The spindle assembly checkpoint works like a rheostat rather than a toggle switch (original) (raw)

References

  1. Musacchio, A. & Salmon, E. D. The spindle-assembly checkpoint in space and time. Nat. Rev. Mol. Cell Biol. 8, 379–393 (2007).
    Article CAS PubMed Google Scholar
  2. Lara-Gonzalez, P., Westhorpe, F. G. & Taylor, S. S. The spindle assembly checkpoint. Curr. Biol. 22, R966–R980 (2012).
    Article CAS PubMed Google Scholar
  3. Pines, J. Cubism and the cell cycle: the many faces of the APC/C. Nat. Rev. Mol. Cell Biol. 12, 427–438 (2011).
    Article CAS PubMed Google Scholar
  4. Sudakin, V., Chan, G. K. & Yen, T. J. Checkpoint inhibition of the APC/C in HeLa cells is mediated by a complex of BUBR1, BUB3, CDC20, and MAD2. J. Cell Biol. 154, 925–936 (2001).
    Article CAS PubMed PubMed Central Google Scholar
  5. Rieder, C. L., Cole, R. W., Khodjakov, A. & Sluder, G. The checkpoint delaying anaphase in response to chromosome monoorientation is mediated by an inhibitory signal produced by unattached kinetochores. J. Cell Biol. 130, 941–948 (1995).
    Article CAS PubMed Google Scholar
  6. De Antoni, A. et al. The Mad1/MAD2 complex as a template for MAD2 activation in the spindle assembly checkpoint. Curr. Biol. 15, 214–225 (2005).
    Article CAS PubMed Google Scholar
  7. Weaver, B. A. et al. Centromere-associated protein-E is essential for the mammalian mitotic checkpoint to prevent aneuploidy due to single chromosome loss. J. Cell Biol. 162, 551–563 (2003).
    Article CAS PubMed PubMed Central Google Scholar
  8. Hoyt, M. A., Totis, L. & Roberts, B. T. S. cerevisiae genes required for cell cycle arrest in response to loss of microtubule function. Cell 66, 507–517 (1991).
    Article CAS PubMed Google Scholar
  9. Li, R. & Murray, A. W. Feedback control of mitosis in budding yeast. Cell 66, 519–531 (1991).
    Article CAS PubMed Google Scholar
  10. Kulukian, A., Han, J. S. & Cleveland, D. W. Unattached kinetochores catalyze production of an anaphase inhibitor that requires a MAD2 template to prime Cdc20 for BubR1 binding. Dev. Cell 16, 105–117 (2009).
    Article CAS PubMed PubMed Central Google Scholar
  11. Tang, Z., Bharadwaj, R., Li, B. & Yu, H. MAD2-Independent inhibition of APCCdc20 by the mitotic checkpoint protein BubR1. Dev. Cell 1, 227–237 (2001).
    Article CAS PubMed Google Scholar
  12. Nilsson, J., Yekezare, M., Minshull, J. & Pines, J. The APC/C maintains the spindle assembly checkpoint by targeting Cdc20 for destruction. Nat. Cell Biol. 10, 1411–1420 (2008).
    Article CAS PubMed PubMed Central Google Scholar
  13. Westhorpe, F. G., Tighe, A., Lara-Gonzalez, P. & Taylor, S. S. p31comet-mediated extraction of MAD2 from the MCC promotes efficient mitotic exit. J. Cell Sci. 124, 3905–3916 (2011).
    Article CAS PubMed PubMed Central Google Scholar
  14. Chao, W. C., Kulkarni, K., Zhang, Z., Kong, E. H. & Barford, D. Structure of the mitotic checkpoint complex. Nature 484, 208–213 (2012).
    Article CAS PubMed Google Scholar
  15. Luo, X., Tang, Z., Rizo, J. & Yu, H. The MAD2 spindle checkpoint protein undergoes similar major conformational changes upon binding to either Mad1 or Cdc20. Mol. Cell 9, 59–71 (2002).
