The genome of the cucumber, Cucumis sativus L. (original) (raw)

Accession codes

Accessions

NCBI Reference Sequence

References

  1. Tanurdzic, M. & Banks, J.A. Sex-determining mechanisms in land plants. Plant Cell 16, S61–S71 (2004).
    Article CAS PubMed PubMed Central Google Scholar
  2. Lough, T.J. & Lucas, W.J. Integrative plant biology: role of phloem long-distance macromolecular trafficking. Annu. Rev. Plant Biol. 57, 203–232 (2006).
    Article CAS PubMed Google Scholar
  3. Xoconostle-Cázares, B. et al. Plant paralog to viral movement protein that potentiates rransport of mRNA into the phloem. Science 283, 94–98 (1999).
    Article PubMed Google Scholar
  4. Arabidopsis Genome Initiative. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408, 796–815 (2000).
  5. International Rice Genome Sequencing Project. The map-based sequence of the rice genome. Nature 436, 793–800 (2005).
    Article Google Scholar
  6. Jaillon, O. et al. The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature 449, 463–467 (2007).
    Article CAS PubMed Google Scholar
  7. Ming, R. et al. The draft genome of the transgenic tropical fruit tree papaya (Carica papaya Linnaeus). Nature 452, 991–996 (2008).
    Article CAS PubMed PubMed Central Google Scholar
  8. Tuskan, G.A. et al. The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). Science 313, 1596–1604 (2006).
    Article CAS PubMed Google Scholar
  9. Yu, J. et al. A draft sequence of the rice genome (Oryza sativa L. ssp. indica). Science 296, 79–92 (2002).
    Article CAS PubMed Google Scholar
  10. Shendure, J., Mitra, R.D., Varma, C. & Church, G.M. Advanced sequencing technologies: methods and goals. Nat. Rev. Genet. 5, 335–344 (2004).
    Article CAS PubMed Google Scholar
  11. Bentley, D.R. et al. Accurate whole human genome sequencing using reversible terminator chemistry. Nature 456, 53–59 (2008).
    Article CAS PubMed PubMed Central Google Scholar
  12. Wang, J. et al. The diploid genome sequence of an Asian individual. Nature 456, 60–65 (2008).
    Article CAS PubMed PubMed Central Google Scholar
  13. Staub, J.E., Serquen, F.C., Horejsi, T. & Chen, J.-f. Genetic diversity in cucumber (Cucumis sativus L.): IV. An evaluation of Chinese germplasm1. Genet. Resour. Crop Evol. 46, 297–310 (1999).
    Article Google Scholar
  14. Arumuganathan, K. & Earle, E. Nuclear DNA content of some important plant species. Plant Mol. Biol. Rep. 9, 208–218 (1991).
    Article CAS Google Scholar
  15. Han, Y.H. et al. Distribution of the tandem repeat sequences and karyotyping in cucumber (Cucumis sativus L.) by fluorescence in situ hybridization. Cytogenet. Genome Res. 122, 80–88 (2008).
    Article CAS PubMed Google Scholar
  16. Ren, Y. et al. An integrated genetic and cytogenetic map of the cucumber genome. PLoS One 4, e5795 (2009).
    Article PubMed PubMed Central Google Scholar
  17. Bowers, J.E., Chapman, B.A., Rong, J. & Paterson, A.H. Unravelling angiosperm genome evolution by phylogenetic analysis of chromosomal duplication events. Nature 422, 433–438 (2003).
    Article CAS PubMed Google Scholar
  18. Yu, J. et al. The genomes of Oryza sativa: a history of duplications. PLoS Biol. 3, e38 (2005).
    Article PubMed PubMed Central Google Scholar
  19. Fernandez-Silva, I. et al. Bin mapping of genomic and EST-derived SSRs in melon (Cucumis melo L.). Theor. Appl. Genet. 118, 139 (2008).
    Article CAS PubMed Google Scholar
  20. Schaefer, H., Heibl, C. & Renner, S.S. Gourds afloat: a dated phylogeny reveals an Asian origin of the gourd family (Cucurbitaceae) and numerous oversea dispersal events. Proc. Biol. Sci. 276, 843–851 (2009).
    Article PubMed Google Scholar
