Cell adhesion and signalling by cadherins and Ig-CAMs in cancer (original) (raw)
Boveri, T. Zur Frage der Entstehung Maligner Tumoren (Gustav Fischer, Jena, 1914). Google Scholar
Yagi, T. & Takeichi, M. Cadherin superfamily genes: functions, genomic organization, and neurologic diversity. Genes Dev.14, 1169–1180 (2000). ArticleCASPubMed Google Scholar
Perez-Moreno, M., Jamora, C. & Fuchs, E. Sticky business: orchestrating cellular signals at adherens junctions. Cell112, 535–548 (2003). A comprehensive review on the molecular regulation of the formation and function of cadherin-mediated cell adhesion. ArticleCASPubMed Google Scholar
He, W., Cowin, P. & Stokes, D. L. Untangling desmosomal knots with electron tomography. Science302, 109–113 (2003). Recent novel insights into the structure of cadherin adhesion complexes by electron tomography. ArticleCASPubMed Google Scholar
Aplin, A. E., Howe, A., Alahari, S. K. & Juliano, R. L. Signal transduction and signal modulation by cell adhesion receptors: the role of integrins, cadherins, immunoglobulin-cell adhesion molecules, and selectins. Pharmacol. Rev.50, 197–264 (1998). CASPubMed Google Scholar
Juliano, R. L. Signal transduction by cell adhesion receptors and the cytoskeleton: functions of integrins, cadherins, selectins, and immunoglobulin-superfamily members. Annu. Rev. Pharmacol. Toxicol.42, 283–323 (2002). ArticleCASPubMed Google Scholar
Birchmeier, W. & Behrens, J. Cadherin expression in carcinomas: role in the formation of cell junctions and the prevention of invasiveness. Biochim. Biophys. Acta1198, 11–26 (1994). CASPubMed Google Scholar
Vleminckx, K., Vakaet, L. Jr, Mareel, M., Fiers, W. & van Roy, F. Genetic manipulation of E-cadherin expression by epithelial tumor cells reveals an invasion suppressor role. Cell66, 107–119 (1991). ArticleCASPubMed Google Scholar
Perl, A. K., Wilgenbus, P., Dahl, U., Semb, H. & Christofori, G. A causal role for E-cadherin in the transition from adenoma to carcinoma. Nature392, 190–193 (1998). First demonstrationin vivothat the loss of E-cadherin function is causally involved in tumour progression. ArticleCASPubMed Google Scholar
Strathdee, G. Epigenetic versus genetic alterations in the inactivation of E-cadherin. Semin. Cancer Biol.12, 373–379 (2002). ArticleCASPubMed Google Scholar
Guilford, P. et al. E-cadherin germline mutations in familial gastric cancer. Nature392, 402–405 (1998). ArticleCASPubMed Google Scholar
Batlle, E. et al. The transcription factor snail is a repressor of E-cadherin gene expression in epithelial tumour cells. Nature Cell Biol.2, 84–89 (2000). ArticleCASPubMed Google Scholar
Cano, A. et al. The transcription factor snail controls epithelial–mesenchymal transitions by repressing E-cadherin expression. Nature Cell Biol.2, 76–83 (2000). ArticleCASPubMed Google Scholar
Comijn, J. et al. The two-handed E box binding zinc finger protein SIP1 downregulates E-cadherin and induces invasion. Mol. Cell7, 1267–1278 (2001). ArticleCASPubMed Google Scholar
Hajra, K. M., Chen, D. Y. & Fearon, E. R. The SLUG zinc-finger protein represses E-cadherin in breast cancer. Cancer Res.62, 1613–1618 (2002). CASPubMed Google Scholar
Perez-Moreno, M. A. et al. A new role for E12/E47 in the repression of E-cadherin expression and epithelial–mesenchymal transitions. J. Biol. Chem.276, 27424–27431 (2001). References 13–17 give novel insights into the transcriptional repression of the E-cadherin gene, an important process causing loss of E-cadherin function. ArticleCASPubMed Google Scholar
