Preparing the ground for tissue regeneration: from mechanism to therapy (original) (raw)
Lozano, R. et al. Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet380, 2095–2128 (2012). ArticlePubMed Google Scholar
Niethammer, P., Grabher, C., Look, A.T. & Mitchison, T.J. A tissue-scale gradient of hydrogen peroxide mediates rapid wound detection in zebrafish. Nature459, 996–999 (2009). ArticleCASPubMedPubMed Central Google Scholar
Kolaczkowska, E. & Kubes, P. Neutrophil recruitment and function in health and inflammation. Nat. Rev. Immunol.13, 159–175 (2013). ArticleCASPubMed Google Scholar
Pase, L. et al. Neutrophil-delivered myeloperoxidase dampens the hydrogen peroxide burst after tissue wounding in zebrafish. Curr. Biol.22, 1818–1824 (2012). ArticleCASPubMed Google Scholar
Kolaczkowska, E. & Kubes, P. Neutrophil recruitment and function in health and inflammation. Nat. Rev. Immunol.13, 159–175 (2013). ArticleCASPubMed Google Scholar
Porta, C. et al. Tolerance and M2 (alternative) macrophage polarization are related processes orchestrated by p50 nuclear factor κB. Proc. Natl. Acad. Sci. USA106, 14978–14983 (2009). ArticlePubMedPubMed Central Google Scholar
Jenkins, S.J. et al. IL-4 directly signals tissue-resident macrophages to proliferate beyond homeostatic levels controlled by CSF-1. J. Exp. Med.210, 2477–2491 (2013). ArticleCASPubMedPubMed Central Google Scholar
Jenkins, S.J. et al. Local macrophage proliferation, rather than recruitment from the blood, is a signature of TH2 inflammation. Science332, 1284–1288 (2011). ArticleCASPubMedPubMed Central Google Scholar
Li, L., Yan, B., Shi, Y.Q., Zhang, W.Q. & Wen, Z.L. Live imaging reveals differing roles of macrophages and neutrophils during zebrafish tail fin regeneration. J. Biol. Chem.287, 25353–25360 (2012). ArticleCASPubMedPubMed Central Google Scholar
Hay, E.D. & Fischman, D.A. Origin of the blastema in regenerating limbs of the newt Triturus viridescens. An autoradiographic study using tritiated thymidine to follow cell proliferation and migration. Dev. Biol.3, 26–59 (1961). ArticleCASPubMed Google Scholar
Armulik, A., Genove, G. & Betsholtz, C. Pericytes: developmental, physiological, and pathological perspectives, problems, and promises. Dev. Cell21, 193–215 (2011). ArticleCASPubMed Google Scholar
Chen, C.W. et al. Perivascular multi-lineage progenitor cells in human organs: regenerative units, cytokine sources or both? Cytokine Growth Factor Rev.20, 429–434 (2009). ArticleCASPubMed Google Scholar
Dulauroy, S., Di Carlo, S.E., Langa, F., Eberl, G. & Peduto, L. Lineage tracing and genetic ablation of ADAM12+ perivascular cells identify a major source of profibrotic cells during acute tissue injury. Nat. Med.18, 1262–1270 (2012). ArticleCASPubMed Google Scholar
Lin, S.L., Kisseleva, T., Brenner, D.A. & Duffield, J.S. Pericytes and perivascular fibroblasts are the primary source of collagen-producing cells in obstructive fibrosis of the kidney. Am. J. Pathol.173, 1617–1627 (2008). ArticleCASPubMedPubMed Central Google Scholar
Henderson, N.C. et al. Targeting of αv integrin identifies a core molecular pathway that regulates fibrosis in several organs. Nat. Med.19, 1617–1624 (2013). ArticleCASPubMed Google Scholar
Issa, R. et al. Mutation in collagen-1 that confers resistance to the action of collagenase results in failure of recovery from CCL4-induced liver fibrosis, persistence of activated hepatic stellate cells, and diminished hepatocyte regeneration. FASEB J.17, 47–49 (2003). ArticleCASPubMed Google Scholar
Kallis, Y.N. et al. Remodelling of extracellular matrix is a requirement for the hepatic progenitor cell response. Gut60, 525–533 (2011). ArticleCASPubMed Google Scholar
Pellicoro, A., Ramachandran, P., Iredale, J.P. & Fallowfield, J.A. Liver fibrosis and repair: immune regulation of wound healing in a solid organ. Nat. Rev. Immunol.14, 181–194 (2014). ArticleCASPubMed Google Scholar
Stark, K. et al. Capillary and arteriolar pericytes attract innate leukocytes exiting through venules and 'instruct' them with pattern-recognition and motility programs. Nat. Immunol.14, 41–51 (2013). ArticleCASPubMed Google Scholar
