The genome of the cucumber, Cucumis sativus L. (original) (raw)
Accession codes
Accessions
NCBI Reference Sequence
References
- Tanurdzic, M. & Banks, J.A. Sex-determining mechanisms in land plants. Plant Cell 16, S61–S71 (2004).
Article CAS PubMed PubMed Central Google Scholar - Lough, T.J. & Lucas, W.J. Integrative plant biology: role of phloem long-distance macromolecular trafficking. Annu. Rev. Plant Biol. 57, 203–232 (2006).
Article CAS PubMed Google Scholar - Xoconostle-Cázares, B. et al. Plant paralog to viral movement protein that potentiates rransport of mRNA into the phloem. Science 283, 94–98 (1999).
Article PubMed Google Scholar - Arabidopsis Genome Initiative. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408, 796–815 (2000).
- International Rice Genome Sequencing Project. The map-based sequence of the rice genome. Nature 436, 793–800 (2005).
Article Google Scholar - Jaillon, O. et al. The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature 449, 463–467 (2007).
Article CAS PubMed Google Scholar - Ming, R. et al. The draft genome of the transgenic tropical fruit tree papaya (Carica papaya Linnaeus). Nature 452, 991–996 (2008).
Article CAS PubMed PubMed Central Google Scholar - Tuskan, G.A. et al. The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). Science 313, 1596–1604 (2006).
Article CAS PubMed Google Scholar - Yu, J. et al. A draft sequence of the rice genome (Oryza sativa L. ssp. indica). Science 296, 79–92 (2002).
Article CAS PubMed Google Scholar - Shendure, J., Mitra, R.D., Varma, C. & Church, G.M. Advanced sequencing technologies: methods and goals. Nat. Rev. Genet. 5, 335–344 (2004).
Article CAS PubMed Google Scholar - Bentley, D.R. et al. Accurate whole human genome sequencing using reversible terminator chemistry. Nature 456, 53–59 (2008).
Article CAS PubMed PubMed Central Google Scholar - Wang, J. et al. The diploid genome sequence of an Asian individual. Nature 456, 60–65 (2008).
Article CAS PubMed PubMed Central Google Scholar - Staub, J.E., Serquen, F.C., Horejsi, T. & Chen, J.-f. Genetic diversity in cucumber (Cucumis sativus L.): IV. An evaluation of Chinese germplasm1. Genet. Resour. Crop Evol. 46, 297–310 (1999).
Article Google Scholar - Arumuganathan, K. & Earle, E. Nuclear DNA content of some important plant species. Plant Mol. Biol. Rep. 9, 208–218 (1991).
Article CAS Google Scholar - Han, Y.H. et al. Distribution of the tandem repeat sequences and karyotyping in cucumber (Cucumis sativus L.) by fluorescence in situ hybridization. Cytogenet. Genome Res. 122, 80–88 (2008).
Article CAS PubMed Google Scholar - Ren, Y. et al. An integrated genetic and cytogenetic map of the cucumber genome. PLoS One 4, e5795 (2009).
Article PubMed PubMed Central Google Scholar - Bowers, J.E., Chapman, B.A., Rong, J. & Paterson, A.H. Unravelling angiosperm genome evolution by phylogenetic analysis of chromosomal duplication events. Nature 422, 433–438 (2003).
Article CAS PubMed Google Scholar - Yu, J. et al. The genomes of Oryza sativa: a history of duplications. PLoS Biol. 3, e38 (2005).
Article PubMed PubMed Central Google Scholar - Fernandez-Silva, I. et al. Bin mapping of genomic and EST-derived SSRs in melon (Cucumis melo L.). Theor. Appl. Genet. 118, 139 (2008).
Article CAS PubMed Google Scholar - Schaefer, H., Heibl, C. & Renner, S.S. Gourds afloat: a dated phylogeny reveals an Asian origin of the gourd family (Cucurbitaceae) and numerous oversea dispersal events. Proc. Biol. Sci. 276, 843–851 (2009).