Fujita, N. et al. MTA3, a Mi-2/NuRD complex subunit, regulates an invasive growth pathway in breast cancer. Cell113, 207–219 (2003). Results that connect oestrogen-receptor signalling with the control of E-cadherin expression. ArticleCASPubMed Google Scholar
Di Croce, L. & Pelicci, P. G. Tumour-associated hypermethylation: silencing E-cadherin expression enhances invasion and metastasis. Eur. J. Cancer39, 413–414 (2003). ArticleCASPubMed Google Scholar
Nawrocki-Raby, B. et al. Upregulation of MMPs by soluble E-cadherin in human lung tumor cells. Int. J. Cancer105, 790–795 (2003). ArticleCASPubMed Google Scholar
Ino, Y., Gotoh, M., Sakamoto, M., Tsukagoshi, K. & Hirohashi, S. Dysadherin, a cancer-associated cell membrane glycoprotein, down-regulates E-cadherin and promotes metastasis. Proc. Natl Acad. Sci. USA99, 365–370 (2002). ArticleCASPubMed Google Scholar
Behrens, J. et al. Loss of epithelial differentiation and gain of invasiveness correlates with tyrosine phosphorylation of the E-cadherin/β-catenin complex in cells transformed with a temperature-sensitive v-SRC gene. J. Cell Biol.120, 757–766 (1993). ArticleCASPubMed Google Scholar
Fujita, Y. et al. Hakai, a c-Cbl-like protein, ubiquitinates and induces endocytosis of the E-cadherin complex. Nature Cell Biol.4, 222–231 (2002). Elegant demonstration of how tyrosine phosphorylation of E-cadherin leads to its ubiquitylation and subsequent degradation. ArticleCASPubMed Google Scholar
Hamaguchi, M. et al. p60v-src causes tyrosine phosphorylation and inactivation of the N-cadherin-catenin cell adhesion system. EMBO J.12, 307–314 (1993). ArticleCASPubMedPubMed Central Google Scholar
Taddei, M. L. et al. β-catenin interacts with low-molecular-weight protein tyrosine phosphatase leading to cadherin-mediated cell-cell adhesion increase. Cancer Res.62, 6489–6499 (2002). CASPubMed Google Scholar
Morali, O. G. et al. IGF-II induces rapid β-catenin relocation to the nucleus during epithelium to mesenchyme transition. Oncogene20, 4942–4950 (2001). ArticleCASPubMed Google Scholar
Lopez, T. & Hanahan, D. Elevated levels of IGF-1 receptor convey invasive and metastatic capability in a mouse model of pancreatic islet tumorigenesis. Cancer Cell1, 339–353 (2002). References 26–27 show that the IGF1 receptor interacts with E-cadherin and downregulates its function, leading to tumour metastasis. ArticleCASPubMed Google Scholar
Pennisi, P. A., Barr, V., Nunez, N. P., Stannard, B. & Le Roith, D. Reduced expression of insulin-like growth factor I receptors in MCF-7 breast cancer cells leads to a more metastatic phenotype. Cancer Res.62, 6529–6537 (2002). CASPubMed Google Scholar
Kamei, T. et al. Coendocytosis of cadherin and c-Met coupled to disruption of cell–cell adhesion in MDCK cells: regulation by Rho, Rac and Rab small G proteins. Oncogene18, 6776–6784 (1999). ArticleCASPubMed Google Scholar
Davies, G., Jiang, W. G. & Mason, M. D. HGF/SF modifies the interaction between its receptor c-Met, and the E-cadherin/catenin complex in prostate cancer cells. Int. J. Mol. Med.7, 385–388 (2001). CASPubMed Google Scholar
Takahashi, K. & Suzuki, K. Density-dependent inhibition of growth involves prevention of EGF receptor activation by E-cadherin-mediated cell-cell adhesion. Exp. Cell Res.226, 214–222 (1996). ArticleCASPubMed Google Scholar
Pece, S. & Gutkind, J. S. Signaling from E-cadherins to the MAPK pathway by the recruitment and activation of epidermal growth factor receptors upon cell–cell contact formation. J. Biol. Chem.275, 41227–41233 (2000). ArticleCASPubMed Google Scholar
Kovacs, E. M., Ali, R. G., McCormack, A. J. & Yap, A. S. E-cadherin homophilic ligation directly signals through Rac and phosphatidylinositol 3-kinase to regulate adhesive contacts. J. Biol. Chem.277, 6708–6718 (2002). ArticleCASPubMed Google Scholar