Dellavalle, A. et al. Pericytes resident in postnatal skeletal muscle differentiate into muscle fibres and generate satellite cells. Nat. Commun.2, 499 (2011). ArticleCASPubMed Google Scholar
Cappellari, O. et al. Dll4 and PDGF-BB convert committed skeletal myoblasts to pericytes without erasing their myogenic memory. Dev. Cell24, 586–599 (2013). ArticleCASPubMed Google Scholar
Katare, R. et al. Transplantation of human pericyte progenitor cells improves the repair of infarcted heart through activation of an angiogenic program involving micro-RNA-132. Circ. Res.109, 894–906 (2011). ArticleCASPubMedPubMed Central Google Scholar
Corselli, M., Chen, C.W., Crisan, M., Lazzari, L. & Peault, B. Perivascular ancestors of adult multipotent stem cells. Arterioscler. Thromb. Vasc. Biol.30, 1104–1109 (2010). ArticleCASPubMed Google Scholar
Wing, K. & Sakaguchi, S. Regulatory T cells exert checks and balances on self tolerance and autoimmunity. Nat. Immunol.11, 7–13 (2010). ArticleCASPubMed Google Scholar
Josefowicz, S.Z., Lu, L.F. & Rudensky, A.Y. Regulatory T cells: mechanisms of differentiation and function. Annu. Rev. Immunol.30, 531–564 (2012). ArticleCASPubMedPubMed Central Google Scholar
Tang, T.T. et al. Regulatory T cells ameliorate cardiac remodeling after myocardial infarction. Basic Res. Cardiol.107, 232 (2012). ArticlePubMed Google Scholar
Bird, T.G., Lorenzini, S. & Forbes, S.J. Activation of stem cells in hepatic diseases. Cell Tissue Res.331, 283–300 (2008). ArticleCASPubMed Google Scholar
Boulton, R.A., Alison, M.R., Golding, M., Selden, C. & Hodgson, H.J. Augmentation of the early phase of liver regeneration after 70% partial hepatectomy in rats following selective Kupffer cell depletion. J. Hepatol.29, 271–280 (1998). ArticleCASPubMed Google Scholar
Boulton, R. et al. Nonparenchymal cells from regenerating rat liver generate interleukin-1α and -1β: a mechanism of negative regulation of hepatocyte proliferation. Hepatology26, 49–58 (1997). CASPubMed Google Scholar
Meijer, C. et al. Kupffer cell depletion by CI2MDP-liposomes alters hepatic cytokine expression and delays liver regeneration after partial hepatectomy. Liver20, 66–77 (2000). ArticleCASPubMed Google Scholar
Higgins, G.M. & Anderson, R.M. Experimental pathology of the liver: restoration of the liver of the white rat following partial removal. Arch. Pathol. (Chic.)12, 186–202 (1931). Google Scholar
Yamanaka, N. et al. Dynamics of normal and injured human liver regeneration after hepatectomy as assessed on the basis of computed tomography and liver function. Hepatology18, 79–85 (1993). ArticleCASPubMed Google Scholar
Ding, B.S. et al. Inductive angiocrine signals from sinusoidal endothelium are required for liver regeneration. Nature468, 310–315 (2010). ArticleCASPubMedPubMed Central Google Scholar
Hu, J. et al. Endothelial cell-derived angiopoietin-2 controls liver regeneration as a spatiotemporal rheostat. Science343, 416–419 (2014). ArticleCASPubMed Google Scholar
Ding, B.S. et al. Divergent angiocrine signals from vascular niche balance liver regeneration and fibrosis. Nature505, 97–102 (2014). ArticleCASPubMed Google Scholar
Passino, M.A., Adams, R.A., Sikorski, S.L. & Akassoglou, K. Regulation of hepatic stellate cell differentiation by the neurotrophin receptor p75NTR. Science315, 1853–1856 (2007). ArticleCASPubMed Google Scholar
Ochoa, B. et al. Hedgehog signaling is critical for normal liver regeneration after partial hepatectomy in mice. Hepatology51, 1712–1723 (2010). ArticleCASPubMed Google Scholar
Issa, R. et al. Mutation in collagen-1 that confers resistance to the action of collagenase results in failure of recovery from CCl4-induced liver fibrosis, persistence of activated hepatic stellate cells, and diminished hepatocyte regeneration. FASEB J.17, 47–49 (2003). ArticleCASPubMed Google Scholar
Boulter, L. et al. Macrophage-derived Wnt opposes Notch signaling to specify hepatic progenitor cell fate in chronic liver disease. Nat. Med.18, 572–579 (2012). ArticleCASPubMedPubMed Central Google Scholar
Tsuchiya, A. et al. PolySia-NCAM modulates the formation of ductular reactions in liver injury. Hepatologydoi:10.1002/hep.27099 (28 February 2014).
