Dynamic epigenetic regulation in neurons: enzymes, stimuli and signaling pathways (original) (raw)
Berger, S.L., Kouzarides, T., Shiekhattar, R. & Shilatifard, A. An operational definition of epigenetics. Genes Dev.23, 781–783 (2009). ArticleCASPubMedPubMed Central Google Scholar
Berger, S.L. The complex language of chromatin regulation during transcription. Nature447, 407–412 (2007). ArticleCASPubMed Google Scholar
Borrelli, E., Nestler, E.J., Allis, C.D. & Sassone-Corsi, P. Decoding the epigenetic language of neuronal plasticity. Neuron60, 961–974 (2008). ArticleCASPubMedPubMed Central Google Scholar
Cuthbert, G.L. et al. Histone deimination antagonizes arginine methylation. Cell118, 545–553 (2004). ArticleCASPubMed Google Scholar
Wang, Y. et al. Human PAD4 regulates histone arginine methylation levels via demethylimination. Science306, 279–283 (2004). ArticleCASPubMed Google Scholar
Turner, B.M. Epigenetic responses to environmental change and their evolutionary implications. Phil. Trans. R. Soc. Lond. B364, 3403–3418 (2009). ArticleCAS Google Scholar
Hassan, A.H., Neely, K.E. & Workman, J.L. Histone acetyltransferase complexes stabilize swi/snf binding to promoter nucleosomes. Cell104, 817–827 (2001). ArticleCASPubMed Google Scholar
Boeger, H., Griesenbeck, J., Strattan, J.S. & Kornberg, R.D. Nucleosomes unfold completely at a transcriptionally active promoter. Mol. Cell11, 1587–1598 (2003). ArticleCASPubMed Google Scholar
Reinke, H. & Horz, W. Histones are first hyperacetylated and then lose contact with the activated PHO5 promoter. Mol. Cell11, 1599–1607 (2003). ArticleCASPubMed Google Scholar
Shahbazian, M.D. & Grunstein, M. Functions of site-specific histone acetylation and deacetylation. Annu. Rev. Biochem.76, 75–100 (2007). ArticleCASPubMed Google Scholar
Goodman, R.H. & Smolik, S. CBP/p300 in cell growth, transformation, and development. Genes Dev.14, 1553–1577 (2000). CASPubMed Google Scholar
Vo, N. & Goodman, R.H. CREB-binding protein and p300 in transcriptional regulation. J. Biol. Chem.276, 13505–13508 (2001). ArticleCASPubMed Google Scholar
Partanen, A., Motoyama, J. & Hui, C.C. Developmentally regulated expression of the transcriptional cofactors/histone acetyltransferases CBP and p300 during mouse embryogenesis. Int. J. Dev. Biol.43, 487–494 (1999). CASPubMed Google Scholar
Tanaka, Y. et al. Abnormal skeletal patterning in embryos lacking a single Cbp allele: a partial similarity with Rubinstein-Taybi syndrome. Proc. Natl. Acad. Sci. USA94, 10215–10220 (1997). ArticleCASPubMedPubMed Central Google Scholar
Petrij, F. et al. Rubinstein-Taybi syndrome caused by mutations in the transcriptional co-activator CBP. Nature376, 348–351 (1995). ArticleCASPubMed Google Scholar
Doi, M., Hirayama, J. & Sassone-Corsi, P. Circadian regulator CLOCK is a histone acetyltransferase. Cell125, 497–508 (2006). ArticleCASPubMed Google Scholar
Nakahata, Y., Grimaldi, B., Sahar, S., Hirayama, J. & Sassone-Corsi, P. Signaling to the circadian clock: plasticity by chromatin remodeling. Curr. Opin. Cell Biol.19, 230–237 (2007). ArticleCASPubMed Google Scholar