Zantek, N. D. et al. E-cadherin regulates the function of the EphA2 receptor tyrosine kinase. Cell Growth Differ.10, 629–638 (1999). CASPubMed Google Scholar
Bienz, M. & Clevers, H. Linking colorectal cancer to Wnt signaling. Cell103, 311–320 (2000). ArticleCASPubMed Google Scholar
Orsulic, S., Huber, O., Aberle, H., Arnold, S. & Kemler, R. E-cadherin binding prevents β-catenin nuclear localization and β-catenin/LEF-1-mediated transactivation. J. Cell Sci.112, 1237–1245 (1999). ArticleCASPubMed Google Scholar
Gottardi, C. J., Wong, E. & Gumbiner, B. M. E-cadherin suppresses cellular transformation by inhibiting β-catenin signaling in an adhesion-independent manner. J. Cell Biol.153, 1049–1060 (2001). ArticleCASPubMedPubMed Central Google Scholar
Stockinger, A., Eger, A., Wolf, J., Beug, H. & Foisner, R. E-cadherin regulates cell growth by modulating proliferation-dependent beta-catenin transcriptional activity. J. Cell Biol.154, 1185–1196 (2001). ArticleCASPubMedPubMed Central Google Scholar
Wong, A. S. & Gumbiner, B. M. Adhesion-independent mechanism for suppression of tumor cell invasion by E-cadherin. J. Cell Biol.161, 1191–1203 (2003). References 37–40 demonstrate that E-cadherin-mediated cell adhesion is able to suppress WNT signal transduction, and that β-catenin might have an additional signalling function that is independent of TCF/LEF1 transcriptional activity. ArticleCASPubMedPubMed Central Google Scholar
Sahai, E. & Marshall, C. J. RHO-GTPases and cancer. Nature Rev. Cancer2, 133–142 (2002). Article Google Scholar
Noren, N. K., Arthur, W. T. & Burridge, K. Cadherin engagement inhibits RhoA via p190RhoGAP. J. Biol. Chem.278, 13615–13618 (2003). Insights into the mechanisms by which E-cadherin inhibits RHO activity. ArticleCASPubMed Google Scholar
Noren, N. K., Liu, B. P., Burridge, K. & Kreft, B. p120 catenin regulates the actin cytoskeleton via Rho family GTPases. J. Cell Biol.150, 567–580 (2000). ArticleCASPubMedPubMed Central Google Scholar
Anastasiadis, P. Z. & Reynolds, A. B. The p120 catenin family: complex roles in adhesion, signaling and cancer. J. Cell Sci113, 1319–1334 (2000). ArticleCASPubMed Google Scholar
Daniel, J. M. & Reynolds, A. B. The catenin p120(ctn) interacts with Kaiso, a novel BTB/POZ domain zinc finger transcription factor. Mol. Cell. Biol.19, 3614–3623 (1999). References 43–45 provide recent novel insights into the involvement of p120-catenin in the regulation of the activity of small GTPases. ArticleCASPubMedPubMed Central Google Scholar
Lambert, J. M. et al. Tiam1 mediates Ras activation of Rac by a PI(3)K-independent mechanism. Nature Cell Biol.4, 621–625 (2002). ArticleCASPubMed Google Scholar
Michiels, F., Habets, G. G., Stam, J. C., van der Kammen, R. A. & Collard, J. G. A role for Rac in Tiam1-induced membrane ruffling and invasion. Nature375, 338–340 (1995). ArticleCASPubMed Google Scholar
Sander, E. E. et al. Matrix-dependent Tiam1/Rac Signaling in epithelial cells promotes either cell–cell adhesion or cell migration and is regulated by phosphatidylinositol 3-kinase. J. Cell Biol.143, 1385–1398 (1998). ArticleCASPubMedPubMed Central Google Scholar
Malliri, A. et al. Mice deficient in the Rac activator Tiam1 are resistant to Ras-induced skin tumours. Nature417, 867–871 (2002). ArticleCASPubMed Google Scholar
Kawasaki, Y., Sato, R. & Akiyama, T. Mutated APC and Asef are involved in the migration of colorectal tumour cells. Nature Cell Biol.5, 211–215 (2003). ArticleCASPubMed Google Scholar
