibrous fibrin-based scaffolds for bone tissue engineering. Biomaterials29, 4091–4099 (2008). ArticleCAS Google Scholar
Salimath, A. S. et al. Dual delivery of hepatocyte and vascular endothelial growth factors via a protease-degradable hydrogel improves cardiac function in rats. PLOS ONE7, e50980 (2012). ArticleCAS Google Scholar
Zhao, J., Zhang, N., Prestwich, G. D. & Wen, X. J. Recruitment of endogenous stem cells for tissue repair. Macromol. Biosci.8, 836–842 (2008). ArticleCAS Google Scholar
Zhang, G. et al. Controlled release of stromal cell-derived factor-1alpha in situ increases C-kit+ cell homing to the infarcted heart. Tissue Eng.13, 2063–2071 (2007). ArticleCAS Google Scholar
Kim, K., Lee, C. H., Kim, B. K. & Mao, J. J. Anatomically shaped tooth and periodontal regeneration by cell homing. J. Dent. Res.89, 842–847 (2010). ArticleCAS Google Scholar
Gao, W. W., Zhang, Y., Zhang, Q. Z. & Zhang, L. F. Nanoparticle-hydrogel: a hybrid biomaterial system for localized drug delivery. Ann. Biomed. Eng.44, 2049–2061 (2016). Article Google Scholar
Koehler, K. R., Mikosz, A. M., Molosh, A. I., Patel, D. & Hashino, E. Generation of inner ear sensory epithelia from pluripotent stem cells in 3D culture. Nature500, 217–221 (2013). ArticleCAS Google Scholar
Benoit, D. S. W., Schwartz, M. P., Durney, A. R. & Anseth, K. S. Small functional groups for controlled differentiation of hydrogel-encapsulated human mesenchymal stem cells. Nat. Mater.7, 816–823 (2008). ArticleCAS Google Scholar
Lin, C. C. & Anseth, K. S. Cell-cell communication mimicry with poly(ethylene glycol) hydrogels for enhancing beta-cell function. Proc. Natl Acad. Sci. USA108, 6380–6385 (2011). Article Google Scholar
Zheng, W. T. et al. Endothelialization and patency of RGD-functionalized vascular grafts in a rabbit carotid artery model. Biomaterials33, 2880–2891 (2012). ArticleCAS Google Scholar
Calvert, J. W. et al. Characterization of osteoblast-like behavior of cultured bone marrow stromal cells on various polymer surfaces. J. Biomed. Mater. Res.52, 279–284 (2000). ArticleCAS Google Scholar
Calvert, J. W., Chua, W. C., Gharibjanian, N. A., Dhar, S. & Evans, G. R. D. Osteoblastic phenotype expression of MC3T3-E1 cells cultured on polymer surfaces. Plast. Reconstr. Surg.116, 567–576 (2005). ArticleCAS Google Scholar
Chastain, S. R., Kundu, A. K., Dhar, S., Calvert, J. W. & Putnam, A. J. Adhesion of mesenchymal stem cells to polymer scaffolds occurs via distinct ECM ligands and controls their osteogenic differentiation. J. Biomed. Mater. Res. A78, 73–85 (2006). ArticleCAS Google Scholar
Lee, H., Dellatore, S. M., Miller, W. M. & Messersmith, P. B. Mussel-inspired surface chemistry for multifunctional coatings. Science318, 426–430 (2007). ArticleCAS Google Scholar
Kang, S. M. et al. One-step multipurpose surface functionalization by adhesive catecholamine. Adv. Funct. Mater.22, 2949–2955 (2012). ArticleCAS Google Scholar
Tunuguntla, R. H. et al. Bioelectronic light-gated transistors with biologically tunable performance. Adv. Mater.27, 831–836 (2015). ArticleCAS Google Scholar
Li, W. et al. Microbead-based biomimetic synthetic neighbors enhance survival and function of rat pancreatic beta-cells. Sci. Rep.3, 2863 (2013). Article Google Scholar
Hu, C. M. J., Fang, R. H., Copp, J., Luk, B. T. & Zhang, L. A biomimetic nanosponge that absorbs pore-forming toxins. Nat. Nanotechnol.8, 336–340 (2013). ArticleCAS Google Scholar
Hu, C. M. J., Fang, R. H., Luk, B. T. & Zhang, L. Nanoparticle-detained toxins for safe and effective vaccination. Nat. Nanotechnol.8, 933–938 (2013). ArticleCAS Google Scholar
Hu, C.-M. J. et al. Nanoparticle biointerfacing by platelet membrane cloaking. Nature526, 118–121 (2015). ArticleCAS Google Scholar
