Cancer stem cells in solid tumours: accumulating evidence and unresolved questions (original) (raw)
Heppner, G. H. & Miller, B. E. Tumor heterogeneity: biological implications and therapeutic consequences. Cancer Metastasis Rev.2, 5–23 (1983). ArticleCASPubMed Google Scholar
Southam, C. M. & Brunschwig, A. Quantitative studies of autotransplantation of human cancer. Cancer14, 971–978 (1961). Article Google Scholar
Furth, J. & Kahn, M. C. The transmission of leukemia in mice with a single cell. Am J. Cancer31, 276–282 (1937). Google Scholar
Hewitt, H. B. Studies of the dissemination and quantitative transplantation of a lymphocytic leukaemia of CBA mice. Br. J. Cancer12, 378–401 (1958). ArticleCASPubMedPubMed Central Google Scholar
Hamburger, A. W. & Salmon, S. E. Primary bioassay of human tumor stem cells. Science197, 461–463 (1977). ArticleCASPubMed Google Scholar
Bonnet, D. & Dick, J. E. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nature Med.3, 730–737 (1997). ArticleCASPubMed Google Scholar
Reya, T., Morrison, S. J., Clarke, M. F. & Weissman, I. L. Stem cells, cancer, and cancer stem cells. Nature414, 105–111 (2001). ArticleCASPubMed Google Scholar
Nowell, P. C. The clonal evolution of tumor cell populations. Science194, 23–28 (1976). A seminal paper describing the clonal evolution of tumour cell populations involving stepwise selection of cells through the acquisition of genetic changes. ArticleCASPubMed Google Scholar
Campbell, L. L. & Polyak, K. Breast tumor heterogeneity: cancer stem cells or clonal evolution? Cell Cycle6, 2332–2338 (2007). ArticleCASPubMed Google Scholar
Lapidot, T. et al. A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature367, 645–648 (1994). ArticleCASPubMed Google Scholar
Barabe, F., Kennedy, J. A., Hope, K. J. & Dick, J. E. Modeling the initiation and progression of human acute leukemia in mice. Science316, 600–604 (2007). This study reveals that leukaemia stem cells have the potential to evolve with time from a primitive cell type to one containing rearranged immunoglobulin H genes. One implication of this work is that CSCs themselves may be subject to clonal evolution. ArticleCASPubMed Google Scholar
Clark, E. A., Golub, T. R., Lander, E. S. & Hynes, R. O. Genomic analysis of metastasis reveals an essential role for RhoC. Nature406, 532–535 (2000). ArticleCASPubMed Google Scholar
Huntly, B. J. et al. MOZ–TIF2, but not BCR–ABL, confers properties of leukemic stem cells to committed murine hematopoietic progenitors. Cancer Cell6, 587–596 (2004). ArticleCASPubMed Google Scholar
Krivtsov, A. V. et al. Transformation from committed progenitor to leukaemia stem cell initiated by MLL–AF9. Nature442, 818–822 (2006). ArticleCASPubMed Google Scholar
Somervaille, T. C. & Cleary, M. L. Identification and characterization of leukemia stem cells in murine MLL–AF9 acute myeloid leukemia. Cancer Cell10, 257–268 (2006). ArticleCASPubMed Google Scholar
Cozzio, A. et al. Similar MLL-associated leukemias arising from self-renewing stem cells and short-lived myeloid progenitors. Genes Dev.17, 3029–3035 (2003). ArticleCASPubMedPubMed Central Google Scholar
Chen, W. et al. Malignant transformation initiated by Mll_–_AF9: gene dosage and critical target cells. Cancer Cell13, 432–440 (2008). ArticleCASPubMedPubMed Central Google Scholar
Jamieson, C. H. et al. Granulocyte-macrophage progenitors as candidate leukemic stem cells in blast-crisis CML. N. Engl. J. Med.351, 657–667 (2004). ArticleCASPubMed Google Scholar
Al-Hajj, M., Wicha, M. S., Benito-Hernandez, A., Morrison, S. J. & Clarke, M. F. Prospective identification of tumorigenic breast cancer cells. Proc. Natl Acad. Sci. USA100, 3983–3988 (2003). This paper provides the first description of the prospective purification of tumour-initiating cells from a solid malignancy, breast cancer. ArticleCASPubMedPubMed Central Google Scholar
Singh, S. K. et al. Identification of human brain tumour initiating cells. Nature432, 396–401 (2004). The first demonstration of CSCs in brain tumours through the use of CD133 for prospective isolation. ArticleCASPubMed Google Scholar
Bao, S. et al. Stem cell-like glioma cells promote tumor angiogenesis through vascular endothelial growth factor. Cancer Res.66, 7843–7848 (2006). ArticleCASPubMed Google Scholar
Beier, D. et al. CD133+ and CD133− glioblastoma-derived cancer stem cells show differential growth characteristics and molecular profiles. Cancer Res.67, 4010–4015 (2007). ArticleCASPubMed Google Scholar
Taylor, M. D. et al. Radial glia cells are candidate stem cells of ependymoma. Cancer Cell8, 323–335 (2005). ArticleCASPubMed Google Scholar
Bao, S. et al. Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature444, 756–760 (2006). ArticleCASPubMed Google Scholar