Kuroda, S. et al. Role of IQGAP1, a target of the small GTPases Cdc42 and Rac1, in regulation of E-cadherin-mediated cell–cell adhesion. Science281, 832–835 (1998). ArticleCASPubMed Google Scholar
Takemoto, H. et al. Localization of IQGAP1 is inversely correlated with intercellular adhesion mediated by E-cadherin in gastric cancers. Int. J. Cancer91, 783–788 (2001). ArticleCASPubMed Google Scholar
Clark, E. A., Golub, T. R., Lander, E. S. & Hynes, R. O. Genomic analysis of metastasis reveals an essential role for RhoC. Nature406, 532–535 (2000). ArticleCASPubMed Google Scholar
Itoh, K. et al. An essential part for Rho-associated kinase in the transcellular invasion of tumor cells. Nature Med.5, 221–225 (1999). References 53 and 54 demonstrate a functional role of RHOC and the RHO effector ROCK inin vivomodels of tumour progression. ArticleCASPubMed Google Scholar
Tomita, K. et al. Cadherin switching in human prostate cancer progression. Cancer Res.60, 3650–3654 (2000). CASPubMed Google Scholar
Li, G. & Herlyn, M. Dynamics of intercellular communication during melanoma development. Mol. Med. Today6, 163–169 (2000). ArticleCASPubMed Google Scholar
Feltes, C. M., Kudo, A., Blaschuk, O. & Byers, S. W. An alternatively spliced cadherin-11 enhances human breast cancer cell invasion. Cancer Res.62, 6688–6697 (2002). CASPubMed Google Scholar
Shimazui, T. et al. Expression of cadherin-6 as a novel diagnostic tool to predict prognosis of patients with E-cadherin-absent renal cell carcinoma. Clin. Cancer Res.4, 2419–2424 (1998). CASPubMed Google Scholar
Takeuchi, T. et al. Loss of T-cadherin (CDH13, H-cadherin) expression in cutaneous squamous cell carcinoma. Lab. Invest.82, 1023–1029 (2002). ArticleCASPubMed Google Scholar
Hazan, R. B., Phillips, G. R., Qiao, R. F., Norton, L. & Aaronson, S. A. Exogenous expression of N-cadherin in breast cancer cells induces cell migration, invasion, and metastasis. J. Cell Biol.148, 779–790 (2000). ArticleCASPubMedPubMed Central Google Scholar
Li, G., Satyamoorthy, K. & Herlyn, M. N-cadherin-mediated intercellular interactions promote survival and migration of melanoma cells. Cancer Res.61, 3819–3825 (2001). CASPubMed Google Scholar
Nieman, M. T., Prudoff, R. S., Johnson, K. R. & Wheelock, M. J. N-cadherin promotes motility in human breast cancer cells regardless of their E-cadherin expression. J. Cell Biol.147, 631–644 (1999). References 60–62 demonstrate that gain of N-cadherin function contributes to tumour-cell migration and invasion. ArticleCASPubMedPubMed Central Google Scholar
Doherty, P. & Walsh, F. S. CAM-FGF receptor interactions: a model for axonal growth. Mol. Cell. Neurosci.8, 99–111 (1996). ArticleCASPubMed Google Scholar
Cavallaro, U., Niedermeyer, J., Fuxa, M. & Christofori, G. N-CAM modulates tumour-cell adhesion to matrix by inducing FGF-receptor signalling. Nature Cell Biol.3, 650–657 (2001). Identification of a signalling complex containing NCAM, FGFR, and N-cadherin. Modulation of integrin-mediated cell adhesion by the NCAM–FGFR–N-cadherin complex. ArticleCASPubMed Google Scholar
Peluso, J. J. N-cadherin-mediated cell contact regulates ovarian surface epithelial cell survival. Biol. Signals Recept.9, 115–121 (2000). ArticleCASPubMed Google Scholar
Suyama, K., Shapiro, I., Guttman, M. & Hazan, R. B. A signaling pathway leading to metastasis is controlled by N-cadherin and the FGF receptor. Cancer Cell2, 301–314 (2002). Demonstration of a functional interaction between N-cadherin and FGR1 and novel insights into the mechanisms of how N-cadherin might modulate FGF-induced FGFR signal transduction. ArticleCASPubMed Google Scholar