Chen, W. S. et al. Coating nanofiber scaffolds with beta cell membrane to promote cell proliferation and function. Nanoscale8, 10364–10370 (2016). ArticleCAS Google Scholar
Vining, K. H. & Mooney, D. J. Mechanical forces direct stem cell behaviour in development and regeneration. Nat. Rev. Mol. Cell Biol.18, 728–742 (2017). ArticleCAS Google Scholar
Ladoux, B. & Mege, R.-M. Mechanobiology of collective cell behaviours. Nat. Rev. Mol. Cell Biol.18, 743–757 (2017). ArticleCAS Google Scholar
Li, H., Wijekoon, A. & Leipzig, N. D. 3D differentiation of neural stem cells in macroporous photopolymerizable hydrogel scaffolds. PLOS ONE7, e48824 (2012). ArticleCAS Google Scholar
Vijayavenkataraman, S., Shuo, Z., Fuh, J. Y. H. & Lu, W. F. Design of three-dimensional scaffolds with tunable matrix stiffness for directing stem cell lineage specification: an in silico study. Bioengineering4, E66 (2017). Article Google Scholar
Altmann, B. et al. Distinct cell functions of osteoblasts on UV-functionalized titanium- and zirconia-based implant materials are modulated by surface topography. Tissue Eng. Part C Methods19, 850–863 (2013). ArticleCAS Google Scholar
Mozdzen, L. C., Rodgers, R., Banks, J. M., Bailey, R. C. & Harley, B. A. C. Increasing the strength and bioactivity of collagen scaffolds using customizable arrays of 3D-printed polymer fibers. Acta Biomater.33, 25–33 (2016). ArticleCAS Google Scholar
Rujitanaroj, P. O., Wang, Y. C., Wang, J. & Chew, S. Y. Nanofiber-mediated controlled release of siRNA complexes for long term gene-silencing applications. Biomaterials32, 5915–5923 (2011). ArticleCAS Google Scholar
Balmayor, E. R. et al. Modified mRNA for BMP-2 in combination with biomaterials serves as a transcript-activated matrix for effectively inducing osteogenic pathways in stem cells. Stem Cells Dev26, 25–34 (2017). ArticleCAS Google Scholar
Huebsch, N. et al. Matrix elasticity of void-forming hydrogels controls transplanted-stem-cell-mediated bone formation. Nat. Mater.14, 1269–1277 (2015). ArticleCAS Google Scholar
Gardner, R. L. & Johnson, M. H. Investigation of early mammalian development using interspecific chimaeras between rat and mouse. Nat. New Biol.246, 86–89 (1973). ArticleCAS Google Scholar
Rossant, J. & Frels, W. I. Interspecific chimeras in mammals: successful production of live chimeras between Mus musculus and Mus caroli. Science208, 419–421 (1980). ArticleCAS Google Scholar
Fehilly, C. B., Willadsen, S. M. & Tucker, E. M. Interspecific chimaerism between sheep and goat. Nature307, 634–636 (1984). ArticleCAS Google Scholar
Mascetti, V. L. & Pedersen, R. A. Human–mouse chimerism validates human stem cell pluripotency. Cell Stem Cell18, 67–72 (2016). ArticleCAS Google Scholar
Hanna, J. et al. Human embryonic stem cells with biological and epigenetic characteristics similar to those of mouse ESCs. Proc. Natl Acad. Sci. USA107, 9222–9227 (2010). ArticleCAS Google Scholar
Rashid, T., Kobayashi, T. & Nakauchi, H. Revisiting the flight of Icarus: making human organs from PSCs with large animal chimeras. Cell Stem Cell15, 406–409 (2014). ArticleCAS Google Scholar
Wu, J. et al. Interspecies chimerism with mammalian pluripotent stem cells. Cell168, 473–486 (2017). ArticleCAS Google Scholar
Wu, J. et al. Stem cells and interspecies chimaeras. Nature540, 51–59 (2016). ArticleCAS Google Scholar
National Institutes of Health. Request for public comment on the proposed changes to the NIH guidelines for human stem cell research and the proposed scope of an NIH steering committee’s consideration of certain human–animal chimera research. NIHhttps://grants.nih.gov/grants/guide/notice-files/NOT-OD-16-128.html (2016).
