The epigenetics of epithelial-mesenchymal plasticity in cancer (original) (raw)
Polyak, K. & Weinberg, R.A. Transitions between epithelial and mesenchymal states: acquisition of malignant and stem cell traits. Nat. Rev. Cancer9, 265–273 (2009). ArticleCASPubMed Google Scholar
Thiery, J.P., Acloque, H., Huang, R.Y. & Nieto, M.A. Epithelial-mesenchymal transitions in development and disease. Cell139, 871–890 (2009). ArticleCASPubMed Google Scholar
Scheel, C. et al. Paracrine and autocrine signals induce and maintain mesenchymal and stem cell states in the breast. Cell145, 926–940 (2011). ArticleCASPubMedPubMed Central Google Scholar
Katoh, Y. & Katoh, M. Hedgehog signaling, epithelial-to-mesenchymal transition and miRNA. Int. J. Mol. Med.22, 271–275 (2008). CASPubMed Google Scholar
Moustakas, A. & Heldin, C.H. Signaling networks guiding epithelial-mesenchymal transitions during embryogenesis and cancer progression. Cancer Sci.98, 1512–1520 (2007). ArticleCASPubMed Google Scholar
De Craene, B. & Berx, G. Regulatory networks defining EMT during cancer initiation and progression. Nat. Rev. Cancer13, 97–110 (2013). ArticleCASPubMed Google Scholar
Zheng, H. & Kang, Y. Multilayer control of the EMT master regulators. Oncogene published online, doi:10.1038/onc.2013.128 (22 April 2013). ArticleCASPubMed Google Scholar
Mani, S.A. et al. The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell133, 704–715 (2008). CASPubMedPubMed Central Google Scholar
Gregory, P.A. et al. The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nat. Cell Biol.10, 593–601 (2008). ArticleCASPubMed Google Scholar
Peinado, H., Olmeda, D. & Cano, A. Snail, Zeb and bHLH factors in tumour progression: an alliance against the epithelial phenotype? Nat. Rev. Cancer7, 415–428 (2007). ArticleCASPubMed Google Scholar
Wellner, U. et al. The EMT-activator ZEB1 promotes tumorigenicity by repressing stemness-inhibiting microRNAs. Nat. Cell Biol.11, 1487–1495 (2009). ArticleCASPubMed Google Scholar
Yang, J. et al. Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis. Cell117, 927–939 (2004). ArticleCASPubMed Google Scholar
Savagner, P., Yamada, K.M. & Thiery, J.P. The zinc-finger protein slug causes desmosome dissociation, an initial and necessary step for growth factor-induced epithelial-mesenchymal transition. J. Cell Biol.137, 1403–1419 (1997). ArticleCASPubMedPubMed Central Google Scholar
Blanco, M.J. et al. Correlation of Snail expression with histological grade and lymph node status in breast carcinomas. Oncogene21, 3241–3246 (2002). ArticleCASPubMed Google Scholar
Ocaña, O.H. et al. Metastatic colonization requires the repression of the epithelial-mesenchymal transition inducer Prrx1. Cancer Cell22, 709–724 (2012). ArticleCASPubMed Google Scholar
Tsai, J.H., Donaher, J.L., Murphy, D.A., Chau, S. & Yang, J. Spatiotemporal regulation of epithelial-mesenchymal transition is essential for squamous cell carcinoma metastasis. Cancer Cell22, 725–736 (2012). ArticleCASPubMedPubMed Central Google Scholar
Agger, K., Christensen, J., Cloos, P.A. & Helin, K. The emerging functions of histone demethylases. Curr. Opin. Genet. Dev.18, 159–168 (2008). ArticleCASPubMed Google Scholar
Nieto, M.A. The ins and outs of the epithelial to mesenchymal transition in health and disease. Annu. Rev. Cell Dev. Biol.27, 347–376 (2011). ArticleCASPubMed Google Scholar
Wang, Z. et al. Activated K-Ras and INK4a/Arf deficiency promote aggressiveness of pancreatic cancer by induction of EMT consistent with cancer stem cell phenotype. J. Cell Physiol.228, 556–562 (2013). ArticleCASPubMedPubMed Central Google Scholar
Albino, D. et al. ESE3/EHF controls epithelial cell differentiation and its loss leads to prostate tumors with mesenchymal and stem-like features. Cancer Res.72, 2889–2900 (2012). ArticleCASPubMed Google Scholar