Article PubMed Google Scholar - Liavonchanka, A. & Feussner, I. Lipoxygenases: occurrence, functions and catalysis. J. Plant Physiol. 163, 348–357 (2006).
Article CAS PubMed Google Scholar - Schwab, W., Davidovich-Rikanati, R. & Lewinsohn, E. Biosynthesis of plant-derived flavor compounds. Plant J. 54, 712–732 (2008).
Article CAS PubMed Google Scholar - Buescher, R.H. & Buescher, R.W. Production and stability of (E, Z)-2, 6-nonadienal, the major flavor volatile of cucumbers. J. Food Sci. 66, 357–361 (2001).
Article CAS Google Scholar - Cho, M.J., Buescher, R.W., Johnson, M. & Janes, M. Inactivation of pathogenic bacteria by cucumber volatiles (E,Z)-2,6-nonadienal and (E)-2-nonenal. J. Food Prot. 67, 1014–1016 (2004).
Article CAS PubMed Google Scholar - Matsui, K. et al. Fatty acid 9- and 13-hydroperoxide lyases from cucumber. FEBS Lett. 481, 183–188 (2000).
Article CAS PubMed Google Scholar - Nieto, C. et al. An eIF4E allele confers resistance to an uncapped and non-polyadenylated RNA virus in melon. Plant J. 48, 452–462 (2006).
Article CAS PubMed Google Scholar - Wai, T. & Grumet, R. Inheritance of resistance to watermelon mosaic virus in the cucumber line TMG-1: tissue-specific expression and relationship to zucchini yellow mosaic virus resistance. Theor. Appl. Genet. 91, 699–706 (1995).
Article CAS PubMed Google Scholar - Taler, D., Galperin, M., Benjamin, I., Cohen, Y. & Kenigsbuch, D. Plant eR genes that encode photorespiratory enzymes confer resistance against disease. Plant Cell 16, 172–184 (2004).
Article CAS PubMed PubMed Central Google Scholar - Balkema-Boomstra, A.G. et al. Role of cucurbitacin C in resistance to spider mite Tetranychus urticae in cucumber Cucumis sativus L. J. Chem. Ecol. 29, 225–235 (2003).
Article CAS PubMed Google Scholar - Da Costa, C.P. & Jones, C.M. Cucumber beetle resistance and mite susceptibility controlled by the bitter gene in Cucumis sativus L. Science 172, 1145–1146 (1971).
Article CAS PubMed Google Scholar - Phillips, D.R., Rasbery, J.M., Bartel, B. & Matsuda, S.P. Biosynthetic diversity in plant triterpene cyclization. Curr. Opin. Plant Biol. 9, 305–314 (2006).
Article CAS PubMed Google Scholar - Shibuya, M., Adachi, S. & Ebizuka, Y. Cucurbitadienol synthase, the first committed enzyme for cucurbitacin biosynthesis, is a distinct enzyme from cycloartenol synthase for phytosterol biosynthesis. Tetrahedron 60, 6995–7003 (2004).
Article CAS Google Scholar - Field, B. & Osbourn, A.E. Metabolic diversification–independent assembly of operon-like gene clusters in different plants. Science 320, 543–547 (2008).
Article CAS PubMed Google Scholar - Rudich, J., Halevy, A.H. & Kedar, N. Ethylene evolution from cucumber plants as related to sex expression. Plant Physiol. 49, 998–999 (1972).
Article CAS PubMed PubMed Central Google Scholar - Pirrung, M.C. Ethylene biosynthesis from 1-aminocyclopropanecarboxylic acid. Acc. Chem. Res. 32, 711–718 (1999).
Article CAS Google Scholar - Stepanova, A.N. & Alonso, J.M. Ethylene signaling pathway. Sci. STKE 2005, cm3 (2005).