Williams, M.J., Clouston, A.D. & Forbes, S.J. Links between hepatic fibrosis, ductular reaction, and progenitor cell expansion. Gastroenterology146, 349–356 (2014). ArticlePubMed Google Scholar
Iredale, J.P., Murphy, G., Hembry, R.M., Friedman, S.L. & Arthur, M.J. Human hepatic lipocytes synthesize tissue inhibitor of metalloproteinases-1. Implications for regulation of matrix degradation in liver. J. Clin. Invest.90, 282–287 (1992). ArticleCASPubMedPubMed Central Google Scholar
Iredale, J.P. et al. Mechanisms of spontaneous resolution of rat liver fibrosis. Hepatic stellate cell apoptosis and reduced hepatic expression of metalloproteinase inhibitors. J. Clin. Invest.102, 538–549 (1998). ArticleCASPubMedPubMed Central Google Scholar
Fallowfield, J.A. et al. Scar-associated macrophages are a major source of hepatic matrix metalloproteinase-13 and facilitate the resolution of murine hepatic fibrosis. J. Immunol.178, 5288–5295 (2007). ArticleCASPubMed Google Scholar
Kisseleva, T. et al. Myofibroblasts revert to an inactive phenotype during regression of liver fibrosis. Proc. Natl. Acad. Sci. USA109, 9448–9453 (2012). ArticlePubMedPubMed Central Google Scholar
Duffield, J.S. et al. Selective depletion of macrophages reveals distinct, opposing roles during liver injury and repair. J. Clin. Invest.115, 56–65 (2005). ArticleCASPubMedPubMed Central Google Scholar
Gibbons, M.A. et al. Ly6Chi monocytes direct alternatively activated profibrotic macrophage regulation of lung fibrosis. Am. J. Respir. Crit. Care Med.184, 569–581 (2011). ArticleCASPubMed Google Scholar
Ramachandran, P. et al. Differential Ly-6C expression identifies the recruited macrophage phenotype, which orchestrates the regression of murine liver fibrosis. Proc. Natl. Acad. Sci. USA109, E3186–E3195 (2012). ArticlePubMedPubMed Central Google Scholar
Overturf, K., al-Dhalimy, M., Ou, C.N., Finegold, M. & Grompe, M. Serial transplantation reveals the stem-cell-like regenerative potential of adult mouse hepatocytes. Am. J. Pathol.151, 1273–1280 (1997). CASPubMedPubMed Central Google Scholar
Bird, T.G. et al. Bone marrow injection stimulates hepatic ductular reactions in the absence of injury via macrophage-mediated TWEAK signaling. Proc. Natl. Acad. Sci. USA110, 6542–6547 (2013). ArticlePubMedPubMed Central Google Scholar
Espanol-Suner, R. et al. Liver progenitor cells yield functional hepatocytes in response to chronic liver injury in mice. Gastroenterology143, 1564–1575.e7 (2012). ArticlePubMed Google Scholar
He, J., Lu, H., Zou, Q. & Luo, L. Regeneration of liver after extreme hepatocyte loss occurs mainly via biliary transdifferentiation in zebrafish. Gastroenterology146, 789–800.e8 (2014). ArticleCASPubMed Google Scholar
Choi, T.Y., Ninov, N., Stainier, D.Y. & Shin, D. Extensive conversion of hepatic biliary epithelial cells to hepatocytes after near total loss of hepatocytes in zebrafish. Gastroenterology146, 776–788 (2014). ArticleCASPubMed Google Scholar
Sato, T. et al. Paneth cells constitute the niche for Lgr5 stem cells in intestinal crypts. Nature469, 415–418 (2011). ArticleCASPubMed Google Scholar
Barker, N. et al. Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature449, 1003–1007 (2007). ArticleCASPubMed Google Scholar
Barker, N. et al. Lgr5(+ve) stem cells drive self-renewal in the stomach and build long-lived gastric units in vitro. Cell Stem Cell6, 25–36 (2010). ArticleCASPubMed Google Scholar