Mulholland, D.J. et al. Pten loss and RAS/MAPK activation cooperate to promote EMT and metastasis initiated from prostate cancer stem/progenitor cells. Cancer Res.72, 1878–1889 (2012). ArticleCASPubMedPubMed Central Google Scholar
Morel, A.P. et al. EMT inducers catalyze malignant transformation of mammary epithelial cells and drive tumorigenesis towards claudin-low tumors in transgenic mice. PLoS Genet.8, e1002723 (2012). ArticleCASPubMedPubMed Central Google Scholar
Carey, L., Winer, E., Viale, G., Cameron, D. & Gianni, L. Triple-negative breast cancer: disease entity or title of convenience? Nat. Rev. Clin. Oncol.7, 683–692 (2010). ArticlePubMed Google Scholar
Sarrió, D. et al. Epithelial-mesenchymal transition in breast cancer relates to the basal-like phenotype. Cancer Res.68, 989–997 (2008). ArticleCASPubMed Google Scholar
Blick, T. et al. Epithelial mesenchymal transition traits in human breast cancer cell lines parallel the CD44hi/CD24lo/– stem cell phenotype in human breast cancer. J. Mammary Gland Biol. Neoplasia15, 235–252 (2010). ArticlePubMed Google Scholar
Blick, T. et al. Epithelial mesenchymal transition traits in human breast cancer cell lines. Clin. Exp. Metastasis25, 629–642 (2008). ArticleCASPubMed Google Scholar
Trelstad, R.L., Hay, E.D. & Revel, J.D. Cell contact during early morphogenesis in the chick embryo. Dev. Biol.16, 78–106 (1967). ArticleCASPubMed Google Scholar
Arnoux, V., Nassour, M., L'Helgoualc'h, A., Hipskind, R.A. & Savagner, P. Erk5 controls Slug expression and keratinocyte activation during wound healing. Mol. Biol. Cell19, 4738–4749 (2008). ArticleCASPubMedPubMed Central Google Scholar
Micalizzi, D.S., Farabaugh, S.M. & Ford, H.L. Epithelial-mesenchymal transition in cancer: parallels between normal development and tumor progression. J. Mammary Gland Biol. Neoplasia15, 117–134 (2010). ArticlePubMedPubMed Central Google Scholar
Bednarz-Knoll, N., Alix-Panabieres, C. & Pantel, K. Plasticity of disseminating cancer cells in patients with epithelial malignancies. Cancer Metastasis Rev.31, 673–687 (2012). ArticleCASPubMed Google Scholar
Chao, Y., Wu, Q., Acquafondata, M., Dhir, R. & Wells, A. Partial mesenchymal to epithelial reverting transition in breast and prostate cancer metastases. Cancer Microenviron.5, 19–28 (2012). ArticleCASPubMed Google Scholar
Leroy, P. & Mostov, K.E. Slug is required for cell survival during partial epithelial-mesenchymal transition of HGF-induced tubulogenesis. Mol. Biol. Cell18, 1943–1952 (2007). ArticleCASPubMedPubMed Central Google Scholar
Theveneau, E. & Mayor, R. Neural crest delamination and migration: from epithelium-to-mesenchyme transition to collective cell migration. Dev. Biol.366, 34–54 (2012). ArticleCASPubMed Google Scholar
Gupta, P.B. et al. Stochastic state transitions give rise to phenotypic equilibrium in populations of cancer cells. Cell146, 633–644 (2011). ArticleCASPubMed Google Scholar
Chaffer, C.L. et al. Normal and neoplastic nonstem cells can spontaneously convert to a stem-like state. Proc. Natl. Acad. Sci. USA108, 7950–7955 (2011). ArticleCASPubMedPubMed Central Google Scholar
Schwitalla, S. et al. Intestinal tumorigenesis initiated by dedifferentiation and acquisition of stem-cell–like properties. Cell152, 25–38 (2013). ArticleCASPubMed Google Scholar
Frisch, S.M. The epithelial cell default-phenotype hypothesis and its implications for cancer. Bioessays19, 705–709 (1997). ArticleCASPubMed Google Scholar
Sparmann, A. & van Lohuizen, M. Polycomb silencers control cell fate, development and cancer. Nat. Rev. Cancer6, 846–856 (2006). ArticleCASPubMed Google Scholar