PubMed Google Scholar - Boualem, A. et al. A conserved mutation in an ethylene biosynthesis enzyme leads to andromonoecy in melons. Science 321, 836–838 (2008).
Article CAS PubMed Google Scholar - Li, Z. et al. Molecular isolation of the M gene suggests that a conserved-residue conversion induces the formation of bisexual flowers in cucumber plants. Genetics 182, 1381–1385 (2009).
Article CAS PubMed PubMed Central Google Scholar - Yamagami, T. et al. Biochemical diversity among the 1-amino-cyclopropane-1-carboxylate synthase isozymes encoded by the Arabidopsis gene family. J. Biol. Chem. 278, 49102–49112 (2003).
Article CAS PubMed Google Scholar - Takahashi, H. & Jaffe, M.J. Further studies of auxin and ACC induced feminization in the cucumber plant using ethylene inhibitors. Phyton (Buenos Aires) 44, 81–86 (1984).
CAS Google Scholar - DeLong, A., Calderon-Urrea, A. & Dellaporta, S.L. Sex determination gene TASSELSEED2 of maize encodes a short-chain alcohol dehydrogenase required for stage-specific floral organ abortion. Cell 74, 757–768 (1993).
Article CAS PubMed Google Scholar - Darwin, C.R. The Movements and Habits of Climbing Plants (Murray, London, 1875).
- Boss, P.K. & Thomas, M.R. Association of dwarfism and floral induction with a grape /'green revolution/' mutation. Nature 416, 847–850 (2002).
Article CAS PubMed Google Scholar - Galun, E. The cucumber tendril—a new test organ for gibberellic acid. Cell. Mol. Life Sci. 15, 184–185 (1959).
Article CAS Google Scholar - Lange, T. Cloning gibberellin dioxygenase genes from pumpkin endosperm by heterologous expression of enzyme activities in Escherichia coli. Proc. Natl. Acad. Sci. USA 94, 6553–6558 (1997).
Article CAS PubMed PubMed Central Google Scholar - Braam, J. In touch: plant responses to mechanical stimuli. New Phytol. 165, 373–389 (2005).
Article PubMed Google Scholar - Cosgrove, D.J. Loosening of plant cell walls by expansins. Nature 407, 321–326 (2000).
Article CAS PubMed Google Scholar - Lin, M.-K., Lee, Y.-J., Lough, T.J., Phinney, B.S. & Lucas, W.J. Analysis of the pumpkin phloem proteome provides insights into angiosperm sieve tube function. Mol. Cell. Proteomics 8, 343–356 (2009).
Article CAS PubMed Google Scholar - Rensing, S.A. et al. The Physcomitrella genome reveals evolutionary insights into the conquest of land by plants. Science 319, 64–69 (2008).
Article CAS PubMed Google Scholar - Aki, T., Shigyo, M., Nakano, R., Yoneyama, T. & Yanagisawa, S. Nano scale proteomics revealed the presence of regulatory proteins including rhree FT-Like proteins in phloem and xylem saps from rice. Plant Cell Physiol. 49, 767–790 (2008).
Article CAS PubMed Google Scholar - Giavalisco, P., Kapitza, K., Kolasa, A., Buhtz, A. & Kehr, J. Towards the proteome of Brassica napus phloem sap. Proteomics 6, 896–909 (2006).
Article CAS PubMed Google Scholar - Dinant, S. et al. Diversity of the superfamily of phloem lectins (phloem protein 2) in angiosperms. Plant Physiol. 131, 114–128 (2003).
Article CAS PubMed PubMed Central Google Scholar - Pélissier, H.C., Peters, W.S., Collier, R., van Bel, A.J. & Knoblauch, M. GFP tagging of sieve element occlusion (SEO) proteins results in green fluorescent forisomes. Plant Cell Physiol. 49, 1699–1710 (2008).