de Lau, W. et al. Lgr5 homologues associate with Wnt receptors and mediate R-spondin signalling. Nature476, 293–297 (2011). ArticleCASPubMed Google Scholar
Yui, S. et al. Functional engraftment of colon epithelium expanded in vitro from a single adult Lgr5+ stem cell. Nat. Med.18, 618–623 (2012). ArticleCASPubMed Google Scholar
Sato, T. et al. Long-term expansion of epithelial organoids from human colon, adenoma, adenocarcinoma, and Barrett's epithelium. Gastroenterology141, 1762–1772 (2011). ArticleCASPubMed Google Scholar
Jung, P. et al. Isolation and in vitro expansion of human colonic stem cells. Nat. Med.17, 1225–1227 (2011). ArticleCASPubMed Google Scholar
Sala, F.G. et al. A multicellular approach forms a significant amount of tissue-engineered small intestine in the mouse. Tissue Eng. Part A17, 1841–1850 (2011). ArticleCASPubMedPubMed Central Google Scholar
MacDonald, T.T., Monteleone, I., Fantini, M.C. & Monteleone, G. Regulation of homeostasis and inflammation in the intestine. Gastroenterology140, 1768–1775 (2011). ArticleCASPubMed Google Scholar
Pull, S.L., Doherty, J.M., Mills, J.C., Gordon, J.I. & Stappenbeck, T.S. Activated macrophages are an adaptive element of the colonic epithelial progenitor niche necessary for regenerative responses to injury. Proc. Natl. Acad. Sci. USA102, 99–104 (2005). ArticleCASPubMed Google Scholar
Lu, N. et al. Activation of the epidermal growth factor receptor in macrophages regulates cytokine production and experimental colitis. J. Immunol.192, 1013–1023 (2014). ArticleCASPubMed Google Scholar
Seno, H. et al. Efficient colonic mucosal wound repair requires Trem2 signaling. Proc. Natl. Acad. Sci. USA106, 256–261 (2009). ArticlePubMed Google Scholar
Egea, L. et al. GM-CSF produced by nonhematopoietic cells is required for early epithelial cell proliferation and repair of injured colonic mucosa. J. Immunol.190, 1702–1713 (2013). ArticleCASPubMed Google Scholar
Willenborg, S. & Eming, S.A. Macrophages—sensors and effectors coordinating skin damage and repair. J. Dtsch. Dermatol. Ges.12, 214–221 (2014). PubMed Google Scholar
Lucas, T. et al. Differential roles of macrophages in diverse phases of skin repair. J. Immunol.184, 3964–3977 (2010). ArticleCASPubMed Google Scholar
Rabelink, T.J. & Little, M.H. Stromal cells in tissue homeostasis: balancing regeneration and fibrosis. Nat. Rev. Nephrol.9, 747–753 (2013). ArticleCASPubMed Google Scholar
Anders, H.J. Immune system modulation of kidney regeneration-mechanisms and implications. Nat. Rev. Nephrol.10, 347–358 (2014). ArticleCASPubMed Google Scholar
Romagnani, P., Lasagni, L. & Remuzzi, G. Renal progenitors: an evolutionary conserved strategy for kidney regeneration. Nat. Rev. Nephrol.9, 137–146 (2013). ArticleCASPubMed Google Scholar
McCampbell, K.K. & Wingert, R.A. New tides: using zebrafish to study renal regeneration. Transl. Res.163, 109–122 (2014). ArticleCASPubMed Google Scholar
Wang, Y. et al. Ex vivo programmed macrophages ameliorate experimental chronic inflammatory renal disease. Kidney Int.72, 290–299 (2007). ArticleCASPubMed Google Scholar
Alikhan, M.A. et al. Colony-stimulating factor-1 promotes kidney growth and repair via alteration of macrophage responses. Am. J. Pathol.179, 1243–1256 (2011). ArticleCASPubMedPubMed Central Google Scholar
Carosio, S., Berardinelli, M.G., Aucello, M. & Musaro, A. Impact of ageing on muscle cell regeneration. Ageing Res. Rev.10, 35–42 (2011). ArticleCASPubMed Google Scholar