Teixeira, A. I., Duckworth, J. K. & Hermanson, O. Getting the right stuff: controlling neural stem cell state and fate in vivo and in vitro with biomaterials. Cell Res.17, 56–61 (2007). ArticleCAS Google Scholar
Vanden Berg-Foels, W. S. In situ tissue regeneration: chemoattractants for endogenous stem cell recruitment. Tissue Eng. Part B Rev.20, 28–39 (2014). Article Google Scholar
Huch, M. & Koo, B. K. Modeling mouse and human development using organoid cultures. Development142, 3113–3125 (2015). ArticleCAS Google Scholar
Chen, F. M., Sun, H. H., Lu, H. & Yu, Q. Stem cell-delivery therapeutics for periodontal tissue regeneration. Biomaterials33, 6320–6344 (2012). ArticleCAS Google Scholar
Embree, M. C. et al. Exploiting endogenous fibrocartilage stem cells to regenerate cartilage and repair joint injury. Nat. Commun.7, 13073 (2016). ArticleCAS Google Scholar
Fong, E. L. S., Chan, C. K. & Goodman, S. B. Stem cell homing in musculoskeletal injury. Biomaterials32, 395–409 (2011). ArticleCAS Google Scholar
Avci-Adali, M., Ziemer, G. & Wendel, H. P. Induction of EPC homing on biofunctionalized vascular grafts for rapid in vivo self-endothelialization — a review of current strategies. Biotechnol. Adv.28, 119–129 (2010). ArticleCAS Google Scholar
Cao, Q. L., Benton, R. L. & Whittemore, S. R. Stem cell repair of central nervous system injury. J. Neurosci. Res.68, 501–510 (2002). ArticleCAS Google Scholar
Iwatani, H. & Imai, E. Kidney repair using stem cells: myth or reality as a therapeutic option? J. Nephrol.23, 143–146 (2010). Google Scholar
Hocking, A. M. & Gibran, N. S. Mesenchymal stem cells: paracrine signaling and differentiation during cutaneous wound repair. Exp. Cell Res.316, 2213–2219 (2010). ArticleCAS Google Scholar
Li, C. Y. et al. Homing of bone marrow mesenchymal stem cells mediated by sphingosine 1-phosphate contributes to liver fibrosis. J. Hepatol.50, 1174–1183 (2009). ArticleCAS Google Scholar
Mishra, R., Bishop, T., Valerio, I. L., Fisher, J. P. & Dean, D. The potential impact of bone tissue engineering in the clinic. Regen. Med.11, 571–587 (2016). ArticleCAS Google Scholar
Yu, Y., Wu, R. X., Yin, Y. & Chen, F. M. Directing immunomodulation using biomaterials for endogenous regeneration. J. Mater. Chem. B4, 569–584 (2016). ArticleCAS Google Scholar
Discher, D. E., Mooney, D. J. & Zandstra, P. W. Growth factors, matrices, and forces combine and control stem cells. Science324, 1673–1677 (2009). ArticleCAS Google Scholar
Han, L. H., Tong, X. M. & Yang, F. Photo-crosslinkable PEG-based microribbons for forming 3D macroporous scaffolds with decoupled niche properties. Adv. Mater.26, 1757–1762 (2014). ArticleCAS Google Scholar
Chaudhuri, O. et al. Hydrogels with tunable stress relaxation regulate stem cell fate and activity. Nat. Mater.15, 326–334 (2016). ArticleCAS Google Scholar
Khetan, S. et al. Degradation-mediated cellular traction directs stem cell fate in covalently crosslinked three-dimensional hydrogels. Nat. Mater.12, 458–465 (2013). ArticleCAS Google Scholar
Kragl, M. et al. Cells keep a memory of their tissue origin during axolotl limb regeneration. Nature460, 60–65 (2009). ArticleCAS Google Scholar