Article PubMed PubMed Central Google Scholar - Kim, S.J. et al. Expression of cinnamyl alcohol dehydrogenases and their putative homologues during Arabidopsis thaliana growth and development: lessons for database annotations. Phytochemistry 68, 1957–1974 (2007).
Article CAS PubMed Google Scholar - Wang, J. et al. RePS: a sequence assembler that masks exact repeats identified from the shotgun data. Genome Res. 12, 824–831 (2002).
Article CAS PubMed PubMed Central Google Scholar - Li, R. et al. ReAS: Recovery of ancestral sequences for transposable elements from the unassembled reads of a whole genome shotgun. PLOS Comput. Biol. 1, e43 (2005).
Article PubMed PubMed Central Google Scholar - Edgar, R.C. & Myers, E.W. PILER: identification and classification of genomic repeats. Bioinformatics 21 Suppl 1, i152–i158 (2005).
Article CAS PubMed Google Scholar - Price, A.L., Jones, N.C. & Pevzner, P.A. De novo identification of repeat families in large genomes. Bioinformatics 21 Suppl 1, i351–i358 (2005).
Article CAS PubMed Google Scholar - Xu, Z. & Wang, H. LTR_FINDER: an efficient tool for the prediction of full-length LTR retrotransposons. Nucleic Acids Res. 35, W265–W268 (2007).
Article PubMed PubMed Central Google Scholar - Elsik, C.G. et al. Creating a honey bee consensus gene set. Genome Biol. 8, R13 (2007).
Article PubMed PubMed Central Google Scholar - Campbell, M.A., Haas, B.J., Hamilton, J.P., Mount, S.M. & Buell, C.R. Comprehensive analysis of alternative splicing in rice and comparative analyses with Arabidopsis. BMC Genomics 7, 327 (2006).
Article PubMed PubMed Central Google Scholar - Li, H. et al. Test data sets and evaluation of gene prediction programs on the rice genome. J Comp Sci Tech 20, 446–453 (2005).
Article Google Scholar - Majoros, W.H., Pertea, M. & Salzberg, S.L. TigrScan and GlimmerHMM: two open source ab initio eukaryotic gene-finders. Bioinformatics 20, 2878–2879 (2004).
Article CAS PubMed Google Scholar - Korf, I. Gene finding in novel genomes. BMC Bioinformatics 5, 59 (2004).
Article PubMed PubMed Central Google Scholar - Stanke, M. & Waack, S. Gene prediction with a hidden Markov model and a new intron submodel. Bioinformatics 19 Suppl 2, ii215–ii225 (2003).
Article PubMed Google Scholar - Salamov, A.A. & Solovyev, V.V. Ab initio gene finding in Drosophila genomic DNA. Genome Res. 10, 516–522 (2000).
Article CAS PubMed PubMed Central Google Scholar - Birney, E., Clamp, M. & Durbin, R. GeneWise and Genomewise. Genome Res. 14, 988–995 (2004).
Article CAS PubMed PubMed Central Google Scholar - Childs, K.L. et al. The TIGR Plant Transcript Assemblies database. Nucleic Acids Res. 35, D846–D851 (2007).
Article CAS PubMed Google Scholar - Huang, X., Adams, M.D., Zhou, H. & Kerlavage, A.R. A tool for analyzing and annotating genomic sequences. Genomics 46, 37–45 (1997).
Article CAS PubMed Google Scholar - Lowe, T.M. & Eddy, S.R. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res. 25, 955–964 (1997).
Article CAS PubMed PubMed Central Google Scholar - Lowe, T.M. & Eddy, S.R. A computational screen for methylation guide snoRNAs in yeast. Science 283, 1168–1171 (1999).
Article CAS PubMed Google Scholar - Griffiths-Jones, S. et al. Rfam: annotating non-coding RNAs in complete genomes. Nucleic Acids Res. 33, D121–D124 (2005).
Article CAS PubMed Google Scholar - Li, H. et al. TreeFam: a curated database of phylogenetic trees of animal gene families. Nucleic Acids Res. 34, D572–D580 (2006).