Nahrendorf, M. et al. The healing myocardium sequentially mobilizes two monocyte subsets with divergent and complementary functions. J. Exp. Med.204, 3037–3047 (2007). ArticleCASPubMedPubMed Central Google Scholar
Tidball, J.G. & Villalta, S.A. Regulatory interactions between muscle and the immune system during muscle regeneration. Am. J. Physiol. Regul. Integr. Comp. Physiol.298, R1173–R1187 (2010). ArticleCASPubMedPubMed Central Google Scholar
Saclier, M. et al. Differentially activated macrophages orchestrate myogenic precursor cell fate during human skeletal muscle regeneration. Stem Cells31, 384–396 (2013). ArticleCASPubMed Google Scholar
Massimino, M.L. et al. ED2+ macrophages increase selectively myoblast proliferation in muscle cultures. Biochem. Biophys. Res. Commun.235, 754–759 (1997). ArticleCASPubMed Google Scholar
Villalta, S.A., Nguyen, H.X., Deng, B., Gotoh, T. & Tidball, J.G. Shifts in macrophage phenotypes and macrophage competition for arginine metabolism affect the severity of muscle pathology in muscular dystrophy. Hum. Mol. Genet.18, 482–496 (2009). ArticleCASPubMed Google Scholar
Lu, H. et al. Macrophages recruited via CCR2 produce insulin-like growth factor-1 to repair acute skeletal muscle injury. FASEB J.25, 358–369 (2011). ArticleCASPubMedPubMed Central Google Scholar
Sica, A., Schioppa, T., Mantovani, A. & Allavena, P. Tumour-associated macrophages are a distinct M2 polarised population promoting tumour progression: potential targets of anti-cancer therapy. Eur. J. Cancer42, 717–727 (2006). ArticleCASPubMed Google Scholar
Ochoa, O. et al. Delayed angiogenesis and VEGF production in _Ccr2_−/− mice during impaired skeletal muscle regeneration. Am. J. Physiol. Regul. Integr. Comp. Physiol.293, R651–R661 (2007). ArticleCASPubMed Google Scholar
Arnold, L. et al. Inflammatory monocytes recruited after skeletal muscle injury switch into antiinflammatory macrophages to support myogenesis. J. Exp. Med.204, 1057–1069 (2007). ArticleCASPubMedPubMed Central Google Scholar
Ruffell, D. et al. A CREB-C/EBPb cascade induces M2 macrophage–specific gene expression and promotes muscle injury repair. Proc. Natl. Acad. Sci. USA106, 17475–17480 (2009). ArticlePubMedPubMed Central Google Scholar
Villalta, S.A. et al. Interleukin-10 reduces the pathology of mdx muscular dystrophy by deactivating M1 macrophages and modulating macrophage phenotype. Hum. Mol. Genet.20, 790–805 (2011). ArticleCASPubMed Google Scholar
Tidball, J.G. & Villalta, S.A. Regulatory interactions between muscle and the immune system during muscle regeneration. Am. J. Physiol. Regul. Integr. Comp. Physiol.298, R1173–R1187 (2010). ArticleCASPubMedPubMed Central Google Scholar
Swirski, F.K. & Nahrendorf, M. Leukocyte behavior in atherosclerosis, myocardial infarction, and heart failure. Science339, 161–166 (2013). ArticleCASPubMedPubMed Central Google Scholar
Taghavie-Moghadam, P.L., Butcher, M.J. & Galkina, E.V. The dynamic lives of macrophage and dendritic cell subsets in atherosclerosis. Ann. NY Acad. Sci.1319, 19–37 (2014). ArticleCASPubMed Google Scholar
Pinto, A.R. et al. An abundant tissue macrophage population in the adult murine heart with a distinct alternatively-activated macrophage profile. PLoS ONE7, e36814 (2012). ArticleCASPubMedPubMed Central Google Scholar
Epelman, S. et al. Embryonic and adult-derived resident cardiac macrophages are maintained through distinct mechanisms at steady state and during inflammation. Immunity40, 91–104 (2014). ArticleCASPubMedPubMed Central Google Scholar