Williams, E. J. et al. Identification of an N-cadherin motif that can interact with the fibroblast growth factor receptor and is required for axonal growth. J. Biol. Chem.276, 43879–43886 (2001). Demonstration of N-cadherin-mediated FGFR responses in neurons in the absence of FGFs. ArticleCASPubMed Google Scholar
Van Aken, E. H. et al. Invasion of retinal pigment epithelial cells: N-cadherin, hepatocyte growth factor, and focal adhesion kinase. Invest. Ophthalmol. Vis. Sci.44, 463–472 (2003). ArticlePubMed Google Scholar
Tran, N. L., Adams, D. G., Vaillancourt, R. R. & Heimark, R. L. Signal transduction from N-cadherin increases Bcl-2. Regulation of the phosphatidylinositol 3-kinase/Akt pathway by homophilic adhesion and actin cytoskeletal organization. J. Biol. Chem.277, 32905–32914 (2002). ArticleCASPubMed Google Scholar
Takino, T. et al. CrkI adapter protein modulates cell migration and invasion in glioblastoma. Cancer Res.63, 2335–2337 (2003). CASPubMed Google Scholar
Arregui, C., Pathre, P., Lilien, J. & Balsamo, J. The nonreceptor tyrosine kinase fer mediates cross-talk between N-cadherin and β1-integrins. J. Cell Biol.149, 1263–1274 (2000). Potential role of the non-receptor tyrosine kinase FER in the communication between N-cadherin and integrin. ArticleCASPubMedPubMed Central Google Scholar
Lilien, J., Balsamo, J., Arregui, C. & Xu, G. Turn-off, drop-out: functional state switching of cadherins. Dev. Dyn.224, 18–29 (2002). Insights into the role of the phosphotyrosine phosphatase PTP1B in the regulation of the cell-adhesive and signalling functions of N-cadherin. ArticleCASPubMed Google Scholar
Dejana, E., Bazzoni, G. & Lampugnani, M. G. Vascular endothelial (VE)-cadherin: only an intercellular glue? Exp. Cell Res.252, 13–19 (1999). ArticleCASPubMed Google Scholar
Carmeliet, P. et al. Targeted deficiency or cytosolic truncation of the VE-cadherin gene in mice impairs VEGF-mediated endothelial survival and angiogenesis. Cell98, 147–157 (1999). ArticleCASPubMed Google Scholar
Shay-Salit, A. et al. VEGF receptor 2 and the adherens junction as a mechanical transducer in vascular endothelial cells. Proc. Natl Acad. Sci. USA99, 9462–9467 (2002). References 74 and 75 demonstrate the interaction of the endothelial-cell-specific VE-cadherin with VEGF receptor and its potential functional implications. ArticleCASPubMedPubMed Central Google Scholar
Jaggi, M., Wheelock, M. J. & Johnson, K. R. Differential displacement of classical cadherins by VE-cadherin. Cell Commun. Adhes.9, 103–115 (2002). ArticleCASPubMed Google Scholar
Matsumura, T., Wolff, K. & Petzelbauer, P. Endothelial cell tube formation depends on cadherin 5 and CD31 interactions with filamentous actin. J. Immunol.158, 3408–3416 (1997). CASPubMed Google Scholar
Kiss, J. Z. & Muller, D. Contribution of the neural cell adhesion molecule to neuronal and synaptic plasticity. Rev. Neurosci.12, 297–310 (2001). ArticleCASPubMed Google Scholar
Cavallaro, U. & Christofori, G. Cell adhesion in tumor invasion and metastasis: loss of the glue is not enough. Biochim. Biophys. Acta1552, 39–45 (2001). CASPubMed Google Scholar
Perl, A. K. et al. Reduced expression of neural cell adhesion molecule induces metastatic dissemination of pancreatic β tumor cells. Nature Med.5, 286–291 (1999). Demonstration of a causal role of loss of NCAM function in the metastatic dissemination to regional lymph nodes. ArticleCASPubMed Google Scholar
Kiselyov, V. V. et al. Structural basis for a direct interaction between FGFR1 and NCAM and evidence for a regulatory role of ATP. Structure (Camb)11, 691–701 (2003). Detailed structure–functional analysis of the NCAM–FGFR interaction. ArticleCAS Google Scholar