Article CAS PubMed Google Scholar - Edgar, R.C. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792–1797 (2004).
Article CAS PubMed PubMed Central Google Scholar - Hasegawa, M., Kishino, H. & Yano, T. Dating of the human-ape splitting by a molecular clock of mitochondrial DNA. J. Mol. Evol. 22, 160–174 (1985).
Article CAS PubMed Google Scholar - Kurtz, S. et al. Versatile and open software for comparing large genomes. Genome Biol. 5, R12 (2004).
Article PubMed PubMed Central Google Scholar - Crepet, W.L., Nixon, K.C. & Gandolfo, M.A. Fossil evidence and phylogeny: the age of major angiosperm clades based on mesofossil and macrofossil evidence from Cretaceous deposits. Am. J. Botany 91, 1666–1682 (2004).
Article Google Scholar - Wikström, N., Savolainen, V. & Chase, M.W. Evolution of the angiosperms: calibrating the family tree. Proc. Biol. Sci. 268, 2211–2220 (2001).
Article PubMed PubMed Central Google Scholar
Acknowledgements
We thank L. Goodman for assistance in editing the manuscript and R. Quatrano, L. Kochian, L. Comai, V. Sundaresan, S. Kamoun and S. Renner for critical readings of the manuscript. This work was funded by the Chinese Ministry of Agriculture (948 program), Ministry of Science and Technology (2006DFA32140, 2007CB815701, 2007CB815703 and 2007CB815705) and Ministry of Finance (1251610601001); the National Natural Science Foundation of China (30871707 and 30725008); the Chinese Academy of Agricultural Sciences (seed grant to S.H.); the Chinese Academy of Science (GJHZ0701-6 and KSCX2-YWN-023); the US Department of Agriculture (National Research Initiative grant 2006-35304-17346 to W.J.L.); the National Science Foundation (grant IOS-07-15513 to W.J.L.); and the Korea Science and Engineering Foundation–Ministry of Education, Science and Technology (WCU R33-10002 and BK21 grants to J.-Y.K.). WKC was partly supported by grants from the Environmental Biotechnology National Core Research Center (R15-2003-012-01003-0) and National Research Laboratory (2009-0066339). This work was also supported by the Shenzhen Municipal and Yantian District Governments and the Society of Entrepreneurs & Ecology. D. Qu and Z. Fang of the Chinese Academy of Agricultural Sciences provided management support for this work.
Author information
Author notes
- Sanwen Huang, Ruiqiang Li, Zhonghua Zhang, Li Li, Xingfang Gu, Wei Fan and William J Lucas: These authors contributed equally to this work.
Authors and Affiliations
- Key Laboratory of Horticultural Crops Genetic Improvement of Ministry of Agriculture, Sino-Dutch Joint Lab of Horticultural Genomics Technology, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
Sanwen Huang, Zhonghua Zhang, Xingfang Gu, Xiaowu Wang, Bingyan Xie, Jun He, Zhiqi Jia, Yi Ren, Ying Li, Xuefeng Li, Shenhao Wang, Qiuxiang Shi, Shiqiang Liu, Han Miao, Zhouchao Cheng, Shengping Zhang, Jian Wu, Yuhong Yang, Houxiang Kang, Man Li, Rifei Sun, Baoxi Zhang, Shuzhi Jiang & Yongchen Du - BGI-Shenzhen, Shenzhen, China