  21. Liavonchanka, A. & Feussner, I. Lipoxygenases: occurrence, functions and catalysis. J. Plant Physiol. 163, 348–357 (2006).
    Article CAS PubMed Google Scholar
  22. Schwab, W., Davidovich-Rikanati, R. & Lewinsohn, E. Biosynthesis of plant-derived flavor compounds. Plant J. 54, 712–732 (2008).
    Article CAS PubMed Google Scholar
  23. Buescher, R.H. & Buescher, R.W. Production and stability of (E, Z)-2, 6-nonadienal, the major flavor volatile of cucumbers. J. Food Sci. 66, 357–361 (2001).
    Article CAS Google Scholar
  24. Cho, M.J., Buescher, R.W., Johnson, M. & Janes, M. Inactivation of pathogenic bacteria by cucumber volatiles (E,Z)-2,6-nonadienal and (E)-2-nonenal. J. Food Prot. 67, 1014–1016 (2004).
    Article CAS PubMed Google Scholar
  25. Matsui, K. et al. Fatty acid 9- and 13-hydroperoxide lyases from cucumber. FEBS Lett. 481, 183–188 (2000).
    Article CAS PubMed Google Scholar
  26. Nieto, C. et al. An eIF4E allele confers resistance to an uncapped and non-polyadenylated RNA virus in melon. Plant J. 48, 452–462 (2006).
    Article CAS PubMed Google Scholar
  27. Wai, T. & Grumet, R. Inheritance of resistance to watermelon mosaic virus in the cucumber line TMG-1: tissue-specific expression and relationship to zucchini yellow mosaic virus resistance. Theor. Appl. Genet. 91, 699–706 (1995).
    Article CAS PubMed Google Scholar
  28. Taler, D., Galperin, M., Benjamin, I., Cohen, Y. & Kenigsbuch, D. Plant eR genes that encode photorespiratory enzymes confer resistance against disease. Plant Cell 16, 172–184 (2004).
    Article CAS PubMed PubMed Central Google Scholar
  29. Balkema-Boomstra, A.G. et al. Role of cucurbitacin C in resistance to spider mite Tetranychus urticae in cucumber Cucumis sativus L. J. Chem. Ecol. 29, 225–235 (2003).
    Article CAS PubMed Google Scholar
  30. Da Costa, C.P. & Jones, C.M. Cucumber beetle resistance and mite susceptibility controlled by the bitter gene in Cucumis sativus L. Science 172, 1145–1146 (1971).
    Article CAS PubMed Google Scholar
  31. Phillips, D.R., Rasbery, J.M., Bartel, B. & Matsuda, S.P. Biosynthetic diversity in plant triterpene cyclization. Curr. Opin. Plant Biol. 9, 305–314 (2006).
    Article CAS PubMed Google Scholar
  32. Shibuya, M., Adachi, S. & Ebizuka, Y. Cucurbitadienol synthase, the first committed enzyme for cucurbitacin biosynthesis, is a distinct enzyme from cycloartenol synthase for phytosterol biosynthesis. Tetrahedron 60, 6995–7003 (2004).
    Article CAS Google Scholar
  33. Field, B. & Osbourn, A.E. Metabolic diversification–independent assembly of operon-like gene clusters in different plants. Science 320, 543–547 (2008).
    Article CAS PubMed Google Scholar
  34. Rudich, J., Halevy, A.H. & Kedar, N. Ethylene evolution from cucumber plants as related to sex expression. Plant Physiol. 49, 998–999 (1972).
    Article CAS PubMed PubMed Central Google Scholar
  35. Pirrung, M.C. Ethylene biosynthesis from 1-aminocyclopropanecarboxylic acid. Acc. Chem. Res. 32, 711–718 (1999).
    Article CAS Google Scholar
  36. Stepanova, A.N. & Alonso, J.M. Ethylene signaling pathway. Sci. STKE 2005, cm3 (2005).
    PubMed Google Scholar
  37. Boualem, A. et al. A conserved mutation in an ethylene biosynthesis enzyme leads to andromonoecy in melons. Science 321, 836–838 (2008).
    Article CAS PubMed Google Scholar
  38. Li, Z. et al. Molecular isolation of the M gene suggests that a conserved-residue conversion induces the formation of bisexual flowers in cucumber plants. Genetics 182, 1381–1385 (2009).
    Article CAS PubMed PubMed Central Google Scholar
  39. Yamagami, T. et al. Biochemical diversity among the 1-amino-cyclopropane-1-carboxylate synthase isozymes encoded by the Arabidopsis gene family. J. Biol. Chem. 278, 49102–49112 (2003).
