Emerging roles for post-transcriptional regulation in circadian clocks (original) (raw)
Reischl, S. & Kramer, A. Kinases and phosphatases in the mammalian circadian clock. FEBS Lett.585, 1393–1399 (2011). CASPubMed Google Scholar
Zheng, X. & Sehgal, A. Speed control: cogs and gears that drive the circadian clock. Trends Neurosci.35, 574–585 (2012). CASPubMedPubMed Central Google Scholar
Brown, S.A., Kowalska, E. & Dallmann, R. (Re)inventing the circadian feedback loop. Dev. Cell22, 477–487 (2012). CASPubMed Google Scholar
Vatine, G. et al. It's time to swim! Zebrafish and the circadian clock. FEBS Lett.585, 1485–1494 (2011). CASPubMed Google Scholar
Green, C.B. Molecular control of Xenopus retinal circadian rhythms. J. Neuroendocrinol.15, 350–354 (2003). CASPubMed Google Scholar
Grima, B. et al. Morning and evening peaks of activity rely on different clock neurons of the Drosophila brain. Nature431, 869–873 (2004). CASPubMed Google Scholar
Stoleru, D. et al. Coupled oscillators control morning and evening locomotor behaviour of Drosophila. Nature431, 862–868 (2004). CASPubMed Google Scholar
Helfrich-Forster, C. Neurobiology of the fruit fly's circadian clock. Genes Brain Behav.4, 65–76 (2005). CASPubMed Google Scholar
Mohawk, J.A., Green, C.B. & Takahashi, J.S. Central and peripheral circadian clocks in mammals. Annu. Rev. Neurosci.35, 445–462 (2012). CASPubMedPubMed Central Google Scholar
Dibner, C., Schibler, U. & Albrecht, U. The mammalian circadian timing system: organization and coordination of central and peripheral clocks. Annu. Rev. Physiol.72, 517–549 (2010). CASPubMed Google Scholar
Mohawk, J.A. & Takahashi, J.S. Cell autonomy and synchrony of suprachiasmatic nucleus circadian oscillators. Trends Neurosci.34, 349–358 (2011). CASPubMedPubMed Central Google Scholar
Hardin, P.E. The circadian timekeeping system of Drosophila. Curr. Biol.15, R714–R722 (2005). CASPubMed Google Scholar
Kojima, S., Shingle, D.L. & Green, C.B. Post-transcriptional control of circadian rhythms. J. Cell Sci.124, 311–320 (2011). CASPubMedPubMed Central Google Scholar
Staiger, D. & Green, R. RNA-based regulation in the plant circadian clock. Trends Plant Sci.16, 517–523 (2011). CASPubMed Google Scholar
Staiger, D. & Koster, T. Spotlight on post-transcriptional control in the circadian system. Cell Mol. Life Sci.68, 71–83 (2011). CASPubMed Google Scholar
Koike, N. et al. Transcriptional architecture and chromatin landscape of the core circadian clock in mammals. Science338, 349–354 (2012). CASPubMedPubMed Central Google Scholar
Padmanabhan, K. et al. Feedback regulation of transcriptional termination by the mammalian circadian clock PERIOD complex. Science337, 599–602 (2012). CASPubMed Google Scholar
Hughes, M.E. et al. Deep sequencing the circadian and diurnal transcriptome of Drosophila brain. Genome Res.22, 1266–1281 (2012). CASPubMedPubMed Central Google Scholar
McGlincy, N.J. et al. Regulation of alternative splicing by the circadian clock and food related cues. Genome Biol.13, R54 (2012). CASPubMedPubMed Central Google Scholar
Sanchez, S.E. et al. A methyl transferase links the circadian clock to the regulation of alternative splicing. Nature468, 112–116 (2010). CASPubMed Google Scholar
Majercak, J. et al. How a circadian clock adapts to seasonal decreases in temperature and day length. Neuron24, 219–230 (1999). CASPubMed Google Scholar