Ruiqiang Li, Li Li, Wei Fan, Peixiang Ni, Yuanyuan Ren, Hongmei Zhu, Jun Li, Geng Tian, Yao Lu, Jue Ruan, Wubin Qian, Mingwei Wang, Quanfei Huang, Bo Li, Zhaoling Xuan, Jianjun Cao, Asan, Zhigang Wu, Juanbin Zhang, Qingle Cai, Yinqi Bai, Huiqing Liang, Xiaoli Ren, Zhongbin Shi, Ming Wen, Min Jian, Hailong Yang, Guojie Zhang, Zhentao Yang, Rui Chen, Shifang Liu, Jianwen Li, Lijia Ma, Hui Liu, Yan Zhou, Jing Zhao, Xiaodong Fang, Guoqing Li, Lin Fang, Yingrui Li, Dongyuan Liu, Hongkun Zheng, Yong Zhang, Nan Qin, Zhuo Li, Guohua Yang, Shuang Yang, Lars Bolund, Hancheng Zheng, Shaochuan Li, Xiuqing Zhang, Huanming Yang, Jian Wang, Jun Wang & Songgang Li - Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
Ruiqiang Li & Hongkun Zheng - Department of Plant Biology, College of Biological Sciences, University of California, Davis, California, USA
William J Lucas - College of Life Sciences, Beijing Normal University, Beijing, China
Kui Lin, Yang Wu & Jie Guo - National Maize Improvement Center of China, Key Laboratory of Crop Genetic Improvement and Genome of Ministry of Agriculture, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, China
Weiwei Jin & Yonghua Han - Boyce Thompson Institute and USDA Robert W. Holley Center for Agriculture and Health, Cornell University, Ithaca, New York, USA
Zhangjun Fei - High-Tech Research Center, Shandong Academy of Agricultural Sciences, Jinan, China
Guangcun Li - US Department of Agriculture, Department of Horticulture, Agricultural Research Service, Vegetable Crops Research Unit, University of Wisconsin, Madison, Wisconsin, USA
Jack Staub - Diversity Arrays Technology, Canberra, Australia
Andrzej Kilian & Katarzyna Heller-Uszynska - Wageningen UR Plant Breeding, Wageningen, The Netherlands
Edwin A G van der Vossen - The Graduate University of Chinese Academy of Sciences, Beijing, China
Jue Ruan, Guojie Zhang, Lijia Ma & Yingrui Li - High School Affiliated to Renmin University of China, Beijing, China
Bowen Zhao - Division of Applied Life Science (BK21 and WCU program), PMBBRC and EB-NCRC, Gyeongsang National University, Jinju, Republic of Korea
Won Kyong Cho & Jae-Yean Kim - National Engineering Research Center for Vegetables, Beijing, China
Yong Xu - Institute of Human Genetics, University of Aarhus, Aarhus, Denmark
Lars Bolund - Department of Biology, University of Copenhagen, Copenhagen, Denmark
Karsten Kristiansen & Jun Wang - South China University of Technology, Guangzhou, China
Hancheng Zheng & Shaochuan Li
Authors
- Sanwen Huang
- Ruiqiang Li
- Zhonghua Zhang
- Li Li
- Xingfang Gu
- Wei Fan
- William J Lucas
- Xiaowu Wang
- Bingyan Xie
- Peixiang Ni
- Yuanyuan Ren
- Hongmei Zhu
- Jun Li
- Kui Lin
- Weiwei Jin
- Zhangjun Fei
- Guangcun Li
- Jack Staub
- Andrzej Kilian
- Edwin A G van der Vossen
- Yang Wu
- Jie Guo
- Jun He
- Zhiqi Jia
- Yi Ren
- Geng Tian
- Yao Lu
- Jue Ruan
- Wubin Qian
- Mingwei Wang