Pietersen, A.M. & van Lohuizen, M. Stem cell regulation by polycomb repressors: postponing commitment. Curr. Opin. Cell Biol.20, 201–207 (2008). ArticleCASPubMed Google Scholar
Cedar, H. & Bergman, Y. Linking DNA methylation and histone modification: patterns and paradigms. Nat. Rev. Genet.10, 295–304 (2009). ArticleCASPubMed Google Scholar
Bracken, A.P. & Helin, K. Polycomb group proteins: navigators of lineage pathways led astray in cancer. Nat. Rev. Cancer9, 773–784 (2009). ArticleCASPubMed Google Scholar
Bracken, A.P., Dietrich, N., Pasini, D., Hansen, K.H. & Helin, K. Genome-wide mapping of Polycomb target genes unravels their roles in cell fate transitions. Genes Dev.20, 1123–1136 (2006). ArticleCASPubMedPubMed Central Google Scholar
Herranz, N. et al. Polycomb complex 2 is required for E-cadherin repression by the Snail1 transcription factor. Mol. Cell Biol.28, 4772–4781 (2008). ArticleCASPubMedPubMed Central Google Scholar
Iliopoulos, D. et al. Loss of miR-200 inhibition of Suz12 leads to polycomb-mediated repression required for the formation and maintenance of cancer stem cells. Mol. Cell39, 761–772 (2010). ArticleCASPubMedPubMed Central Google Scholar
Zaret, K.S. & Carroll, J.S. Pioneer transcription factors: establishing competence for gene expression. Genes Dev.25, 2227–2241 (2011). ArticleCASPubMedPubMed Central Google Scholar
Wright, M.H. et al. Brca1 breast tumors contain distinct CD44+/CD24– and CD133+ cells with cancer stem cell characteristics. Breast Cancer Res.10, R10 (2008). ArticleCASPubMedPubMed Central Google Scholar
Chang, C.J. et al. EZH2 promotes expansion of breast tumor initiating cells through activation of RAF1–β-catenin signaling. Cancer Cell19, 86–100 (2011). ArticleCASPubMedPubMed Central Google Scholar
Collett, K. et al. Expression of enhancer of zeste homologue 2 is significantly associated with increased tumor cell proliferation and is a marker of aggressive breast cancer. Clin. Cancer Res.12, 1168–1174 (2006). ArticleCASPubMed Google Scholar
Kleer, C.G. et al. EZH2 is a marker of aggressive breast cancer and promotes neoplastic transformation of breast epithelial cells. Proc. Natl. Acad. Sci. USA100, 11606–11611 (2003). ArticleCASPubMedPubMed Central Google Scholar
Puppe, J. et al. BRCA1-deficient mammary tumor cells are dependent on EZH2 expression and sensitive to Polycomb Repressive Complex 2–inhibitor 3-deazaneplanocin A. Breast Cancer Res.11, R63 (2009). ArticleCASPubMedPubMed Central Google Scholar
Onder, T.T. et al. Loss of E-cadherin promotes metastasis via multiple downstream transcriptional pathways. Cancer Res.68, 3645–3654 (2008). ArticleCASPubMed Google Scholar
Molofsky, A.V. et al. Bmi-1 dependence distinguishes neural stem cell self-renewal from progenitor proliferation. Nature425, 962–967 (2003). ArticleCASPubMedPubMed Central Google Scholar
Iwama, A. et al. Enhanced self-renewal of hematopoietic stem cells mediated by the polycomb gene product Bmi-1. Immunity21, 843–851 (2004). ArticleCASPubMed Google Scholar
Sangiorgi, E. & Capecchi, M.R. Bmi1 lineage tracing identifies a self-renewing pancreatic acinar cell subpopulation capable of maintaining pancreatic organ homeostasis. Proc. Natl. Acad. Sci. USA106, 7101–7106 (2009). ArticleCASPubMedPubMed Central Google Scholar
Lobo, N.A., Shimono, Y., Qian, D. & Clarke, M.F. The biology of cancer stem cells. Annu. Rev. Cell Dev. Biol.23, 675–699 (2007). ArticleCASPubMed Google Scholar
Valk-Lingbeek, M.E., Bruggeman, S.W. & van Lohuizen, M. Stem cells and cancer; the polycomb connection. Cell118, 409–418 (2004). ArticleCASPubMed Google Scholar