Barker, N. Adult intestinal stem cells: critical drivers of epithelial homeostasis and regeneration. Nat. Rev. Mol. Cell Biol.15, 19–33 (2014). ArticleCAS Google Scholar
Wang, W. E. et al. Dedifferentiation, proliferation, and redifferentiation of adult mammalian cardiomyocytes after ischemic injury. Circulation136, 834–848 (2017). Article Google Scholar
Jopling, C. et al. Zebrafish heart regeneration occurs by cardiomyocyte dedifferentiation and proliferation. Nature464, 606–609 (2010). ArticleCAS Google Scholar
Kikuchi, K. et al. Primary contribution to zebrafish heart regeneration by gata4+ cardiomyocytes. Nature464, 601–605 (2010). ArticleCAS Google Scholar
Tornini, V. A. & Poss, K. D. Keeping at arm’s length during regeneration. Dev. Cell29, 139–145 (2014). ArticleCAS Google Scholar
Eguchi, G., Abe, S. I. & Watanabe, K. Differentiation of lens-like structures from newt iris epithelial cells in vitro. Proc. Natl Acad. Sci. USA71, 5052–5056 (1974). ArticleCAS Google Scholar
Takeuchi, J. K. & Bruneau, B. G. Directed transdifferentiation of mouse mesoderm to heart tissue by defined factors. Nature459, 708–711 (2009). ArticleCAS Google Scholar
Godwin, J. The promise of perfect adult tissue repair and regeneration in mammals: learning from regenerative amphibians and fish. Bioessays36, 861–871 (2014). ArticleCAS Google Scholar
Julier, Z., Park, A. J., Briquez, P. S. & Martino, M. M. Promoting tissue regeneration by modulating the immune system. Acta Biomater.53, 13–28 (2017). ArticleCAS Google Scholar
Carrion, F. A. & Figueroa, F. E. Mesenchymal stem cells for the treatment of systemic lupus erythematosus: is the cure for connective tissue diseases within connective tissue? Stem Cell Res. Ther.2, 23 (2011). Article Google Scholar
Gattazzo, F., Urciuolo, A. & Bonaldo, P. Extracellular matrix: a dynamic microenvironment for stem cell niche. Biochim. Biophys. Acta1840, 2506–2519 (2014). ArticleCAS Google Scholar
Hou, S. et al. The enhancement of cell adherence and inducement of neurite outgrowth of dorsal root ganglia co-cultured with hyaluronic acid hydrogels modified with Nogo-66 receptor antagonist in vitro. Neuroscience137, 519–529 (2006). ArticleCAS Google Scholar
Li, L. C., Ge, J., Wang, L., Guo, B. L. & Ma, P. X. Electroactive nanofibrous biomimetic scaffolds by thermally induced phase separation. J. Mater. Chem. B2, 6119–6130 (2014). ArticleCAS Google Scholar
Dainiak, M. B., Kumar, A., Galaev, I. Y. & Mattiasson, B. Detachment of affinity-captured bioparticles by elastic deformation of a macroporous hydrogel. Proc. Natl Acad. Sci. USA103, 849–854 (2006). ArticleCAS Google Scholar
Kim, J. et al. Injectable, spontaneously assembling, inorganic scaffolds modulate immune cells in vivo and increase vaccine efficacy. Nat. Biotechnol.33, 64–72 (2015). ArticleCAS Google Scholar
Appel, E. A. et al. Self-assembled hydrogels utilizing polymer-nanoparticle interactions. Nat. Commun.6, 6295 (2015). ArticleCAS Google Scholar
Zhang, Y. et al. Self-assembled colloidal gel using cell membrane-coated nanosponges as building blocks. ACS Nano11, 11923–11930 (2017). ArticleCAS Google Scholar
Naghdi, P. et al. Survival, proliferation and differentiation enhancement of neural stem cells cultured in three-dimensional polyethylene glycol-RGD hydrogel with tenascin. J. Tissue Eng. Regen. Med.10, 199–208 (2016). ArticleCAS Google Scholar