    Article CAS PubMed Google Scholar
  40. Takahashi, H. & Jaffe, M.J. Further studies of auxin and ACC induced feminization in the cucumber plant using ethylene inhibitors. Phyton (Buenos Aires) 44, 81–86 (1984).
    CAS Google Scholar
  41. DeLong, A., Calderon-Urrea, A. & Dellaporta, S.L. Sex determination gene TASSELSEED2 of maize encodes a short-chain alcohol dehydrogenase required for stage-specific floral organ abortion. Cell 74, 757–768 (1993).
    Article CAS PubMed Google Scholar
  42. Darwin, C.R. The Movements and Habits of Climbing Plants (Murray, London, 1875).
  43. Boss, P.K. & Thomas, M.R. Association of dwarfism and floral induction with a grape /'green revolution/' mutation. Nature 416, 847–850 (2002).
    Article CAS PubMed Google Scholar
  44. Galun, E. The cucumber tendril—a new test organ for gibberellic acid. Cell. Mol. Life Sci. 15, 184–185 (1959).
    Article CAS Google Scholar
  45. Lange, T. Cloning gibberellin dioxygenase genes from pumpkin endosperm by heterologous expression of enzyme activities in Escherichia coli. Proc. Natl. Acad. Sci. USA 94, 6553–6558 (1997).
    Article CAS PubMed PubMed Central Google Scholar
  46. Braam, J. In touch: plant responses to mechanical stimuli. New Phytol. 165, 373–389 (2005).
    Article PubMed Google Scholar
  47. Cosgrove, D.J. Loosening of plant cell walls by expansins. Nature 407, 321–326 (2000).
    Article CAS PubMed Google Scholar
  48. Lin, M.-K., Lee, Y.-J., Lough, T.J., Phinney, B.S. & Lucas, W.J. Analysis of the pumpkin phloem proteome provides insights into angiosperm sieve tube function. Mol. Cell. Proteomics 8, 343–356 (2009).
    Article CAS PubMed Google Scholar
  49. Rensing, S.A. et al. The Physcomitrella genome reveals evolutionary insights into the conquest of land by plants. Science 319, 64–69 (2008).
    Article CAS PubMed Google Scholar
  50. Aki, T., Shigyo, M., Nakano, R., Yoneyama, T. & Yanagisawa, S. Nano scale proteomics revealed the presence of regulatory proteins including rhree FT-Like proteins in phloem and xylem saps from rice. Plant Cell Physiol. 49, 767–790 (2008).
    Article CAS PubMed Google Scholar
  51. Giavalisco, P., Kapitza, K., Kolasa, A., Buhtz, A. & Kehr, J. Towards the proteome of Brassica napus phloem sap. Proteomics 6, 896–909 (2006).
    Article CAS PubMed Google Scholar
  52. Dinant, S. et al. Diversity of the superfamily of phloem lectins (phloem protein 2) in angiosperms. Plant Physiol. 131, 114–128 (2003).
    Article CAS PubMed PubMed Central Google Scholar
  53. Pélissier, H.C., Peters, W.S., Collier, R., van Bel, A.J. & Knoblauch, M. GFP tagging of sieve element occlusion (SEO) proteins results in green fluorescent forisomes. Plant Cell Physiol. 49, 1699–1710 (2008).
    Article PubMed PubMed Central Google Scholar
  54. Kim, S.J. et al. Expression of cinnamyl alcohol dehydrogenases and their putative homologues during Arabidopsis thaliana growth and development: lessons for database annotations. Phytochemistry 68, 1957–1974 (2007).
    Article CAS PubMed Google Scholar
  55. Wang, J. et al. RePS: a sequence assembler that masks exact repeats identified from the shotgun data. Genome Res. 12, 824–831 (2002).
    Article CAS PubMed PubMed Central Google Scholar
  56. Li, R. et al. ReAS: Recovery of ancestral sequences for transposable elements from the unassembled reads of a whole genome shotgun. PLOS Comput. Biol. 1, e43 (2005).
    Article PubMed PubMed Central Google Scholar
  57. Edgar, R.C. & Myers, E.W. PILER: identification and classification of genomic repeats. Bioinformatics 21 Suppl 1, i152–i158 (2005).
    Article CAS PubMed Google Scholar