Gluer, S., Schelp, C., von Schweinitz, D. & Gerardy-Schahn, R. Polysialylated neural cell adhesion molecule in childhood rhabdomyosarcoma. Pediatr. Res.43, 145–147 (1998). ArticleCASPubMed Google Scholar
Komminoth, P., Roth, J., Lackie, P. M., Bitter-Suermann, D. & Heitz, P. U. Polysialic acid of the neural cell adhesion molecule distinguishes small cell lung carcinoma from carcinoids. Am. J. Pathol.139, 297–304 (1991). CASPubMedPubMed Central Google Scholar
Lantuejoul, S. et al. NCAM (neural cell adhesion molecules) expression in malignant mesotheliomas. Hum. Pathol.31, 415–421 (2000). ArticleCASPubMed Google Scholar
Lantuejoul, S., Moro, D., Michalides, R. J., Brambilla, C. & Brambilla, E. Neural cell adhesion molecules (NCAM) and NCAM-PSA expression in neuroendocrine lung tumors. Am. J. Surg. Pathol.22, 1267–1276 (1998). ArticleCASPubMed Google Scholar
Trouillas, J. et al. Polysialylated neural cell adhesion molecules expressed in human pituitary tumors and related to extrasellar invasion. J. Neurosurg.98, 1084–1093 (2003). ArticleCASPubMed Google Scholar
Angata, K. & Fukuda, M. Polysialyltransferases: major players in polysialic acid synthesis on the neural cell adhesion molecule. Biochimie85, 195–206 (2003). ArticleCASPubMed Google Scholar
Hammarstrom, S. The carcinoembryonic antigen (CEA) family: structures, suggested functions and expression in normal and malignant tissues. Semin. Cancer Biol.9, 67–81 (1999). ArticleCASPubMed Google Scholar
Plunkett, T. A. & Ellis, P. A. CEACAM1: a marker with a difference or more of the same? J. Clin. Oncol.20, 4273–4275 (2002). ArticlePubMed Google Scholar
Fournes, B., Sadekova, S., Turbide, C., Letourneau, S. & Beauchemin, N. The CEACAM1-L Ser503 residue is crucial for inhibition of colon cancer cell tumorigenicity. Oncogene20, 219–230 (2001). ArticleCASPubMed Google Scholar
Obrink, B. CEA adhesion molecules: multifunctional proteins with signal-regulatory properties. Curr. Opin. Cell Biol.9, 616–626 (1997). ArticleCASPubMedPubMed Central Google Scholar
Wagener, C. & Ergun, S. Angiogenic properties of the carcinoembryonic antigen-related cell adhesion molecule 1. Exp. Cell Res.261, 19–24 (2000). ArticleCASPubMed Google Scholar
Volpert, O. et al. Inhibition of prostate tumor angiogenesis by the tumor suppressor CEACAM1. J. Biol. Chem.277, 35696–35702 (2002). ArticleCASPubMed Google Scholar
Fearon, E. R. DCC: is there a connection between tumorigenesis and cell guidance molecules? Biochim. Biophys. Acta1288, M17–M23 (1996). PubMed Google Scholar
Fazeli, A. et al. Phenotype of mice lacking functional Deleted in colorectal cancer (Dcc) gene. Nature386, 796–804 (1997). ArticleCASPubMed Google Scholar
Hilgers, W. et al. Homozygous deletions inactivate DCC, but not MADH4/DPC4/SMAD4, in a subset of pancreatic and biliary cancers. Genes Chromosom. Cancer27, 353–357 (2000). ArticleCASPubMed Google Scholar
Tarafa, G. et al. DCC and SMAD4 alterations in human colorectal and pancreatic tumor dissemination. Oncogene19, 546–555 (2000). ArticleCASPubMed Google Scholar
Barbera, V. M. et al. The 18q21 region in colorectal and pancreatic cancer: independent loss of DCC and DPC4 expression. Biochim. Biophys. Acta1502, 283–296 (2000). ArticleCASPubMed Google Scholar
Kenwrick, S. & Doherty, P. Neural cell adhesion molecule L1: relating disease to function. Bioessays20, 668–675 (1998). ArticleCASPubMed Google Scholar
Primiano, T. et al. Identification of potential anticancer drug targets through the selection of growth-inhibitory genetic suppressor elements. Cancer Cell4, 41–53 (2003). ArticleCASPubMed Google Scholar