Nishihara, E. et al. SRC-1 null mice exhibit moderate motor dysfunction and delayed development of cerebellar Purkinje cells. J. Neurosci.23, 213–222 (2003). ArticleCASPubMedPubMed Central Google Scholar
Gregoretti, I.V., Lee, Y.M. & Goodson, H.V. Molecular evolution of the histone deacetylase family: functional implications of phylogenetic analysis. J. Mol. Biol.338, 17–31 (2004). ArticleCASPubMed Google Scholar
Yang, X.J. & Seto, E. The Rpd3/Hda1 family of lysine deacetylases: from bacteria and yeast to mice and men. Nat. Rev. Mol. Cell Biol.9, 206–218 (2008). ArticleCASPubMedPubMed Central Google Scholar
Kazantsev, A.G. & Thompson, L.M. Therapeutic application of histone deacetylase inhibitors for central nervous system disorders. Nat. Rev. Drug Discov.7, 854–868 (2008). ArticleCASPubMed Google Scholar
Haberland, M., Montgomery, R.L. & Olson, E.N. The many roles of histone deacetylases in development and physiology: implications for disease and therapy. Nat. Rev. Genet.10, 32–42 (2009). ArticleCASPubMedPubMed Central Google Scholar
Michan, S. & Sinclair, D. Sirtuins in mammals: insights into their biological function. Biochem. J.404, 1–13 (2007). ArticleCASPubMed Google Scholar
Broide, R.S. et al. Distribution of histone deacetylases 1–11 in the rat brain. J. Mol. Neurosci.31, 47–58 (2007). ArticleCASPubMed Google Scholar
MacDonald, J.L. & Roskams, A.J. Histone deacetylases 1 and 2 are expressed at distinct stages of neuro-glial development. Dev. Dyn.237, 2256–2267 (2008). ArticlePubMed Google Scholar
Lagger, G. et al. Essential function of histone deacetylase 1 in proliferation control and CDK inhibitor repression. EMBO J.21, 2672–2681 (2002). ArticleCASPubMedPubMed Central Google Scholar
Wang, Z. et al. Genome-wide mapping of HATs and HDACs reveals distinct functions in active and inactive genes. Cell138, 1019–1031 (2009). ArticleCASPubMedPubMed Central Google Scholar
Bernstein, B.E. et al. Methylation of histone H3 Lys 4 in coding regions of active genes. Proc. Natl. Acad. Sci. USA99, 8695–8700 (2002). ArticleCASPubMedPubMed Central Google Scholar
Lonze, B.E. & Ginty, D.D. Function and regulation of CREB family transcription factors in the nervous system. Neuron35, 605–623 (2002). ArticleCASPubMed Google Scholar
Impey, S. et al. Phosphorylation of CBP mediates transcriptional activation by neural activity and CaM kinase IV. Neuron34, 235–244 (2002). ArticleCASPubMed Google Scholar
Hardingham, G.E., Chawla, S., Cruzalegui, F.H. & Bading, H. Control of recruitment and transcription-activating function of CBP determines gene regulation by NMDA receptors and L-type calcium channels. Neuron22, 789–798 (1999). ArticleCASPubMed Google Scholar
Merienne, K., Pannetier, S., Harel-Bellan, A. & Sassone-Corsi, P. Mitogen-regulated RSK2-CBP interaction controls their kinase and acetylase activities. Mol. Cell. Biol.21, 7089–7096 (2001). ArticleCASPubMedPubMed Central Google Scholar
Liu, Y.Z., Chrivia, J.C. & Latchman, D.S. Nerve growth factor up-regulates the transcriptional activity of CBP through activation of the p42/p44(MAPK) cascade. J. Biol. Chem.273, 32400–32407 (1998). ArticleCASPubMed Google Scholar