  58. Price, A.L., Jones, N.C. & Pevzner, P.A. De novo identification of repeat families in large genomes. Bioinformatics 21 Suppl 1, i351–i358 (2005).
    Article CAS PubMed Google Scholar
  59. Xu, Z. & Wang, H. LTR_FINDER: an efficient tool for the prediction of full-length LTR retrotransposons. Nucleic Acids Res. 35, W265–W268 (2007).
    Article PubMed PubMed Central Google Scholar
  60. Elsik, C.G. et al. Creating a honey bee consensus gene set. Genome Biol. 8, R13 (2007).
    Article PubMed PubMed Central Google Scholar
  61. Campbell, M.A., Haas, B.J., Hamilton, J.P., Mount, S.M. & Buell, C.R. Comprehensive analysis of alternative splicing in rice and comparative analyses with Arabidopsis. BMC Genomics 7, 327 (2006).
    Article PubMed PubMed Central Google Scholar
  62. Li, H. et al. Test data sets and evaluation of gene prediction programs on the rice genome. J Comp Sci Tech 20, 446–453 (2005).
    Article Google Scholar
  63. Majoros, W.H., Pertea, M. & Salzberg, S.L. TigrScan and GlimmerHMM: two open source ab initio eukaryotic gene-finders. Bioinformatics 20, 2878–2879 (2004).
    Article CAS PubMed Google Scholar
  64. Korf, I. Gene finding in novel genomes. BMC Bioinformatics 5, 59 (2004).
    Article PubMed PubMed Central Google Scholar
  65. Stanke, M. & Waack, S. Gene prediction with a hidden Markov model and a new intron submodel. Bioinformatics 19 Suppl 2, ii215–ii225 (2003).
    Article PubMed Google Scholar
  66. Salamov, A.A. & Solovyev, V.V. Ab initio gene finding in Drosophila genomic DNA. Genome Res. 10, 516–522 (2000).
    Article CAS PubMed PubMed Central Google Scholar
  67. Birney, E., Clamp, M. & Durbin, R. GeneWise and Genomewise. Genome Res. 14, 988–995 (2004).
    Article CAS PubMed PubMed Central Google Scholar
  68. Childs, K.L. et al. The TIGR Plant Transcript Assemblies database. Nucleic Acids Res. 35, D846–D851 (2007).
    Article CAS PubMed Google Scholar
  69. Huang, X., Adams, M.D., Zhou, H. & Kerlavage, A.R. A tool for analyzing and annotating genomic sequences. Genomics 46, 37–45 (1997).
    Article CAS PubMed Google Scholar
  70. Lowe, T.M. & Eddy, S.R. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res. 25, 955–964 (1997).
    Article CAS PubMed PubMed Central Google Scholar
  71. Lowe, T.M. & Eddy, S.R. A computational screen for methylation guide snoRNAs in yeast. Science 283, 1168–1171 (1999).
    Article CAS PubMed Google Scholar
  72. Griffiths-Jones, S. et al. Rfam: annotating non-coding RNAs in complete genomes. Nucleic Acids Res. 33, D121–D124 (2005).
    Article CAS PubMed Google Scholar
  73. Li, H. et al. TreeFam: a curated database of phylogenetic trees of animal gene families. Nucleic Acids Res. 34, D572–D580 (2006).
    Article CAS PubMed Google Scholar
  74. Edgar, R.C. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792–1797 (2004).
    Article CAS PubMed PubMed Central Google Scholar
  75. Hasegawa, M., Kishino, H. & Yano, T. Dating of the human-ape splitting by a molecular clock of mitochondrial DNA. J. Mol. Evol. 22, 160–174 (1985).
    Article CAS PubMed Google Scholar
  76. Kurtz, S. et al. Versatile and open software for comparing large genomes. Genome Biol. 5, R12 (2004).
    Article PubMed PubMed Central Google Scholar
  77. Crepet, W.L., Nixon, K.C. & Gandolfo, M.A. Fossil evidence and phylogeny: the age of major angiosperm clades based on mesofossil and macrofossil evidence from Cretaceous deposits. Am. J. Botany 91, 1666–1682 (2004).
    Article Google Scholar
  78. Wikström, N., Savolainen, V. & Chase, M.W. Evolution of the angiosperms: calibrating the family tree. Proc. Biol. Sci. 268, 2211–2220 (2001).
    Article PubMed PubMed Central Google Scholar