Thies, A. et al. Overexpression of the cell adhesion molecule L1 is associated with metastasis in cutaneous malignant melanoma. Eur. J. Cancer38, 1708–1716 (2002). ArticleCASPubMed Google Scholar
Voura, E. B., Ramjeesingh, R. A., Montgomery, A. M. & Siu, C. H. Involvement of integrin α(v)β(3) and cell adhesion molecule L1 in transendothelial migration of melanoma cells. Mol. Biol. Cell12, 2699–2710 (2001). ArticleCASPubMedPubMed Central Google Scholar
Xie, S. et al. Expression of MCAM/MUC18 by human melanoma cells leads to increased tumor growth and metastasis. Cancer Res.57, 2295–2303 (1997). CASPubMed Google Scholar
Mills, L. et al. Fully human antibodies to MCAM/MUC18 inhibit tumor growth and metastasis of human melanoma. Cancer Res.62, 5106–5114 (2002). CASPubMed Google Scholar
Satyamoorthy, K., Muyrers, J., Meier, F., Patel, D. & Herlyn, M. Mel-CAM-specific genetic suppressor elements inhibit melanoma growth and invasion through loss of gap junctional communication. Oncogene20, 4676–4684 (2001). ArticleCASPubMed Google Scholar
Wu, G. J. et al. Isolation and characterization of the major form of human MUC18 cDNA gene and correlation of MUC18 over-expression in prostate cancer cell lines and tissues with malignant progression. Gene279, 17–31 (2001). ArticleCASPubMed Google Scholar
Anfosso, F. et al. Activation of human endothelial cells via S-endo-1 antigen (CD146) stimulates the tyrosine phosphorylation of focal adhesion kinase p125(FAK). J. Biol. Chem.273, 26852–26856 (1998). ArticleCASPubMed Google Scholar
Alais, S. et al. HEMCAM/CD146 downregulates cell surface expression of β1 integrins. J. Cell Sci.114, 1847–1859 (2001). ArticleCASPubMed Google Scholar
Dhodapkar, K. M., Friedlander, D., Scholes, J. & Grumet, M. Differential expression of the cell-adhesion molecule Nr-CAM in hyperplastic and neoplastic human pancreatic tissue. Hum. Pathol.32, 396–400 (2001). ArticleCASPubMed Google Scholar
Sehgal, A., Ricks, S., Warrick, J., Boynton, A. L. & Murphy, G. P. Antisense human neuroglia related cell adhesion molecule hNr-CAM, reduces the tumorigenic properties of human glioblastoma cells. AntiCancer Res.19, 4947–4953 (1999). CASPubMed Google Scholar
Eliceiri, B. P. Integrin and growth factor receptor crosstalk. Circ. Res.89, 1104–1110 (2001). ArticleCASPubMed Google Scholar
Ponta, H., Sherman, L. & Herrlich, P. A. CD44: from adhesion molecules to signalling regulators. Nature Rev. Mol. Cell Biol.4, 33–45 (2003). ArticleCAS Google Scholar
Edelman, G. M., Gallin, W. J., Delouvee, A., Cunningham, B. A. & Thiery, J. P. Early epochal maps of two different cell adhesion molecules. Proc. Natl Acad. Sci. USA80, 4384–4388 (1983). ArticleCASPubMedPubMed Central Google Scholar
Hatta, K. & Takeichi, M. Expression of N-cadherin adhesion molecules associated with early morphogenetic events in chick development. Nature320, 447–449 (1986). ArticleCASPubMed Google Scholar
Bendel-Stenzel, M. R., Gomperts, M., Anderson, R., Heasman, J. & Wylie, C. The role of cadherins during primordial germ cell migration and early gonad formation in the mouse. Mech. Dev.91, 143–152 (2000). ArticleCASPubMed Google Scholar
DeLuca, S. M. et al. Hepatocyte growth factor/scatter factor promotes a switch from E- to N-cadherin in chick embryo epiblast cells. Exp. Cell Res.251, 3–15 (1999). References 116–119 illustrate the involvement of the cadherin switch in embryonic development. ArticleCASPubMed Google Scholar
Nakagawa, S. & Takeichi, M. Neural crest emigration from the neural tube depends on regulated cadherin expression. Development125, 2963–2971 (1998). ArticleCASPubMed Google Scholar