Collins, B.H., Rosato, E. & Kyriacou, C.P. Seasonal behavior in Drosophila melanogaster requires the photoreceptors, the circadian clock, and phospholipase C. Proc. Natl. Acad. Sci. USA101, 1945–1950 (2004). CASPubMedPubMed Central Google Scholar
Majercak, J., Chen, W.F. & Edery, I. Splicing of the period gene 3′-terminal intron is regulated by light, circadian clock factors, and phospholipase C. Mol. Cell Biol.24, 3359–3372 (2004). CASPubMedPubMed Central Google Scholar
Low, K.H. et al. Natural variation in the splice site strength of a clock gene and species-specific thermal adaptation. Neuron60, 1054–1067 (2008). CASPubMedPubMed Central Google Scholar
Harms, E. et al. Posttranscriptional and posttranslational regulation of clock genes. J. Biol. Rhythms19, 361–373 (2004). CASPubMed Google Scholar
Colot, H.V., Loros, J.J. & Dunlap, J.C. Temperature-modulated alternative splicing and promoter use in the Circadian clock gene frequency. Mol. Biol. Cell16, 5563–5571 (2005). CASPubMedPubMed Central Google Scholar
Diernfellner, A.C. et al. Molecular mechanism of temperature sensing by the circadian clock of Neurospora crassa. Genes Dev.19, 1968–1973 (2005). CASPubMedPubMed Central Google Scholar
Liu, Y. et al. Thermally regulated translational control of FRQ mediates aspects of temperature responses in the neurospora circadian clock. Cell89, 477–486 (1997). CASPubMed Google Scholar
Reddy, A.B. et al. Circadian orchestration of the hepatic proteome. Curr. Biol.16, 1107–1115 (2006). CASPubMed Google Scholar
Kojima, S., Sher-Chen, E.L. & Green, C.B. Circadian control of mRNA polyadenylation dynamics regulates rhythmic protein expression. Genes Dev.26, 2724–2736 (2012). CASPubMedPubMed Central Google Scholar
Abruzzi, K.C. et al. Drosophila CLOCK target gene characterization: implications for circadian tissue-specific gene expression. Genes Dev.25, 2374–2386 (2011). CASPubMedPubMed Central Google Scholar
Sonenberg, N. & Hinnebusch, A.G. Regulation of translation initiation in eukaryotes: mechanisms and biological targets. Cell136, 731–745 (2009). CASPubMedPubMed Central Google Scholar
Cao, R. et al. Circadian regulation of mammalian target of rapamycin signaling in the mouse suprachiasmatic nucleus. Neuroscience181, 79–88 (2011). CASPubMed Google Scholar
Cao, R. et al. Mammalian target of rapamycin signaling modulates photic entrainment of the suprachiasmatic circadian clock. J. Neurosci.30, 6302–6314 (2010). CASPubMedPubMed Central Google Scholar
Xu, Y. et al. Non-optimal codon usage is a mechanism to achieve circadian clock conditionality. Nature495, 116–120 (2013). CASPubMedPubMed Central Google Scholar
Zhou, M. et al. Non-optimal codon usage affects expression, structure and function of clock protein FRQ. Nature495, 111–115 (2013). CASPubMedPubMed Central Google Scholar
Lim, C. et al. The novel gene twenty-four defines a critical translational step in the Drosophila clock. Nature470, 399–403 (2011). CASPubMedPubMed Central Google Scholar
Lim, C. & Allada, R. ATAXIN-2 activates PERIOD translation to sustain circadian rhythms in Drosophila. Science340, 875–879 (2013). CASPubMed Google Scholar
Zhang, Y., Ling, J., Yuan, C., Dubruille, R. & Emery, P. A role for Drosophila ATAXIN-2 in the activation of PERIOD translation and circadian behavior. Science340, 879–882 (2013). CASPubMedPubMed Central Google Scholar