Gow, D.J., Sester, D.P. & Hume, D.A. CSF-1, IGF-1, and the control of postnatal growth and development. J. Leukoc. Biol.88, 475–481 (2010). ArticleCASPubMed Google Scholar
Iekushi, K., Seeger, F., Assmus, B., Zeiher, A.M. & Dimmeler, S. Regulation of cardiac microRNAs by bone marrow mononuclear cell therapy in myocardial infarction. Circulation125, 1765–1773, S1–S7 (2012). ArticleCASPubMed Google Scholar
Burchfield, J.S. et al. Interleukin-10 from transplanted bone marrow mononuclear cells contributes to cardiac protection after myocardial infarction. Circ. Res.103, 203–211 (2008). ArticleCASPubMed Google Scholar
Zangi, L. et al. Modified mRNA directs the fate of heart progenitor cells and induces vascular regeneration after myocardial infarction. Nat. Biotechnol.31, 898–907 (2013). ArticleCASPubMedPubMed Central Google Scholar
Smart, N. et al. Myocardial regeneration: expanding the repertoire of thymosin beta4 in the ischemic heart. Ann. NY Acad. Sci.1269, 92–101 (2012). ArticleCASPubMed Google Scholar
Porrello, E.R. et al. Regulation of neonatal and adult mammalian heart regeneration by the miR-15 family. Proc. Natl. Acad. Sci. USA110, 187–192 (2013). ArticlePubMed Google Scholar
Haubner, B.J. et al. Complete cardiac regeneration in a mouse model of myocardial infarction. Aging (Albany NY)4, 966–977 (2012). ArticleCAS Google Scholar
Leor, J. et al. Ex vivo activated human macrophages improve healing, remodeling, and function of the infarcted heart. Circulation114, I94–I100 (2006). ArticlePubMed Google Scholar
Cho, D.I. et al. Mesenchymal stem cells reciprocally regulate the M1/M2 balance in mouse bone marrow-derived macrophages. Exp. Mol. Med.46, e70 (2014). ArticleCASPubMedPubMed Central Google Scholar
Franklin, R.J. & Ffrench-Constant, C. Remyelination in the CNS: from biology to therapy. Nat. Rev. Neurosci.9, 839–855 (2008). ArticleCASPubMed Google Scholar
Czopka, T., Ffrench-Constant, C. & Lyons, D.A. Individual oligodendrocytes have only a few hours in which to generate new myelin sheaths in vivo. Dev. Cell25, 599–609 (2013). ArticleCASPubMedPubMed Central Google Scholar
Gibson, E.M. et al. Neuronal activity promotes oligodendrogenesis and adaptive myelination in the mammalian brain. Science344, 1252304 (2014). ArticleCASPubMedPubMed Central Google Scholar
London, A., Cohen, M. & Schwartz, M. Microglia and monocyte-derived macrophages: functionally distinct populations that act in concert in CNS plasticity and repair. Front. Cell. Neurosci.7, 34 (2013). ArticleCASPubMedPubMed Central Google Scholar
Shechter, R. et al. Recruitment of beneficial M2 macrophages to injured spinal cord is orchestrated by remote brain choroid plexus. Immunity38, 555–569 (2013). ArticleCASPubMedPubMed Central Google Scholar
Shechter, R., Raposo, C., London, A., Sagi, I. & Schwartz, M. The glial scar-monocyte interplay: a pivotal resolution phase in spinal cord repair. PLoS ONE6, e27969 (2011). ArticleCASPubMedPubMed Central Google Scholar
Miron, V.E. et al. M2 microglia and macrophages drive oligodendrocyte differentiation during CNS remyelination. Nat. Neurosci.16, 1211–1218 (2013). ArticleCASPubMedPubMed Central Google Scholar
Schwartz, M. & Raposo, C. Protective Autoimmunity: A unifying model for the immune network involved in CNS repair. Neuroscientistdoi:10.1177/1073858413516799 (6 January 2014).