Song, Y. H., Ju, Y., Song, G. B. & Morita, Y. In vitro proliferation and osteogenic differentiation of mesenchymal stem cells on nanoporous alumina. Int. J. Nanomed.8, 2745–2756 (2013). Google Scholar
Sawyer, A. A., Hennessy, K. M. & Bellis, S. L. The effect of adsorbed serum proteins, RGD and proteoglycan-binding peptides on the adhesion of mesenchymal stem cells to hydroxyapatite. Biomaterials28, 383–392 (2007). ArticleCAS Google Scholar
Qiu, G. et al. Bone regeneration in minipigs via calcium phosphate cement scaffold delivering autologous bone marrow mesenchymal stem cells and platelet-rich plasma. J. Tissue Eng. Regen. Med.2, e937–e948 (2018). ArticleCAS Google Scholar
Kim, T. H., Singh, R. K., Kang, M. S., Kim, J. H. & Kim, H. W. Gene delivery nanocarriers of bioactive glass with unique potential to load BMP2 plasmid DNA and to internalize into mesenchymal stem cells for osteogenesis and bone regeneration. Nanoscale8, 8300–8311 (2016). ArticleCAS Google Scholar
Quinlan, E. et al. Hypoxia-mimicking bioactive glass/collagen glycosaminoglycan composite scaffolds to enhance angiogenesis and bone repair. Biomaterials52, 358–366 (2015). ArticleCAS Google Scholar
Shih, Y. R. V. et al. Calcium phosphate-bearing matrices induce osteogenic differentiation of stem cells through adenosine signaling. Proc. Natl Acad. Sci. USA111, 990–995 (2014). ArticleCAS Google Scholar
Sun, W. et al. Viability and neuronal differentiation of neural stem cells encapsulated in silk fibroin hydrogel functionalized with an IKVAV peptide. J. Tissue Eng. Regen. Med.11, 1532–1541 (2017). ArticleCAS Google Scholar
Frazier, T. P. et al. Serially transplanted nonpericytic CD146− adipose stromal/stem cells in silk bioscaffolds regenerate adipose tissue in vivo. Stem Cells34, 1097–1111 (2016). ArticleCAS Google Scholar
Sun, J. et al. Controlled release of collagen-binding SDF-1 alpha improves cardiac function after myocardial infarction by recruiting endogenous stem cells. Sci. Rep.6, 26683 (2016). ArticleCAS Google Scholar
Matthias, N. et al. Volumetric muscle loss injury repair using in situ fibrin gel cast seeded with muscle-derived stem cells (MDSCs). Stem Cell Res.27, 65–73 (2018). ArticleCAS Google Scholar
Gaetani, R. et al. Epicardial application of cardiac progenitor cells in a 3D-printed gelatin/hyaluronic acid patch preserves cardiac function after myocardial infarction. Biomaterials61, 339–348 (2015). ArticleCAS Google Scholar
Simpson, R. M. L. et al. Hyaluronan is crucial for stem cell differentiation into smooth muscle lineage. Stem Cells34, 1225–1238 (2016). ArticleCAS Google Scholar
Deng, B. Y. et al. Delivery of alginate-chitosan hydrogel promotes endogenous repair and preserves cardiac function in rats with myocardial infarction. J. Biomed. Mater. Res. Part A103, 907–918 (2015). ArticleCAS Google Scholar
Tanaka, N., Yamashita, T., Sato, A., Vogel, V. & Tanaka, Y. Simple agarose micro-confinement array and machine-learning-based classification for analyzing the patterned differentiation of mesenchymal stem cells. PLOS ONE12, e0173647 (2017). ArticleCAS Google Scholar