Download references

Acknowledgements

We thank L. Goodman for assistance in editing the manuscript and R. Quatrano, L. Kochian, L. Comai, V. Sundaresan, S. Kamoun and S. Renner for critical readings of the manuscript. This work was funded by the Chinese Ministry of Agriculture (948 program), Ministry of Science and Technology (2006DFA32140, 2007CB815701, 2007CB815703 and 2007CB815705) and Ministry of Finance (1251610601001); the National Natural Science Foundation of China (30871707 and 30725008); the Chinese Academy of Agricultural Sciences (seed grant to S.H.); the Chinese Academy of Science (GJHZ0701-6 and KSCX2-YWN-023); the US Department of Agriculture (National Research Initiative grant 2006-35304-17346 to W.J.L.); the National Science Foundation (grant IOS-07-15513 to W.J.L.); and the Korea Science and Engineering Foundation–Ministry of Education, Science and Technology (WCU R33-10002 and BK21 grants to J.-Y.K.). WKC was partly supported by grants from the Environmental Biotechnology National Core Research Center (R15-2003-012-01003-0) and National Research Laboratory (2009-0066339). This work was also supported by the Shenzhen Municipal and Yantian District Governments and the Society of Entrepreneurs & Ecology. D. Qu and Z. Fang of the Chinese Academy of Agricultural Sciences provided management support for this work.

Author information

Author notes

  1. Sanwen Huang, Ruiqiang Li, Zhonghua Zhang, Li Li, Xingfang Gu, Wei Fan and William J Lucas: These authors contributed equally to this work.