Pardal, R., Molofsky, A.V., He, S. & Morrison, S.J. Stem cell self-renewal and cancer cell proliferation are regulated by common networks that balance the activation of proto-oncogenes and tumor suppressors. Cold Spring Harb. Symp. Quant. Biol.70, 177–185 (2005). ArticleCASPubMed Google Scholar
Song, L.B. et al. The polycomb group protein Bmi-1 represses the tumor suppressor PTEN and induces epithelial-mesenchymal transition in human nasopharyngeal epithelial cells. J. Clin. Invest.119, 3626–3636 (2009). ArticleCASPubMedPubMed Central Google Scholar
Martin, A. & Cano, A. Tumorigenesis: Twist1 links EMT to self-renewal. Nat. Cell Biol.12, 924–925 (2010). ArticleCASPubMed Google Scholar
Yang, M.H. et al. Bmi1 is essential in Twist1-induced epithelial-mesenchymal transition. Nat. Cell Biol.12, 982–992 (2010). ArticleCASPubMed Google Scholar
Peinado, H., Ballestar, E., Esteller, M. & Cano, A. Snail mediates E-cadherin repression by the recruitment of the Sin3A/histone deacetylase 1 (HDAC1)/HDAC2 complex. Mol. Cell Biol.24, 306–319 (2004). ArticleCASPubMedPubMed Central Google Scholar
von Burstin, J. et al. E-cadherin regulates metastasis of pancreatic cancer in vivo and is suppressed by a SNAIL/HDAC1/HDAC2 repressor complex. Gastroenterology137, 361–371, 371.e1–5 (2009). ArticleCASPubMed Google Scholar
Lin, Y. et al. The SNAG domain of Snail1 functions as a molecular hook for recruiting lysine-specific demethylase 1. EMBO J.29, 1803–1816 (2010). ArticleCASPubMedPubMed Central Google Scholar
Fu, J. et al. The TWIST/Mi2/NuRD protein complex and its essential role in cancer metastasis. Cell Res.21, 275–289 (2011). ArticleCASPubMed Google Scholar
Shi, Y. et al. Histone demethylation mediated by the nuclear amine oxidase homolog LSD1. Cell119, 941–953 (2004). ArticleCASPubMed Google Scholar
Harris, W.J. et al. The histone demethylase KDM1A sustains the oncogenic potential of MLL-AF9 leukemia stem cells. Cancer Cell21, 473–487 (2012). ArticleCASPubMed Google Scholar
Lim, S. et al. Lysine-specific demethylase 1 (LSD1) is highly expressed in ER-negative breast cancers and a biomarker predicting aggressive biology. Carcinogenesis31, 512–520 (2010). ArticleCASPubMed Google Scholar
Lin, T., Ponn, A., Hu, X., Law, B.K. & Lu, J. Requirement of the histone demethylase LSD1 in Snai1-mediated transcriptional repression during epithelial-mesenchymal transition. Oncogene29, 4896–4904 (2010). ArticleCASPubMedPubMed Central Google Scholar
Schenk, T. et al. Inhibition of the LSD1 (KDM1A) demethylase reactivates the all-_trans_–retinoic acid differentiation pathway in acute myeloid leukemia. Nat. Med.18, 605–611 (2012). ArticleCASPubMedPubMed Central Google Scholar
Wang, Y. et al. LSD1 is a subunit of the NuRD complex and targets the metastasis programs in breast cancer. Cell138, 660–672 (2009). ArticleCASPubMed Google Scholar
Metzger, E. et al. LSD1 demethylates repressive histone marks to promote androgen-receptor–dependent transcription. Nature437, 436–439 (2005). ArticleCASPubMed Google Scholar
Bernstein, B.E. et al. A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell125, 315–326 (2006). ArticleCASPubMed Google Scholar
Chaffer, C.L. et al. Poised chromatin at the ZEB1 promoter enables breast cancer cell plasticity and enhances tumorigenicity. Cell154, 61–74 (2013). ArticleCASPubMedPubMed Central Google Scholar
Maruyama, R. et al. Epigenetic regulation of cell type-specific expression patterns in the human mammary epithelium. PLoS Genet.7, e1001369 (2011). ArticleCASPubMedPubMed Central Google Scholar
Vallés, A.M. et al. Acidic fibroblast growth factor is a modulator of epithelial plasticity in a rat bladder carcinoma cell line. Proc. Natl. Acad. Sci. USA87, 1124–1128 (1990). ArticlePubMedPubMed Central Google Scholar