Liu, Y.Z., Thomas, N.S. & Latchman, D.S. CBP associates with the p42/p44 MAPK enzymes and is phosphorylated following NGF treatment. Neuroreport10, 1239–1243 (1999). ArticleCASPubMed Google Scholar
Hu, S.C., Chrivia, J. & Ghosh, A. Regulation of CBP-mediated signatures transcription by neuronal calcium signaling. Neuron22, 799–808 (1999). ArticleCASPubMed Google Scholar
Heintzman, N.D. et al. Distinct and predictive chromatin signatures of transcriptional promoters and enhancers in the human genome. Nat. Genet.39, 311–318 (2007). ArticleCASPubMed Google Scholar
Riccio, A. et al. A nitric oxide signaling pathway controls CREB-mediated gene expression in neurons. Mol. Cell21, 283–294 (2006). ArticleCASPubMed Google Scholar
Nott, A., Watson, P.M., Robinson, J.D., Crepaldi, L. & Riccio, A. S-Nitrosylation of histone deacetylase 2 induces chromatin remodelling in neurons. Nature455, 411–415 (2008). ArticleCASPubMed Google Scholar
Chawla, S., Vanhoutte, P., Arnold, F.J., Huang, C.L. & Bading, H. Neuronal activity-dependent nucleocytoplasmic shuttling of HDAC4 and HDAC5. J. Neurochem.85, 151–159 (2003). ArticleCASPubMed Google Scholar
Sassone-Corsi, P. et al. Requirement of Rsk-2 for epidermal growth factor-activated phosphorylation of histone H3. Science285, 886–891 (1999). ArticleCASPubMed Google Scholar
Crosio, C., Cermakian, N., Allis, C.D. & Sassone-Corsi, P. Light induces chromatin modification in cells of the mammalian circadian clock. Nat. Neurosci.3, 1241–1247 (2000). ArticleCASPubMed Google Scholar
Crosio, C., Heitz, E., Allis, C.D., Borrelli, E. & Sassone-Corsi, P. Chromatin remodeling and neuronal response: multiple signaling pathways induce specific histone H3 modifications and early gene expression in hippocampal neurons. J. Cell Sci.116, 4905–4914 (2003). ArticleCASPubMed Google Scholar
Wittmann, M. et al. Synaptic activity induces dramatic changes in the geometry of the cell nucleus: interplay between nuclear structure, histone H3 phosphorylation, and nuclear calcium signaling. J. Neurosci.29, 14687–14700 (2009). ArticleCASPubMedPubMed Central Google Scholar
Segal, R.A. Selectivity in neurotrophin signaling: theme and variations. Annu. Rev. Neurosci.26, 299–330 (2003). ArticleCASPubMed Google Scholar
Nakajima, T. et al. The signal-dependent coactivator CBP is a nuclear target for pp90RSK. Cell86, 465–474 (1996). ArticleCASPubMed Google Scholar
Wong, K. et al. Nerve growth factor receptor signaling induces histone acetyltransferase domain-dependent nuclear translocation of p300/CREB-binding protein-associated factor and hGCN5 acetyltransferases. J. Biol. Chem.279, 55667–55674 (2004). ArticleCASPubMed Google Scholar
Bredt, D.S. & Snyder, S.H. Transient nitric oxide synthase neurons in embryonic cerebral cortical plate, sensory ganglia, and olfactory epithelium. Neuron13, 301–313 (1994). ArticleCASPubMed Google Scholar
Contestabile, A. Regulation of transcription factors by nitric oxide in neurons and in neural-derived tumor cells. Prog. Neurobiol.84, 317–328 (2008). ArticleCASPubMed Google Scholar
Shahani, N. & Sawa, A. Nitric oxide signaling and nitrosative stress in neurons: role for S-nitrosylation. Antioxid. Redox Signal. published online, doi:10.1089/ars.2010.3580 (2 September 2010).