    Article PubMed Google Scholar
  16. Kops, G. J., Weaver, B. A. & Cleveland, D. W. On the road to cancer: aneuploidy and the mitotic checkpoint. Nat. Rev. Cancer 5, 773–785 (2005).
    Article CAS PubMed Google Scholar
  17. Di Fiore, B. & Pines, J. How cyclin A destruction escapes the spindle assembly checkpoint. J. Cell Biol. 190, 501–509 (2010).
    Article CAS PubMed PubMed Central Google Scholar
  18. den Elzen, N. & Pines, J. Cyclin A is destroyed in prometaphase and can delay chromosome alignment and anaphase. J. Cell Biol. 153, 121–136 (2001).
    Article CAS PubMed PubMed Central Google Scholar
  19. Geley, S. et al. Anaphase-promoting complex/cyclosome-dependent proteolysis of human cyclin A starts at the beginning of mitosis and is not subject to the spindle assembly checkpoint. J. Cell Biol. 153, 137–148 (2001).
    Article CAS PubMed PubMed Central Google Scholar
  20. Wolthuis, R. et al. Cdc20 and Cks direct the spindle checkpoint-independent destruction of cyclin A. Mol. Cell 30, 290–302 (2008).
    Article CAS PubMed Google Scholar
  21. Gascoigne, K. E. & Taylor, S. S. Cancer cells display profound intra- and interline variation following prolonged exposure to antimitotic drugs. Cancer Cell 14, 111–122 (2008).
    Article CAS PubMed Google Scholar
  22. Orth, J. D. et al. Analysis of mitosis and antimitotic drug responses in tumors by in vivo microscopy and single-cell pharmacodynamics. Cancer Res. 71, 4608–4616 (2011).
    Article CAS PubMed PubMed Central Google Scholar
  23. Brito, D. A. & Rieder, C. L. Mitotic checkpoint slippage in humans occurs via cyclin B destruction in the presence of an active checkpoint. Curr. Biol. 16, 1194–1200 (2006).
    Article CAS PubMed PubMed Central Google Scholar
  24. Huang, H. C., Mitchison, T. J. & Shi, J. Stochastic competition between mechanistically independent slippage and death pathways determines cell fate during mitotic arrest. PLoS One 5, e15724 (2010).
    Article CAS PubMed PubMed Central Google Scholar
  25. Hagting, A., Karlsson, C., Clute, P., Jackman, M. & Pines, J. MPF localization is controlled by nuclear export. EMBO J. 17, 4127–4138 (1998).
    Article CAS PubMed PubMed Central Google Scholar
  26. Yang, Z., Kenny, A. E., Brito, D. A. & Rieder, C. L. Cells satisfy the mitotic checkpoint in Taxol, and do so faster in concentrations that stabilize syntelic attachments. J. Cell Biol. 186, 675–684 (2009).
    Article CAS PubMed PubMed Central Google Scholar
  27. Kapoor, T. M., Mayer, T. U., Coughlin, M. L. & Mitchison, T. J. Probing spindle assembly mechanisms with monastrol, a small molecule inhibitor of the mitotic kinesin, Eg5. J. Cell Biol. 150, 975–988 (2000).
    Article CAS PubMed PubMed Central Google Scholar
  28. Waters, J. C., Chen, R. H., Murray, A. W. & Salmon, E. D. Localization of MAD2 to kinetochores depends on microtubule attachment, not tension. J. Cell Biol. 141, 1181–1191 (1998).
    Article CAS PubMed PubMed Central Google Scholar
  29. Santaguida, S., Tighe, A., D’Alise, A. M., Taylor, S. S. & Musacchio, A. Dissecting the role of MPS1 in chromosome biorientation and the spindle checkpoint through the small molecule inhibitor reversine. J. Cell Biol. 190, 73–87 (2010).
    Article CAS PubMed PubMed Central Google Scholar
  30. Buffin, E., Lefebvre, C., Huang, J., Gagou, M. E. & Karess, R. E. Recruitment of MAD2 to the kinetochore requires the Rod/Zw10 complex. Curr. Biol. 15, 856–861 (2005).