Linask, K. K. et al. N-cadherin/catenin-mediated morphoregulation of somite formation. Dev. Biol.202, 85–102 (1998). ArticleCASPubMed Google Scholar
Radice, G. L. et al. Developmental defects in mouse embryos lacking N-cadherin. Dev. Biol.181, 64–78 (1997). ArticleCASPubMed Google Scholar
Kolkova, K., Novitskaya, V., Pedersen, N., Berezin, V. & Bock, E. Neural cell adhesion molecule-stimulated neurite outgrowth depends on activation of protein kinase C and the Ras-mitogen-activated protein kinase pathway. J. Neurosci.20, 2238–2246 (2000). ArticleCASPubMedPubMed Central Google Scholar
Leshchyns'ka, I., Sytnyk, V., Morrow, J. S. & Schachner, M. Neural cell adhesion molecule (NCAM) association with PKC{β}2 via {β}I spectrin is implicated in NCAM-mediated neurite outgrowth. J. Cell Biol.161, 625–639 (2003). References 123 and 124 give novel insights into the mechanisms of NCAM-mediated FGFR signal transduction. ArticleCASPubMedPubMed Central Google Scholar
Walsh, F. S. & Doherty, P. Neural cell adhesion molecules of the immunoglobulin superfamily: role in axon growth and guidance. Annu. Rev. Cell Dev. Biol.13, 425–456 (1997). ArticleCASPubMed Google Scholar
Ignelzi, M. A. Jr, Miller, D. R., Soriano, P. & Maness, P. F. Impaired neurite outgrowth of src-minus cerebellar neurons on the cell adhesion molecule L1. Neuron12, 873–884 (1994). ArticleCASPubMed Google Scholar
Niethammer, P. et al. Cosignaling of NCAM via lipid rafts and the FGF receptor is required for neuritogenesis. J. Cell Biol.157, 521–532 (2002). Differential membrane localization of NCAM results in the activation of different signalling pathways. ArticleCASPubMedPubMed Central Google Scholar
Baloh, R. H., Enomoto, H., Johnson, J., Eugene, M & Milbrandt, J. The GDNF family ligands and receptors: implications for neural development. Curr. Opin. Neurobiol.10, 103–110 (2000). ArticleCASPubMed Google Scholar
Paratcha, G., Ledda, F. & Ibanez, C. F. The neural cell adhesion molecule NCAM is an alternative signaling receptor for GDNF family ligands. Cell113, 867–879 (2003). ArticleCASPubMed Google Scholar
Conacci-Sorrell, M., Zhurinsky, J. & Ben-Ze'ev, A. The cadherin–catenin adhesion system in signaling and cancer. J. Clin. Invest.109, 987–991 (2002). ArticleCASPubMedPubMed Central Google Scholar
Joo, M., Lee, H. K. & Kang, Y. K. Expression of E-cadherin, β-catenin, CD44s and CD44v6 in gastric adenocarcinoma: relationship with lymph node metastasis. AntiCancer Res.23, 1581–1588 (2003). CASPubMed Google Scholar
Kinsella, A. R. et al. The role of the cell–cell adhesion molecule E-cadherin in large bowel tumour cell invasion and metastasis. Br. J. Cancer67, 904–909 (1993). ArticleCASPubMedPubMed Central Google Scholar
Kanazawa, N. et al. E-cadherin expression in the primary tumors and metastatic lymph nodes of poorly differentiated types of rectal cancer. Surg. Today32, 123–128 (2002). ArticlePubMed Google Scholar
Byrne, R. R. et al. E-cadherin immunostaining of bladder transitional cell carcinoma, carcinoma in situ and lymph node metastases with long-term followup. J. Urol.165, 1473–1479 (2001). ArticleCASPubMed Google Scholar
Hartveit, E. Attenuated cells in breast stroma: the missing lymphatic system of the breast. Histopathology16, 533–543 (1990). ArticleCASPubMed Google Scholar
Mandriota, S. J. et al. Vascular endothelial growth factor-C-mediated lymphangiogenesis promotes tumour metastasis. EMBO J.20, 672–682 (2001). ArticleCASPubMedPubMed Central Google Scholar
Stacker, S. A., Achen, M. G., Jussila, L., Baldwin, M. E. & Alitalo, K. Lymphangiogenesis and cancer metastasis. Nature Rev. Cancer2, 573–583 (2002). ArticleCAS Google Scholar