Hess, D.T., Matsumoto, A., Kim, S.O., Marshall, H.E. & Stamler, J.S. Protein S-nitrosylation: purview and parameters. Nat. Rev. Mol. Cell Biol.6, 150–166 (2005). ArticleCASPubMed Google Scholar
Dhakshinamoorthy, S. et al. Protein/DNA arrays identify nitric oxide-regulated cis-element and trans-factor activities some of which govern neuroblastoma cell viability. Nucleic Acids Res.35, 5439–5451 (2007). ArticleCASPubMedPubMed Central Google Scholar
Colussi, C. et al. HDAC2 blockade by nitric oxide and histone deacetylase inhibitors reveals a common target in Duchenne muscular dystrophy treatment. Proc. Natl. Acad. Sci. USA105, 19183–19187 (2008). ArticlePubMedPubMed Central Google Scholar
Miller, C.A. & Sweatt, J.D. Covalent modification of DNA regulates memory formation. Neuron53, 857–869 (2007). ArticleCASPubMed Google Scholar
Herz, J. & Chen, Y. Reelin, lipoprotein receptors and synaptic plasticity. Nat. Rev. Neurosci.7, 850–859 (2006). ArticleCASPubMed Google Scholar
Morey, L. & Helin, K. Polycomb group protein-mediated repression of transcription. Trends Biochem. Sci.35, 323–332 (2010). ArticleCASPubMed Google Scholar
Ma, D.K. et al. Neuronal activity-induced Gadd45b promotes epigenetic DNA demethylation and adult neurogenesis. Science323, 1074–1077 (2009). ArticleCASPubMedPubMed Central Google Scholar
Kriaucionis, S. & Heintz, N. The nuclear DNA base 5-hydroxymethylcytosine is present in Purkinje neurons and the brain. Science324, 929–930 (2009). ArticleCASPubMedPubMed Central Google Scholar
Valinluck, V. et al. Oxidative damage to methyl-CpG sequences inhibits the binding of the methyl-CpG binding domain (MBD) of methyl-CpG binding protein 2 (MeCP2). Nucleic Acids Res.32, 4100–4108 (2004). ArticleCASPubMedPubMed Central Google Scholar
Jones, P.L. et al. Methylated DNA and MeCP2 recruit histone deacetylase to repress transcription. Nat. Genet.19, 187–191 (1998). ArticleCASPubMed Google Scholar
Bienvenu, T. & Chelly, J. Molecular genetics of Rett syndrome: when DNA methylation goes unrecognized. Nat. Rev. Genet.7, 415–426 (2006). ArticleCASPubMed Google Scholar
Chahrour, M. et al. MeCP2, a key contributor to neurological disease, activates and represses transcription. Science320, 1224–1229 (2008). ArticleCASPubMedPubMed Central Google Scholar
Chen, W.G. et al. Derepression of BDNF transcription involves calcium-dependent phosphorylation of MeCP2. Science302, 885–889 (2003). ArticleCASPubMed Google Scholar
Martinowich, K. et al. DNA methylation-related chromatin remodeling in activity-dependent BDNF gene regulation. Science302, 890–893 (2003). ArticleCASPubMed Google Scholar
Zhou, Z. et al. Brain-specific phosphorylation of MeCP2 regulates activity-dependent Bdnf transcription, dendritic growth, and spine maturation. Neuron52, 255–269 (2006). ArticleCASPubMedPubMed Central Google Scholar
Skene, P.J. et al. Neuronal MeCP2 is expressed at near histone-octamer levels and globally alters the chromatin state. Mol. Cell37, 457–468 (2010). ArticleCASPubMedPubMed Central Google Scholar
Yasui, D.H. et al. Integrated epigenomic analyses of neuronal MeCP2 reveal a role for long-range interaction with active genes. Proc. Natl. Acad. Sci. USA104, 19416–19421 (2007). ArticleCASPubMedPubMed Central Google Scholar
Chong, J.A. et al. REST: a mammalian silencer protein that restricts sodium channel gene expression to neurons. Cell80, 949–957 (1995). ArticleCASPubMed Google Scholar