Lal, L., Suraishkumar, G. K. & Nair, P. D. Chitosan-agarose scaffolds supports chondrogenesis of Human Wharton’s Jelly mesenchymal stem cells. J. Biomed. Mater. Res. Part A105, 1845–1855 (2017). ArticleCAS Google Scholar
Canadas, R. F. et al. Polyhydroxyalkanoates: waste glycerol upgrade into electrospun fibrous scaffolds for stem cells culture. Int. J. Biol. Macromol.71, 131–140 (2014). ArticleCAS Google Scholar
Jang, J. et al. 3D printed complex tissue construct using stem cell-laden decellularized extracellular matrix bioinks for cardiac repair. Biomaterials112, 264–274 (2017). ArticleCAS Google Scholar
Rakian, R. et al. Native extracellular matrix preserves mesenchymal stem cell “stemness” and differentiation potential under serum-free culture conditions. Stem Cell Res. Ther.6, 235 (2015). Article Google Scholar
Suzuki, Y. et al. Alginate hydrogel linked with synthetic oligopeptide derived from BMP-2 allows ectopic osteoinduction in vivo. J. Biomed. Mater. Res.50, 405–409 (2000). ArticleCAS Google Scholar
Barnes, B. et al. Lower dose of rhBMP-2 achieves spine fusion when combined with an osteoconductive bulking agent in non-human primates. Spine30, 1127–1133 (2005). Article Google Scholar
Haidar, Z. S., Hamdy, R. C. & Tabrizian, M. Biocompatibility and safety of a hybrid core-shell nanoparticulate OP-1 delivery system intramuscularly administered in rats. Biomaterials31, 2746–2754 (2010). ArticleCAS Google Scholar
Woo, B. H., Jiang, G., Jo, Y. W. & DeLuca, P. P. Preparation and characterization of a composite PLGA and poly(acryloyl hydroxyethyl starch) microsphere system for protein delivery. Pharm. Res.18, 1600–1606 (2001). ArticleCAS Google Scholar
Woodruff, M. A. et al. Sustained release and osteogenic potential of heparan sulfate-doped fibrin glue scaffolds within a rat cranial model. J. Mol. Histol.38, 425–433 (2007). ArticleCAS Google Scholar
Mabilleau, G. et al. Effects of FGF-2 release from a hydrogel polymer on bone mass and microarchitecture. Biomaterials29, 1593–1600 (2008). ArticleCAS Google Scholar
Lim, T. C. et al. Chemotactic recruitment of adult neural progenitor cells into multifunctional hydrogels providing sustained SDF-1 alpha release and compatible structural support. FASEB J.27, 1023–1033 (2013). ArticleCAS Google Scholar
Erggelet, C. et al. Regeneration of ovine articular cartilage defects by cell-free polymer-based implants. Biomaterials28, 5570–5580 (2007). ArticleCAS Google Scholar
De Visscher, G., Mesure, L., Meuris, B., Ivanova, A. & Flameng, W. Improved endothelialization and reduced thrombosis by coating a synthetic vascular graft with fibronectin and stem cell homing factor SDF-1 alpha. Acta Biomater.8, 1330–1338 (2012). ArticleCAS Google Scholar
Kuwabara, F. et al. Novel small-caliber vascular grafts with trimeric peptide for acceleration of endothelialization. Ann. Thorac. Surg.93, 156–163 (2012). Article Google Scholar
Borselli, C. et al. Functional muscle regeneration with combined delivery of angiogenesis and myogenesis factors. Proc. Natl Acad. Sci. USA107, 3287–3292 (2010). ArticleCAS Google Scholar
Abbushi, A. et al. Regeneration of intervertebral disc tissue by resorbable cell-free polyglycolic acid-based implants in a rabbit model of disc degeneration. Spine33, 1527–1532 (2008). Article Google Scholar