Brown, S.A. et al. Rhythms of mammalian body temperature can sustain peripheral circadian clocks. Curr. Biol.12, 1574–1583 (2002). CASPubMed Google Scholar
Morf, J. et al. Cold-inducible RNA-binding protein modulates circadian gene expression posttranscriptionally. Science338, 379–383 (2012). ArticleCASPubMed Google Scholar
Bradley, S., Narayanan, S. & Rosbash, M. NAT1/DAP5/p97 and atypical translational control in the Drosophila Circadian Oscillator. Genetics192, 943–957 (2012). ArticleCASPubMedPubMed Central Google Scholar
Kim, T.D. et al. Rhythmic control of AANAT translation by hnRNP Q in circadian melatonin production. Genes Dev.21, 797–810 (2007). CASPubMedPubMed Central Google Scholar
Lee, K.H. et al. Rhythmic interaction between Period1 mRNA and hnRNP Q leads to circadian time-dependent translation. Mol. Cell Biol.32, 717–728 (2012). CASPubMedPubMed Central Google Scholar
Kim, D.Y. et al. hnRNP Q and PTB modulate the circadian oscillation of mouse Rev-erb alpha via IRES-mediated translation. Nucleic Acids Res.38, 7068–7078 (2010). CASPubMedPubMed Central Google Scholar
Kim, D.Y. et al. hnRNP Q mediates a phase-dependent translation-coupled mRNA decay of mouse Period3. Nucleic Acids Res.39, 8901–8914 (2011). CASPubMedPubMed Central Google Scholar
Woo, K.C. et al. Mouse period 2 mRNA circadian oscillation is modulated by PTB-mediated rhythmic mRNA degradation. Nucleic Acids Res.37, 26–37 (2009). CASPubMed Google Scholar
Woo, K.C. et al. Circadian amplitude of cryptochrome 1 is modulated by mRNA stability regulation via cytoplasmic hnRNP D oscillation. Mol. Cell Biol.30, 197–205 (2010). CASPubMed Google Scholar
Elia, M. et al. Sleep in subjects with autistic disorder: a neurophysiological and psychological study. Brain Dev.22, 88–92 (2000). CASPubMed Google Scholar
Miano, S. et al. Sleep phenotypes of intellectual disability: a polysomnographic evaluation in subjects with Down syndrome and Fragile-X syndrome. Clin. Neurophysiol.119, 1242–1247 (2008). PubMed Google Scholar
Dockendorff, T.C. et al. Drosophila lacking dfmr1 activity show defects in circadian output and fail to maintain courtship interest. Neuron34, 973–984 (2002). CASPubMed Google Scholar
Inoue, S. et al. A role for the Drosophila fragile X-related gene in circadian output. Curr. Biol.12, 1331–1335 (2002). CASPubMed Google Scholar
Morales, J. et al. Drosophila fragile X protein, DFXR, regulates neuronal morphology and function in the brain. Neuron34, 961–972 (2002). CASPubMed Google Scholar
Zhang, J. et al. Fragile X-related proteins regulate mammalian circadian behavioral rhythms. Am. J. Hum. Genet.83, 43–52 (2008). CASPubMedPubMed Central Google Scholar
Xu, S. et al. Circadian rhythm-dependent alterations of gene expression in Drosophila brain lacking fragile X mental retardation protein. PLoS ONE7, e37937 (2012). CASPubMedPubMed Central Google Scholar
Darnell, J.C. et al. FMRP stalls ribosomal translocation on mRNAs linked to synaptic function and autism. Cell146, 247–261 (2011). CASPubMedPubMed Central Google Scholar
Jin, P. et al. Biochemical and genetic interaction between the fragile X mental retardation protein and the microRNA pathway. Nat. Neurosci.7, 113–117 (2004). CASPubMed Google Scholar