Dong, C. et al. G9a interacts with Snail and is critical for Snail-mediated E-cadherin repression in human breast cancer. J. Clin. Invest.122, 1469–1486 (2012). ArticleCASPubMedPubMed Central Google Scholar
Dong, C. et al. Interaction with Suv39H1 is critical for Snail-mediated E-cadherin repression in breast cancer. Oncogene32, 1351–1362 (2013). ArticleCASPubMed Google Scholar
Ke, X.S. et al. Global profiling of histone and DNA methylation reveals epigenetic-based regulation of gene expression during epithelial to mesenchymal transition in prostate cells. BMC Genomics11, 669 (2010). ArticleCASPubMedPubMed Central Google Scholar
Bert, S.A. et al. Regional activation of the cancer genome by long-range epigenetic remodeling. Cancer Cell23, 9–22 (2013). ArticleCASPubMed Google Scholar
Zouridis, H. et al. Methylation subtypes and large-scale epigenetic alterations in gastric cancer. Sci. Transl. Med.4, 156ra140 (2012). ArticleCASPubMed Google Scholar
Coolen, M.W. et al. Consolidation of the cancer genome into domains of repressive chromatin by long-range epigenetic silencing (LRES) reduces transcriptional plasticity. Nat. Cell Biol.12, 235–246 (2010). ArticleCASPubMedPubMed Central Google Scholar
Creighton, C.J. et al. Residual breast cancers after conventional therapy display mesenchymal as well as tumor-initiating features. Proc. Natl. Acad. Sci. USA106, 13820–13825 (2009). ArticleCASPubMedPubMed Central Google Scholar
Li, X. et al. Intrinsic resistance of tumorigenic breast cancer cells to chemotherapy. J. Natl. Cancer Inst.100, 672–679 (2008). ArticleCASPubMed Google Scholar
Singh, A. & Settleman, J. EMT, cancer stem cells and drug resistance: an emerging axis of evil in the war on cancer. Oncogene29, 4741–4751 (2010). ArticleCASPubMedPubMed Central Google Scholar
Ceppi, P. et al. Loss of miR-200c expression induces an aggressive, invasive, and chemoresistant phenotype in non-small cell lung cancer. Mol. Cancer Res.8, 1207–1216 (2010). ArticleCASPubMed Google Scholar
Vrba, L. et al. Role for DNA methylation in the regulation of miR-200c and miR-141 expression in normal and cancer cells. PLoS ONE5, e8697 (2010). ArticleCASPubMedPubMed Central Google Scholar
Eades, G. et al. miR-200a regulates SIRT1 expression and epithelial to mesenchymal transition (EMT)-like transformation in mammary epithelial cells. J. Biol. Chem.286, 25992–26002 (2011). ArticleCASPubMedPubMed Central Google Scholar
Tryndyak, V.P., Beland, F.A. & Pogribny, I.P. E-cadherin transcriptional down-regulation by epigenetic and microRNA-200 family alterations is related to mesenchymal and drug-resistant phenotypes in human breast cancer cells. Int. J. Cancer126, 2575–2583 (2010). CASPubMed Google Scholar
Daskalakis, M. et al. Demethylation of a hypermethylated P15/INK4B gene in patients with myelodysplastic syndrome by 5-Aza-2′-deoxycytidine (decitabine) treatment. Blood100, 2957–2964 (2002). ArticleCASPubMed Google Scholar
Petti, M.C. et al. Complete remission through blast cell differentiation in PLZF/RARα-positive acute promyelocytic leukemia: in vitro and in vivo studies. Blood100, 1065–1067 (2002). ArticleCASPubMed Google Scholar
Shaker, S., Bernstein, M., Momparler, L.F. & Momparler, R.L. Preclinical evaluation of antineoplastic activity of inhibitors of DNA methylation (5-aza-2′-deoxycytidine) and histone deacetylation (trichostatin A, depsipeptide) in combination against myeloid leukemic cells. Leuk. Res.27, 437–444 (2003). ArticleCASPubMed Google Scholar
Cameron, E.E., Bachman, K.E., Myohanen, S., Herman, J.G. & Baylin, S.B. Synergy of demethylation and histone deacetylase inhibition in the re-expression of genes silenced in cancer. Nat. Genet.21, 103–107 (1999). ArticleCASPubMed Google Scholar
Gaudet, F. et al. Induction of tumors in mice by genomic hypomethylation. Science300, 489–492 (2003). ArticleCASPubMed Google Scholar