    Article CAS PubMed Google Scholar
  31. Mansfeld, J., Collin, P., Collins, M. O., Choudhary, J. S. & Pines, J. APC15 drives the turnover of MCC-CDC20 to make the spindle assembly checkpoint responsive to kinetochore attachment. Nat. Cell Biol. 13, 1234–1243 (2011).
    Article CAS PubMed PubMed Central Google Scholar
  32. Kim, S. H., Lin, D. P., Matsumoto, S., Kitazono, A. & Matsumoto, T. Fission yeast Slp1: an effector of the MAD2-dependent spindle checkpoint. Science 279, 1045–1047 (1998).
    Article CAS PubMed Google Scholar
  33. Izawa, D. & Pines, J. MAD2 and the APC/C compete for the same site on Cdc20 to ensure proper chromosome segregation. J. Cell Biol. 199, 27–37 (2012).
    Article CAS PubMed PubMed Central Google Scholar
  34. Hewitt, L. et al. Sustained Mps1 activity is required in mitosis to recruit O-MAD2 to the Mad1-C-MAD2 core complex. J. Cell Biol. 190, 25–34 (2010).
    Article CAS PubMed PubMed Central Google Scholar
  35. Jelluma, N. et al. Mps1 phosphorylates Borealin to control Aurora B activity and chromosome alignment. Cell 132, 233–246 (2008).
    Article CAS PubMed Google Scholar
  36. Maciejowski, J. et al. Mps1 directs the assembly of Cdc20 inhibitory complexes during interphase and mitosis to control M phase timing and spindle checkpoint signaling. J. Cell Biol. 190, 89–100 (2010).
    Article CAS PubMed PubMed Central Google Scholar
  37. Foley, E. A., Maldonado, M. & Kapoor, T. M. Formation of stable attachments between kinetochores and microtubules depends on the B56-PP2A phosphatase. Nat. Cell Biol. 13, 1265–1271 (2011).
    Article CAS PubMed PubMed Central Google Scholar
  38. Meadows, J. C. et al. Spindle checkpoint silencing requires association of PP1 to both Spc7 and kinesin-8 motors. Dev. Cell 20, 739–750 (2011).
    Article CAS PubMed PubMed Central Google Scholar
  39. Rosenberg, J. S., Cross, F. R. & Funabiki, H. KNL1/Spc105 recruits PP1 to silence the spindle assembly checkpoint. Curr. Biol. 21, 942–947 (2011).
    Article CAS PubMed PubMed Central Google Scholar
  40. Hagan, R. S. et al. p31(comet) acts to ensure timely spindle checkpoint silencing subsequent to kinetochore attachment. Mol. Biol. Cell 22, 4236–4246 (2011).
    Article CAS PubMed PubMed Central Google Scholar
  41. Varetti, G., Guida, C., Santaguida, S., Chiroli, E. & Musacchio, A. Homeostatic control of mitotic arrest. Mol. Cell 44, 710–720 (2011).
    Article CAS PubMed Google Scholar
  42. Michel, L. S. et al. MAD2 haplo-insufficiency causes premature anaphase and chromosome instability in mammalian cells. Nature 409, 355–359 (2001).
    Article CAS PubMed Google Scholar
  43. Berdougo, E., Terret, M. E. & Jallepalli, P. V. Functional dissection of mitotic regulators through gene targeting in human somatic cells. Methods Mol. Biol. 545, 21–37 (2009).
    Article CAS PubMed Google Scholar
  44. Clute, P. & Pines, J. Temporal and spatial control of cyclin B1 destruction in metaphase. Nat. Cell Biol. 1, 82–87 (1999).
    Article CAS PubMed Google Scholar
  45. Wu, J. Q. & Pollard, T. D. Counting cytokinesis proteins globally and locally in fission yeast. Science 310, 310–314 (2005).
    Article CAS PubMed Google Scholar
  46. Johnston, K. et al. Vertebrate kinetochore protein architecture: protein copy number. J. Cell Biol. 189, 937–943 (2010).
    Article CAS PubMed PubMed Central Google Scholar

Download references