Newby, L.M. & Jackson, F.R. A new biological rhythm mutant of Drosophila melanogaster that identifies a gene with an essential embryonic function. Genetics135, 1077–1090 (1993). CASPubMedPubMed Central Google Scholar
McNeil, G.P. et al. A molecular rhythm mediating circadian clock output in Drosophila. Neuron20, 297–303 (1998). CASPubMed Google Scholar
Kojima, S. et al. LARK activates posttranscriptional expression of an essential mammalian clock protein, PERIOD1. Proc. Natl. Acad. Sci. USA104, 1859–1864 (2007). CASPubMedPubMed Central Google Scholar
Sundram, V. et al. Cellular requirements for LARK in the Drosophila circadian system. J. Biol. Rhythms27, 183–195 (2012). CASPubMedPubMed Central Google Scholar
Huang, Y. et al. The LARK RNA-binding protein selectively regulates the circadian eclosion rhythm by controlling E74 protein expression. PLoS ONE2, e1107 (2007). PubMedPubMed Central Google Scholar
Yang, M. et al. Circadian regulation of a limited set of conserved microRNAs in Drosophila. BMC Genomics9, 83 (2008). PubMedPubMed Central Google Scholar
Vodala, S. et al. The oscillating miRNA 959–964 cluster impacts Drosophila feeding time and other circadian outputs. Cell Metab.16, 601–612 (2012). CASPubMedPubMed Central Google Scholar
Xu, S. et al. MicroRNA (miRNA) transcriptome of mouse retina and identification of a sensory organ-specific miRNA cluster. J. Biol. Chem.282, 25053–25066 (2007). CASPubMed Google Scholar
Na, Y.J. et al. Comprehensive analysis of microRNA-mRNA co-expression in circadian rhythm. Exp. Mol. Med.41, 638–647 (2009). CASPubMedPubMed Central Google Scholar
Vollmers, C. et al. Circadian oscillations of protein-coding and regulatory RNAs in a highly dynamic mammalian liver epigenome. Cell Metab.16, 833–845 (2012). CASPubMedPubMed Central Google Scholar
Clokie, S.J. et al. MicroRNAs in the pineal gland: miR-483 regulates melatonin synthesis by targeting arylalkylamine N-acetyltransferase. J. Biol. Chem.287, 25312–25324 (2012). CASPubMedPubMed Central Google Scholar
Sire, C. et al. Diurnal oscillation in the accumulation of Arabidopsis microRNAs, miR167, miR168, miR171 and miR398. FEBS Lett.583, 1039–1044 (2009). CASPubMed Google Scholar
Nagel, R., Clijsters, L. & Agami, R. The miRNA-192/194 cluster regulates the Period gene family and the circadian clock. FEBS J.276, 5447–5455 (2009). CASPubMed Google Scholar
Shende, V.R. et al. Expression and rhythmic modulation of circulating microRNAs targeting the clock gene Bmal1 in mice. PLoS One6, e22586 (2011). CASPubMedPubMed Central Google Scholar
Luo, W. & Sehgal, A. Regulation of circadian behavioral output via a MicroRNA-JAK/STAT circuit. Cell148, 765–779 (2012). CASPubMedPubMed Central Google Scholar
Gatfield, D. et al. Integration of microRNA miR-122 in hepatic circadian gene expression. Genes Dev.23, 1313–1326 (2009). CASPubMedPubMed Central Google Scholar
Robinson, B.G. et al. Vasopressin mRNA in the suprachiasmatic nuclei: daily regulation of polyadenylate tail length. Science241, 342–344 (1988). CASPubMed Google Scholar
Green, C.B. & Besharse, J.C. Identification of a novel vertebrate circadian clock-regulated gene encoding the protein nocturnin. Proc. Natl. Acad. Sci. USA93, 14884–14888 (1996). CASPubMedPubMed Central Google Scholar
Baggs, J.E. & Green, C.B. Nocturnin, a deadenylase in Xenopus laevis retina: a mechanism for posttranscriptional control of circadian-related mRNA. Curr. Biol.13, 189–198 (2003). CASPubMed Google Scholar