Eden, A., Gaudet, F., Waghmare, A. & Jaenisch, R. Chromosomal instability and tumors promoted by DNA hypomethylation. Science300, 455 (2003). ArticleCASPubMed Google Scholar
Yang, A.S., Estecio, M.R., Garcia-Manero, G., Kantarjian, H.M. & Issa, J.P. Comment on “Chromosomal instability and tumors promoted by DNA hypomethylation” and “Induction of tumors in nice by genomic hypomethylation”. Science302, 1153 (2003). ArticleCASPubMed Google Scholar
Bruzzese, F. et al. HDAC inhibitor vorinostat enhances the antitumor effect of gefitinib in squamous cell carcinoma of head and neck by modulating ErbB receptor expression and reverting EMT. J. Cell. Physiol.226, 2378–2390 (2011). ArticleCASPubMed Google Scholar
Lei, W. et al. Histone deacetylase 1 is required for transforming growth factor-β1–induced epithelial-mesenchymal transition. Int. J. Biochem. Cell Biol.42, 1489–1497 (2010). ArticleCASPubMed Google Scholar
Kaimori, A. et al. Histone deacetylase inhibition suppresses the transforming growth factor β1–induced epithelial-to-mesenchymal transition in hepatocytes. Hepatology52, 1033–1045 (2010). ArticleCASPubMed Google Scholar
Jiang, G.M. et al. Histone deacetylase inhibitor induction of epithelial-mesenchymal transitions via up-regulation of Snail facilitates cancer progression. Biochim. Biophys. Acta1833, 663–671 (2013). ArticleCASPubMed Google Scholar
Kong, D. et al. Histone deacetylase inhibitors induce epithelial-to-mesenchymal transition in prostate cancer cells. PLoS ONE7, e45045 (2012). ArticleCASPubMedPubMed Central Google Scholar
Whyte, W.A. et al. Master transcription factors and mediator establish super-enhancers at key cell identity genes. Cell153, 307–319 (2013). ArticleCASPubMedPubMed Central Google Scholar
Daigle, S.R. et al. Selective killing of mixed lineage leukemia cells by a potent small-molecule DOT1L inhibitor. Cancer Cell20, 53–65 (2011). ArticleCASPubMedPubMed Central Google Scholar
Knutson, S.K. et al. A selective inhibitor of EZH2 blocks H3K27 methylation and kills mutant lymphoma cells. Nat. Chem. Biol.8, 890–896 (2012). ArticleCASPubMed Google Scholar
Finn, R.S. et al. Dasatinib, an orally active small molecule inhibitor of both the src and abl kinases, selectively inhibits growth of basal-type/”triple-negative” breast cancer cell lines growing in vitro. Breast Cancer Res. Treat.105, 319–326 (2007). ArticleCASPubMed Google Scholar
Tam, W.L. et al. Protein kinase C α is a central signaling node and therapeutic target for breast cancer stem cells. Cancer Cell24, 347–364 (2013). ArticleCASPubMedPubMed Central Google Scholar
Bonde, A.K., Tischler, V., Kumar, S., Soltermann, A. & Schwendener, R.A. Intratumoral macrophages contribute to epithelial-mesenchymal transition in solid tumors. BMC Cancer12, 35 (2012). ArticleCASPubMedPubMed Central Google Scholar
Gao, M.Q. et al. Stromal fibroblasts from the interface zone of human breast carcinomas induce an epithelial-mesenchymal transition–like state in breast cancer cells in vitro. J. Cell Sci.123, 3507–3514 (2010). ArticleCASPubMed Google Scholar
van Zijl, F. et al. Hepatic tumor-stroma crosstalk guides epithelial to mesenchymal transition at the tumor edge. Oncogene28, 4022–4033 (2009). ArticleCASPubMedPubMed Central Google Scholar
Li, H.J., Reinhardt, F., Herschman, H.R. & Weinberg, R.A. Cancer-stimulated mesenchymal stem cells create a carcinoma stem-cell niche via Prostaglandin E2 signaling. Cancer Discov.2, 840–855 (2012). ArticleCASPubMed Google Scholar
Wyckoff, J.B. et al. Direct visualization of macrophage-assisted tumor cell intravasation in mammary tumors. Cancer Res.67, 2649–2656 (2007). ArticleCASPubMed Google Scholar