Authors and Affiliations

  1. Key Laboratory of Horticultural Crops Genetic Improvement of Ministry of Agriculture, Sino-Dutch Joint Lab of Horticultural Genomics Technology, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
    Sanwen Huang, Zhonghua Zhang, Xingfang Gu, Xiaowu Wang, Bingyan Xie, Jun He, Zhiqi Jia, Yi Ren, Ying Li, Xuefeng Li, Shenhao Wang, Qiuxiang Shi, Shiqiang Liu, Han Miao, Zhouchao Cheng, Shengping Zhang, Jian Wu, Yuhong Yang, Houxiang Kang, Man Li, Rifei Sun, Baoxi Zhang, Shuzhi Jiang & Yongchen Du
  2. BGI-Shenzhen, Shenzhen, China
    Ruiqiang Li, Li Li, Wei Fan, Peixiang Ni, Yuanyuan Ren, Hongmei Zhu, Jun Li, Geng Tian, Yao Lu, Jue Ruan, Wubin Qian, Mingwei Wang, Quanfei Huang, Bo Li, Zhaoling Xuan, Jianjun Cao, Asan, Zhigang Wu, Juanbin Zhang, Qingle Cai, Yinqi Bai, Huiqing Liang, Xiaoli Ren, Zhongbin Shi, Ming Wen, Min Jian, Hailong Yang, Guojie Zhang, Zhentao Yang, Rui Chen, Shifang Liu, Jianwen Li, Lijia Ma, Hui Liu, Yan Zhou, Jing Zhao, Xiaodong Fang, Guoqing Li, Lin Fang, Yingrui Li, Dongyuan Liu, Hongkun Zheng, Yong Zhang, Nan Qin, Zhuo Li, Guohua Yang, Shuang Yang, Lars Bolund, Hancheng Zheng, Shaochuan Li, Xiuqing Zhang, Huanming Yang, Jian Wang, Jun Wang & Songgang Li
  3. Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
    Ruiqiang Li & Hongkun Zheng
  4. Department of Plant Biology, College of Biological Sciences, University of California, Davis, California, USA
    William J Lucas
  5. College of Life Sciences, Beijing Normal University, Beijing, China
    Kui Lin, Yang Wu & Jie Guo
  6. National Maize Improvement Center of China, Key Laboratory of Crop Genetic Improvement and Genome of Ministry of Agriculture, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, China
    Weiwei Jin & Yonghua Han
  7. Boyce Thompson Institute and USDA Robert W. Holley Center for Agriculture and Health, Cornell University, Ithaca, New York, USA
    Zhangjun Fei
  8. High-Tech Research Center, Shandong Academy of Agricultural Sciences, Jinan, China
    Guangcun Li
  9. US Department of Agriculture, Department of Horticulture, Agricultural Research Service, Vegetable Crops Research Unit, University of Wisconsin, Madison, Wisconsin, USA
    Jack Staub
  10. Diversity Arrays Technology, Canberra, Australia
    Andrzej Kilian & Katarzyna Heller-Uszynska
  11. Wageningen UR Plant Breeding, Wageningen, The Netherlands
    Edwin A G van der Vossen
  12. The Graduate University of Chinese Academy of Sciences, Beijing, China
    Jue Ruan, Guojie Zhang, Lijia Ma & Yingrui Li
  13. High School Affiliated to Renmin University of China, Beijing, China
    Bowen Zhao
  14. Division of Applied Life Science (BK21 and WCU program), PMBBRC and EB-NCRC, Gyeongsang National University, Jinju, Republic of Korea
    Won Kyong Cho & Jae-Yean Kim
  15. National Engineering Research Center for Vegetables, Beijing, China
    Yong Xu
  16. Institute of Human Genetics, University of Aarhus, Aarhus, Denmark
    Lars Bolund
  17. Department of Biology, University of Copenhagen, Copenhagen, Denmark
    Karsten Kristiansen & Jun Wang
  18. South China University of Technology, Guangzhou, China
    Hancheng Zheng & Shaochuan Li

Authors

  1. Sanwen Huang
  2. Ruiqiang Li
  3. Zhonghua Zhang
  4. Li Li
  5. Xingfang Gu
  6. Wei Fan
  7. William J Lucas
  8. Xiaowu Wang
  9. Bingyan Xie
  10. Peixiang Ni
  11. Yuanyuan Ren
  12. Hongmei Zhu
  13. Jun Li
  14. Kui Lin
  15. Weiwei Jin
  16. Zhangjun Fei
  17. Guangcun Li
  18. Jack Staub
  19. Andrzej Kilian
  20. Edwin A G van der Vossen
  21. Yang Wu
  22. Jie Guo
  23. Jun He
  24. Zhiqi Jia
  25. Yi Ren
  26. Geng Tian
  27. Yao Lu
  28. Jue Ruan
  29. Wubin Qian
  30. Mingwei Wang
  31. Quanfei Huang
  32. Bo Li
  33. Zhaoling Xuan
  34. Jianjun Cao
  35. Asan
  36. Zhigang Wu
  37. Juanbin Zhang
  38. Qingle Cai
  39. Yinqi Bai
  40. Bowen Zhao
  41. Yonghua Han
  42. Ying Li
  43. Xuefeng Li
  44. Shenhao Wang
  45. Qiuxiang Shi
  46. Shiqiang Liu
  47. Won Kyong Cho
  48. Jae-Yean Kim
  49. Yong Xu
  50. Katarzyna Heller-Uszynska
  51. Han Miao
  52. Zhouchao Cheng
  53. Shengping Zhang
  54. Jian Wu
  55. Yuhong Yang
  56. Houxiang Kang
  57. Man Li
  58. Huiqing Liang
  59. Xiaoli Ren
  60. Zhongbin Shi
  61. Ming Wen
  62. Min Jian
  63. Hailong Yang
  64. Guojie Zhang
  65. Zhentao Yang
  66. Rui Chen
  67. Shifang Liu
  68. Jianwen Li
  69. Lijia Ma
  70. Hui Liu
  71. Yan Zhou
  72. Jing Zhao
  73. Xiaodong Fang
  74. Guoqing Li
  75. Lin Fang
  76. Yingrui Li
  77. Dongyuan Liu
  78. Hongkun Zheng
  79. Yong Zhang
  80. Nan Qin
  81. Zhuo Li
  82. Guohua Yang
  83. Shuang Yang
  84. Lars Bolund
  85. Karsten Kristiansen
  86. Hancheng Zheng
  87. Shaochuan Li
  88. Xiuqing Zhang
  89. Huanming Yang
  90. Jian Wang
  91. Rifei Sun
  92. Baoxi Zhang
  93. Shuzhi Jiang
  94. Jun Wang
  95. Yongchen Du
  96. Songgang Li