Schoenherr, C.J. & Anderson, D.J. The neuron-restrictive silencer factor (NRSF): a coordinate repressor of multiple neuron-specific genes. Science267, 1360–1363 (1995). ArticleCASPubMed Google Scholar
Ooi, L. & Wood, I.C. Chromatin crosstalk in development and disease: lessons from REST. Nat. Rev. Genet.8, 544–554 (2007). ArticleCASPubMed Google Scholar
Ballas, N. & Mandel, G. The many faces of REST oversee epigenetic programming of neuronal genes. Curr. Opin. Neurobiol.15, 500–506 (2005). ArticleCASPubMed Google Scholar
Chen, Z.F., Paquette, A.J. & Anderson, D.J. NRSF/REST is required in vivo for repression of multiple neuronal target genes during embryogenesis. Nat. Genet.20, 136–142 (1998). ArticleCASPubMed Google Scholar
Battaglioli, E. et al. REST repression of neuronal genes requires components of the hSWI.SNF complex. J. Biol. Chem.277, 41038–41045 (2002). ArticleCASPubMed Google Scholar
Shi, Y. et al. Histone demethylation mediated by the nuclear amine oxidase homolog LSD1. Cell119, 941–953 (2004). ArticleCASPubMed Google Scholar
Shi, Y. et al. Coordinated histone modifications mediated by a CtBP co-repressor complex. Nature422, 735–738 (2003). ArticleCASPubMed Google Scholar
Garriga-Canut, M. et al. 2-Deoxy-D-glucose reduces epilepsy progression by NRSF-CtBP-dependent metabolic regulation of chromatin structure. Nat. Neurosci.9, 1382–1387 (2006). ArticleCASPubMed Google Scholar
Ballas, N., Grunseich, C., Lu, D.D., Speh, J.C. & Mandel, G. REST and its corepressors mediate plasticity of neuronal gene chromatin throughout neurogenesis. Cell121, 645–657 (2005). ArticleCASPubMed Google Scholar
Yeo, M. et al. Small CTD phosphatases function in silencing neuronal gene expression. Science307, 596–600 (2005). ArticleCASPubMed Google Scholar
Lunyak, V.V. et al. Corepressor-dependent silencing of chromosomal regions encoding neuronal genes. Science298, 1747–1752 (2002). ArticleCASPubMed Google Scholar
Bai, S. et al. DNA methyltransferase 3b regulates nerve growth factor-induced differentiation of PC12 cells by recruiting histone deacetylase 2. Mol. Cell. Biol.25, 751–766 (2005). ArticleCASPubMedPubMed Central Google Scholar
Muchardt, C. & Yaniv, M. ATP-dependent chromatin remodelling: SWI/SNF and Co. are on the job. J. Mol. Biol.293, 187–198 (1999). ArticleCASPubMed Google Scholar
Bultman, S. et al. A Brg1 null mutation in the mouse reveals functional differences among mammalian SWI/SNF complexes. Mol. Cell6, 1287–1295 (2000). ArticleCASPubMed Google Scholar
Lessard, J. et al. An essential switch in subunit composition of a chromatin remodeling complex during neural development. Neuron55, 201–215 (2007). ArticleCASPubMedPubMed Central Google Scholar
Wu, J.I. et al. Regulation of dendritic development by neuron-specific chromatin remodeling complexes. Neuron56, 94–108 (2007). ArticleCASPubMed Google Scholar
Qiu, Z. & Ghosh, A. A calcium-dependent switch in a CREST-BRG1 complex regulates activity-dependent gene expression. Neuron60, 775–787 (2008). ArticleCASPubMedPubMed Central Google Scholar
Brandl, A., Heinzel, T. & Kramer, O.H. Histone deacetylases: salesmen and customers in the post-translational modification market. Biol. Cell101, 193–205 (2009). ArticleCASPubMed Google Scholar
Fraser, P. & Bickmore, W. Nuclear organization of the genome and the potential for gene regulation. Nature447, 413–417 (2007). ArticleCASPubMed Google Scholar
Manuelidis, L. Different central nervous system cell types display distinct and nonrandom arrangements of satellite DNA sequences. Proc. Natl. Acad. Sci. USA81, 3123–3127 (1984). ArticleCASPubMedPubMed Central Google Scholar