- Quanfei Huang
- Bo Li
- Zhaoling Xuan
- Jianjun Cao
- Asan
- Zhigang Wu
- Juanbin Zhang
- Qingle Cai
- Yinqi Bai
- Bowen Zhao
- Yonghua Han
- Ying Li
- Xuefeng Li
- Shenhao Wang
- Qiuxiang Shi
- Shiqiang Liu
- Won Kyong Cho
- Jae-Yean Kim
- Yong Xu
- Katarzyna Heller-Uszynska
- Han Miao
- Zhouchao Cheng
- Shengping Zhang
- Jian Wu
- Yuhong Yang
- Houxiang Kang
- Man Li
- Huiqing Liang
- Xiaoli Ren
- Zhongbin Shi
- Ming Wen
- Min Jian
- Hailong Yang
- Guojie Zhang
- Zhentao Yang
- Rui Chen
- Shifang Liu
- Jianwen Li
- Lijia Ma
- Hui Liu
- Yan Zhou
- Jing Zhao
- Xiaodong Fang
- Guoqing Li
- Lin Fang
- Yingrui Li
- Dongyuan Liu
- Hongkun Zheng
- Yong Zhang
- Nan Qin
- Zhuo Li
- Guohua Yang
- Shuang Yang
- Lars Bolund
- Karsten Kristiansen
- Hancheng Zheng
- Shaochuan Li
- Xiuqing Zhang
- Huanming Yang
- Jian Wang
- Rifei Sun
- Baoxi Zhang
- Shuzhi Jiang
- Jun Wang
- Yongchen Du
- Songgang Li
Contributions
S.H., Y.D., Jun Wang and Songgang Li managed the project. S.H., Z.Z., W.J.L., X.G. and R.L. designed the analyses. X.G., H.M., L.L., Yuanyuan Ren, G.T., Y. Lu, Z.X., J.C., A., Z.W., J. Zhang, H. Liang, X.R., M.J., Hailong Yang, R.C., Shifang Liu and X.Z. conducted DNA preparation and sequencing. X.W., B.X., K.L., W.J., Guangcun Li, Z.F., J.S., A.K., E.A.G.v.d.V. and Y.X. contributed new reagents and analytic tools. S.H., Z.Z., W.J.L., X.G., R.L., X.W., B.X., K.L., W.J., J.H., Z.J., Yi Ren, Ying Li, X.L., S.W., Q.S., W.K.C., J.-Y.K., K.H.-U., H.M., Z.C., S.Z., J. Wu, Y.Y., H.K., Y.W., J.G., Y.H., M.L., B. Zhao, Shiqiang Liu, W.F., P.N., H. Zhu, Jun Li, J.R., W.Q., M. Wang, Q.H., B.L., Q.C., Y.B., Z.S., M. Wen, G.Z., Z.Y., Jianwen Li, L.M., H. Liu., Y. Zhou, J. Zhao, X.F., Guoqing Li, L.F., Yingrui Li, D.L., Hancheng Zheng and Shaochuan Li conducted the data analyses. S.H., R.L., Z.Z. and W.J.L. wrote the paper. Y.D., R.S., B. Zhang., S.J., G.Y., S.Y., Hongkun Zheng, Y. Zhang, N.Q., Z.L., L.B., K.K., Huanming Yang and Jian Wang revised the paper.
Corresponding authors
Correspondence toSanwen Huang, Jun Wang, Yongchen Du or Songgang Li.
Supplementary information
Supplementary Text and Figures
Supplementary Figures 1–20 and Supplementary Tables 1–17, 20. (PDF 2463 kb)
Supplementary Table 18
Phylogenetic relationships of GH20-oxidase genes in cucumber (Csa), Arabidopsis (At), papaya (evm.Tu), poplar (Poptr), grapevine (GSVIVP), rice (BGIOSGA), pumpkin and watermelon. (XLS 440 kb)
Supplementary Table 19
Phylogenetic relationships of expansins in cucumber (Csa), Arabidopsis (At), papaya (evm.Tu), poplar (Poptr) and grapevine (GSVIVP). (XLS 412 kb)
Rights and permissions
About this article
Cite this article
Huang, S., Li, R., Zhang, Z. et al. The genome of the cucumber, Cucumis sativus L..Nat Genet 41, 1275–1281 (2009). https://doi.org/10.1038/ng.475
- Received: 06 May 2009
- Accepted: 28 September 2009
- Published: 01 November 2009
- Issue Date: December 2009
- DOI: https://doi.org/10.1038/ng.475