Yu, M. et al. Circulating breast tumor cells exhibit dynamic changes in epithelial and mesenchymal composition. Science339, 580–584 (2013). ArticleCASPubMedPubMed Central Google Scholar
Brabletz, T. To differentiate or not—routes towards metastasis. Nat. Rev. Cancer12, 425–436 (2012). ArticleCASPubMed Google Scholar
Brabletz, S. & Brabletz, T. The ZEB/miR-200 feedback loop—a motor of cellular plasticity in development and cancer? EMBO Rep.11, 670–677 (2010). ArticleCASPubMedPubMed Central Google Scholar
Bracken, C.P. et al. A double-negative feedback loop between ZEB1–SIP1 and the microRNA-200 family regulates epithelial-mesenchymal transition. Cancer Res.68, 7846–7854 (2008). ArticleCASPubMed Google Scholar
Chang, C.J. et al. p53 regulates epithelial-mesenchymal transition and stem cell properties through modulating miRNAs. Nat. Cell Biol.13, 317–323 (2011). ArticleCASPubMedPubMed Central Google Scholar
Acloque, H., Adams, M.S., Fishwick, K., Bronner-Fraser, M. & Nieto, M.A. Epithelial-mesenchymal transitions: the importance of changing cell state in development and disease. J. Clin. Invest.119, 1438–1449 (2009). ArticleCASPubMedPubMed Central Google Scholar
Thiery, J.P. Epithelial-mesenchymal transitions in tumour progression. Nat. Rev. Cancer2, 442–454 (2002). ArticleCASPubMed Google Scholar
Zavadil, J. & Bottinger, E.P. TGF-β and epithelial-to-mesenchymal transitions. Oncogene24, 5764–5774 (2005). ArticleCASPubMed Google Scholar
Taylor, M.A., Parvani, J.G. & Schiemann, W.P. The pathophysiology of epithelial-mesenchymal transition induced by transforming growth factor-β in normal and malignant mammary epithelial cells. J. Mammary Gland Biol. Neoplasia15, 169–190 (2010). ArticlePubMedPubMed Central Google Scholar
Han, G. et al. Distinct mechanisms of TGF-β1–mediated epithelial-to-mesenchymal transition and metastasis during skin carcinogenesis. J. Clin. Invest.115, 1714–1723 (2005). ArticleCASPubMedPubMed Central Google Scholar
Lehmann, K. et al. Raf induces TGFβ production while blocking its apoptotic but not invasive responses: a mechanism leading to increased malignancy in epithelial cells. Genes Dev.14, 2610–2622 (2000). ArticleCASPubMedPubMed Central Google Scholar
Oft, M., Heider, K.H. & Beug, H. TGFβ signaling is necessary for carcinoma cell invasiveness and metastasis. Curr. Biol.8, 1243–1252 (1998). ArticleCASPubMed Google Scholar
McDonald, O.G., Wu, H., Timp, W., Doi, A. & Feinberg, A.P. Genome-scale epigenetic reprogramming during epithelial-to-mesenchymal transition. Nat. Struct. Mol. Biol.18, 867–874 (2011). ArticleCASPubMedPubMed Central Google Scholar
Vermeulen, L. et al. Wnt activity defines colon cancer stem cells and is regulated by the microenvironment. Nat. Cell Biol.12, 468–476 (2010). ArticleCASPubMed Google Scholar
Moon, R.T., Kohn, A.D., De Ferrari, G.V. & Kaykas, A. WNT and β-catenin signalling: diseases and therapies. Nat. Rev. Genet.5, 691–701 (2004). ArticleCASPubMed Google Scholar
Liu, B.Y., McDermott, S.P., Khwaja, S.S. & Alexander, C.M. The transforming activity of Wnt effectors correlates with their ability to induce the accumulation of mammary progenitor cells. Proc. Natl. Acad. Sci. USA101, 4158–4163 (2004). ArticleCASPubMedPubMed Central Google Scholar
Mohamed, O.A., Clarke, H.J. & Dufort, D. β-catenin signaling marks the prospective site of primitive streak formation in the mouse embryo. Dev. Dyn.231, 416–424 (2004). ArticleCASPubMed Google Scholar
Kemler, R. et al. Stabilization of β-catenin in the mouse zygote leads to premature epithelial-mesenchymal transition in the epiblast. Development131, 5817–5824 (2004). ArticleCASPubMed Google Scholar