Butovsky, O., Talpalar, A.E., Ben-Yaakov, K. & Schwartz, M. Activation of microglia by aggregated β-amyloid or lipopolysaccharide impairs MHC-II expression and renders them cytotoxic whereas IFN-γ and IL-4 render them protective. Mol. Cell. Neurosci.29, 381–393 (2005). ArticleCASPubMed Google Scholar
Ziv, Y., Avidan, H., Pluchino, S., Martino, G. & Schwartz, M. Synergy between immune cells and adult neural stem/progenitor cells promotes functional recovery from spinal cord injury. Proc. Natl. Acad. Sci. USA103, 13174–13179 (2006). ArticleCASPubMedPubMed Central Google Scholar
Psaltis, P.J., Simari, R.D. & Rodriguez-Porcel, M. Emerging roles for integrated imaging modalities in cardiovascular cell-based therapeutics: a clinical perspective. Eur. J. Nucl. Med. Mol. Imaging39, 165–181 (2012). ArticlePubMed Google Scholar
Lammers, G. et al. An overview of methods for the in vivo evaluation of tissue-engineered skin constructs. Tissue Eng. Part B Rev.17, 33–55 (2011). ArticleCASPubMed Google Scholar
Yui, S. et al. Functional engraftment of colon epithelium expanded in vitro from a single adult Lgr5+ stem cell. Nat. Med.18, 618–623 (2012). ArticleCASPubMed Google Scholar
Hay, D.C. et al. Unbiased screening of polymer libraries to define novel substrates for functional hepatocytes with inducible drug metabolism. Stem Cell Res.6, 92–102 (2011). ArticleCASPubMed Google Scholar
Mendelson, A. & Frenette, P.S. Hematopoietic stem cell niche maintenance during homeostasis and regeneration. Nat. Med.20, 833–846 (2014). ArticleCASPubMedPubMed Central Google Scholar
Behfar, A., Crespo-Diaz, R., Terzic, A. & Gersh, B.J. Cell therapy for cardiac repair—lessons from clinical trials. Nat. Rev. Cardiol.11, 232–246 (2014). ArticlePubMed Google Scholar
Cheng, K., Wu, F. & Cao, F. Intramyocardial autologous cell engraftment in patients with ischaemic heart failure: a meta-analysis of randomised controlled trials. Heart Lung Circ.22, 887–894 (2013). ArticlePubMed Google Scholar
Rosado-de-Castro, P.H., Pimentel-Coelho, P.M., da Fonseca, L.M., de Freitas, G.R. & Mendez-Otero, R. The rise of cell therapy trials for stroke: review of published and registered studies. Stem Cells Dev.22, 2095–2111 (2013). ArticlePubMedPubMed Central Google Scholar
Ellis, E.L. & Mann, D.A. Clinical evidence for the regression of liver fibrosis. J. Hepatol.56, 1171–1180 (2012). ArticlePubMed Google Scholar
Soltys, K.A. et al. Barriers to the successful treatment of liver disease by hepatocyte transplantation. J. Hepatol.53, 769–774 (2010). ArticlePubMedPubMed Central Google Scholar
Thomas, J.A. et al. Macrophage therapy for murine liver fibrosis recruits host effector cells improving fibrosis, regeneration, and function. Hepatology53, 2003–2015 (2011). ArticleCASPubMed Google Scholar
Nakamura, T. et al. Significance and therapeutic potential of endothelial progenitor cell transplantation in a cirrhotic liver rat model. Gastroenterology133, 91–107.e1 (2007). ArticleCASPubMed Google Scholar
Wang, L., Wang, X., Xie, G., Hill, C.K. & DeLeve, L.D. Liver sinusoidal endothelial cell progenitor cells promote liver regeneration in rats. J. Clin. Invest.122, 1567–1573 (2012). ArticleCASPubMedPubMed Central Google Scholar
Turner, M. et al. Toward the development of a global induced pluripotent stem cell library. Cell Stem Cell13, 382–384 (2013). ArticleCASPubMed Google Scholar