Contributions

S.H., Y.D., Jun Wang and Songgang Li managed the project. S.H., Z.Z., W.J.L., X.G. and R.L. designed the analyses. X.G., H.M., L.L., Yuanyuan Ren, G.T., Y. Lu, Z.X., J.C., A., Z.W., J. Zhang, H. Liang, X.R., M.J., Hailong Yang, R.C., Shifang Liu and X.Z. conducted DNA preparation and sequencing. X.W., B.X., K.L., W.J., Guangcun Li, Z.F., J.S., A.K., E.A.G.v.d.V. and Y.X. contributed new reagents and analytic tools. S.H., Z.Z., W.J.L., X.G., R.L., X.W., B.X., K.L., W.J., J.H., Z.J., Yi Ren, Ying Li, X.L., S.W., Q.S., W.K.C., J.-Y.K., K.H.-U., H.M., Z.C., S.Z., J. Wu, Y.Y., H.K., Y.W., J.G., Y.H., M.L., B. Zhao, Shiqiang Liu, W.F., P.N., H. Zhu, Jun Li, J.R., W.Q., M. Wang, Q.H., B.L., Q.C., Y.B., Z.S., M. Wen, G.Z., Z.Y., Jianwen Li, L.M., H. Liu., Y. Zhou, J. Zhao, X.F., Guoqing Li, L.F., Yingrui Li, D.L., Hancheng Zheng and Shaochuan Li conducted the data analyses. S.H., R.L., Z.Z. and W.J.L. wrote the paper. Y.D., R.S., B. Zhang., S.J., G.Y., S.Y., Hongkun Zheng, Y. Zhang, N.Q., Z.L., L.B., K.K., Huanming Yang and Jian Wang revised the paper.

Corresponding authors

Correspondence toSanwen Huang, Jun Wang, Yongchen Du or Songgang Li.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–20 and Supplementary Tables 1–17, 20. (PDF 2463 kb)

Supplementary Table 18

Phylogenetic relationships of GH20-oxidase genes in cucumber (Csa), Arabidopsis (At), papaya (evm.Tu), poplar (Poptr), grapevine (GSVIVP), rice (BGIOSGA), pumpkin and watermelon. (XLS 440 kb)

Supplementary Table 19

Phylogenetic relationships of expansins in cucumber (Csa), Arabidopsis (At), papaya (evm.Tu), poplar (Poptr) and grapevine (GSVIVP). (XLS 412 kb)

Rights and permissions

About this article

Cite this article

Huang, S., Li, R., Zhang, Z. et al. The genome of the cucumber, Cucumis sativus L..Nat Genet 41, 1275–1281 (2009). https://doi.org/10.1038/ng.475

Download citation