Kim, K., Lu, Z. & Hay, E.D. Direct evidence for a role of β-catenin/LEF-1 signaling pathway in induction of EMT. Cell Biol. Int.26, 463–476 (2002). ArticleCASPubMed Google Scholar
Yook, J.I. et al. A Wnt-Axin2–GSK3β cascade regulates Snail1 activity in breast cancer cells. Nat. Cell Biol.8, 1398–1406 (2006). ArticleCASPubMed Google Scholar
Gilles, C. et al. Transactivation of vimentin by β-catenin in human breast cancer cells. Cancer Res.63, 2658–2664 (2003). CASPubMed Google Scholar
Kong, D. et al. Platelet-derived growth factor-D overexpression contributes to epithelial-mesenchymal transition of PC3 prostate cancer cells. Stem Cells26, 1425–1435 (2008). ArticleCASPubMedPubMed Central Google Scholar
Thomson, S. et al. A systems view of epithelial-mesenchymal transition signaling states. Clin. Exp. Metastasis28, 137–155 (2011). ArticleCASPubMed Google Scholar
Hardy, K.M., Booth, B.W., Hendrix, M.J., Salomon, D.S. & Strizzi, L. ErbB/EGF signaling and EMT in mammary development and breast cancer. J. Mammary Gland Biol. Neoplasia15, 191–199 (2010). ArticlePubMedPubMed Central Google Scholar
Sakai, D. et al. Regulation of Slug transcription in embryonic ectoderm by β-catenin–Lef/Tcf and BMP-Smad signaling. Dev. Growth Differ.47, 471–482 (2005). ArticleCASPubMed Google Scholar
Sánchez-Tilló, E. et al. β-catenin/TCF4 complex induces the epithelial-to-mesenchymal transition (EMT)-activator ZEB1 to regulate tumor invasiveness. Proc. Natl. Acad. Sci. USA108, 19204–19209 (2011). ArticlePubMedPubMed Central Google Scholar
Kim, T. et al. p53 regulates epithelial-mesenchymal transition through microRNAs targeting ZEB1 and ZEB2. J. Exp. Med.208, 875–883 (2011). ArticleCASPubMedPubMed Central Google Scholar
Korpal, M., Lee, E.S., Hu, G. & Kang, Y. The miR-200 family inhibits epithelial-mesenchymal transition and cancer cell migration by direct targeting of E-cadherin transcriptional repressors ZEB1 and ZEB2. J. Biol. Chem.283, 14910–14914 (2008). ArticleCASPubMedPubMed Central Google Scholar
Park, S.M., Gaur, A.B., Lengyel, E. & Peter, M.E. The miR-200 family determines the epithelial phenotype of cancer cells by targeting the E-cadherin repressors ZEB1 and ZEB2. Genes Dev.22, 894–907 (2008). ArticleCASPubMedPubMed Central Google Scholar
Davalos, V. et al. Dynamic epigenetic regulation of the microRNA-200 family mediates epithelial and mesenchymal transitions in human tumorigenesis. Oncogene31, 2062–2074 (2012). ArticleCASPubMed Google Scholar
Neves, R. et al. Role of DNA methylation in miR-200c/141 cluster silencing in invasive breast cancer cells. BMC Res. Notes3, 219 (2010). ArticleCASPubMedPubMed Central Google Scholar
Wiklund, E.D. et al. Coordinated epigenetic repression of the miR-200 family and miR-205 in invasive bladder cancer. Int. J. Cancer128, 1327–1334 (2011). ArticleCASPubMed Google Scholar
Tellez, C.S. et al. EMT and stem cell–like properties associated with miR-205 and miR-200 epigenetic silencing are early manifestations during carcinogen-induced transformation of human lung epithelial cells. Cancer Res.71, 3087–3097 (2011). ArticleCASPubMedPubMed Central Google Scholar
Kasinski, A.L. & Slack, F.J. Epigenetics and genetics. MicroRNAs en route to the clinic: progress in validating and targeting microRNAs for cancer therapy. Nat. Rev. Cancer11, 849–864 (2011). ArticleCASPubMedPubMed Central Google Scholar
Kong, Y.W., Ferland-McCollough, D., Jackson, T.J. & Bushell, M. microRNAs in cancer management. Lancet Oncol.13, e249–e258 (2012). ArticleCASPubMed Google Scholar
Rinn, J.L. & Chang, H.Y. Genome regulation by long noncoding RNAs. Annu. Rev. Biochem.81, 145–166 (2012). ArticleCASPubMed Google Scholar
Rinn, J.L. et al. Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs. Cell129, 1311–1323 (2007). ArticleCASPubMedPubMed Central Google Scholar