Nagoshi, E. et al. Dissecting differential gene expression within the circadian neuronal circuit of Drosophila. Nat. Neurosci.13, 60–68 (2010). CASPubMed Google Scholar
Wang, Y. et al. Rhythmic expression of Nocturnin mRNA in multiple tissues of the mouse. BMC Dev. Biol.1, 9 (2001). CASPubMedPubMed Central Google Scholar
Green, C.B. et al. Loss of Nocturnin, a circadian deadenylase, confers resistance to hepatic steatosis and diet-induced obesity. Proc. Natl. Acad. Sci. USA104, 9888–9893 (2007). CASPubMedPubMed Central Google Scholar
Millevoi, S. & Vagner, S. Molecular mechanisms of eukaryotic pre-mRNA 3′ end processing regulation. Nucleic Acids Res.38, 2757–2774 (2010). CASPubMed Google Scholar
Richter, J.D. CPEB: a life in translation. Trends Biochem. Sci.32, 279–285 (2007). CASPubMed Google Scholar
Menet, J.S. et al. Nascent-Seq reveals novel features of mouse circadian transcriptional regulation. eLife1, e00011 (2012). PubMedPubMed Central Google Scholar
Rodriguez, J. et al. Nascent-Seq analysis of Drosophila cycling gene expression. Proc. Natl. Acad. Sci. USA110, E275–E284 (2013). CASPubMedPubMed Central Google Scholar
So, W.V. & Rosbash, M. Post-transcriptional regulation contributes to Drosophila clock gene mRNA cycling. EMBO J.16, 7146–7155 (1997). CASPubMedPubMed Central Google Scholar
Yakir, E. et al. CIRCADIAN CLOCK ASSOCIATED1 transcript stability and the entrainment of the circadian clock in Arabidopsis. Plant Physiol.145, 925–932 (2007). CASPubMedPubMed Central Google Scholar
Michael, T.P. & McClung, C.R. Phase-specific circadian clock regulatory elements in Arabidopsis. Plant Physiol.130, 627–638 (2002). CASPubMedPubMed Central Google Scholar
Millar, A.J. & Kay, S.A. Circadian control of cab gene transcription and mRNA accumulation in Arabidopsis. Plant Cell3, 541–550 (1991). CASPubMedPubMed Central Google Scholar
Pilgrim, M.L. et al. Circadian and light-regulated expression of nitrate reductase in Arabidopsis. Plant Mol. Biol.23, 349–364 (1993). CASPubMed Google Scholar
Zhong, H.H. et al. Effects of synergistic signaling by phytochrome A and cryptochrome1 on circadian clock-regulated catalase expression. Plant Cell9, 947–955 (1997). CASPubMedPubMed Central Google Scholar
Coon, S.L. et al. Circadian changes in long noncoding RNAs in the pineal gland. Proc. Natl. Acad. Sci. USA109, 13319–13324 (2012). CASPubMedPubMed Central Google Scholar
Decker, C.J. & Parker, R. P-bodies and stress granules: possible roles in the control of translation and mRNA degradation. Cold Spring Harb. Perspect. Biol.4, a012286 (2012). PubMedPubMed Central Google Scholar
Heiman, M. et al. A translational profiling approach for the molecular characterization of CNS cell types. Cell135, 738–748 (2008). CASPubMedPubMed Central Google Scholar
Doyle, J.P. et al. Application of a translational profiling approach for the comparative analysis of CNS cell types. Cell135, 749–762 (2008). CASPubMedPubMed Central Google Scholar
Thomas, A. et al. A versatile method for cell-specific profiling of translated mRNAs in Drosophila. PLoS ONE7, e40276 (2012). CASPubMedPubMed Central Google Scholar
Konig, J. et al. Protein-RNA interactions: new genomic technologies and perspectives. Nat. Rev. Genet.13, 77–83 (2011). Google Scholar