Piccirillo, S. G. et al. Bone morphogenetic proteins inhibit the tumorigenic potential of human brain tumour-initiating cells. Nature444, 761–765 (2006). These studies reveal that CSCs in gliomas appear to have different properties from the bulk of the population. Reference 24 shows that they are more radioresistant and reference 25 demonstrates that they are responsive to BMP-induced differentiation. ArticleCASPubMed Google Scholar
O'Brien, C. A., Pollett, A., Gallinger, S. & Dick, J. E. A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature445, 106–110 (2007). ArticleCASPubMed Google Scholar
Ricci-Vitiani, L. et al. Identification and expansion of human colon-cancer-initiating cells. Nature445, 111–115 (2007). ArticleCASPubMed Google Scholar
Hermann, P. C. et al. Distinct populations of cancer stem cells determine tumor growth and metastatic activity in human pancreatic cancer. Cell Stem Cell1, 313–323 (2007). These findings support the concept of a distinct metastatic CSC with important implications for designing drugs that specifically target the metastatic CSC. ArticleCASPubMed Google Scholar
Lee, A. et al. Isolation of neural stem cells from the postnatal cerebellum. Nature Neurosci.8, 723–729 (2005). ArticleCASPubMed Google Scholar
Oshima, Y. et al. Isolation of mouse pancreatic ductal progenitor cells expressing CD133 and c-Met by flow cytometric cell sorting. Gastroenterology132, 720–732 (2007). ArticleCASPubMed Google Scholar
Dalerba, P. et al. Phenotypic characterization of human colorectal cancer stem cells. Proc. Natl Acad. Sci. USA104, 10158–10163 (2007). ArticleCASPubMedPubMed Central Google Scholar
Ginestier, C. et al. ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome. Cell Stem Cell1, 555–567 (2007). ArticleCASPubMedPubMed Central Google Scholar
Wright, M. H. et al. Brca1 breast tumors contain distinct CD44+/CD24− and CD133− cells with cancer stem cell characteristics. Breast Cancer Res.10, R10 (2008). ArticlePubMedPubMed CentralCAS Google Scholar
Schatton, T. et al. Identification of cells initiating human melanomas. Nature451, 345–349 (2008). This study reveals that expression of the CSC marker and drug transporter protein ABCB5 in melanoma correlates with clinical progression. ArticleCASPubMedPubMed Central Google Scholar
Kern, S. E. & Shibata, D. The fuzzy math of solid tumor stem cells: a perspective. Cancer Res.67, 8985–8988 (2007). ArticleCASPubMed Google Scholar
Bonnefoix, T., Bonnefoix, P., Verdiel, P. & Sotto, J. J. Fitting limiting dilution experiments with generalized linear models results in a test of the single-hit Poisson assumption. J. Immunol. Methods194, 113–119 (1996). ArticleCASPubMed Google Scholar
Zeppernick, F. et al. Stem cell marker CD133 affects clinical outcome in glioma patients. Clin. Cancer Res.14, 123–129 (2008). ArticleCASPubMed Google Scholar
Patrawala, L. et al. Highly purified CD44+ prostate cancer cells from xenograft human tumors are enriched in tumorigenic and metastatic progenitor cells. Oncogene25, 1696–1708 (2006). ArticleCASPubMed Google Scholar
Patrawala, L. et al. Side population is enriched in tumorigenic, stem-like cancer cells, whereas ABCG2+ and ABCG2− cancer cells are similarly tumorigenic. Cancer Res.65, 6207–6219 (2005). ArticleCASPubMed Google Scholar
Collins, A. T., Berry, P. A., Hyde, C., Stower, M. J. & Maitland, N. J. Prospective identification of tumorigenic prostate cancer stem cells. Cancer Res.65, 10946–10951 (2005). ArticleCASPubMed Google Scholar
Eramo, A. et al. Identification and expansion of the tumorigenic lung cancer stem cell population. Cell Death Differ.15, 504–514 (2008). ArticleCASPubMed Google Scholar
Yilmaz, O. H. et al. Pten dependence distinguishes haematopoietic stem cells from leukaemia-initiating cells. Nature441, 475–482 (2006). ArticleCASPubMed Google Scholar
Kelly, P. N., Dakic, A., Adams, J. M., Nutt, S. L. & Strasser, A. Tumor growth need not be driven by rare cancer stem cells. Science317, 337 (2007). This paper has challenged the CSC hypothesis, following the observation that three mouse models of leukaemia and lymphoma are maintained by a dominant cell population. The authors posit that xenotransplantation may select for tumour cells capable of surviving in a foreign environment. ArticleCASPubMed Google Scholar
Cho, R. W. et al. Isolation and molecular characterization of cancer stem cells in MMTV–Wnt-1 murine breast tumors. Stem Cells26, 364–371 (2008). ArticleCASPubMed Google Scholar
Vaillant, F., Asselin-Labat, M. L., Shackleton, M., Lindeman, G. J. and Visvader, J. E. The mammary progenitor marker CD61/b3integrin identifies cancer stem cells in mouse models of mammary tumorigenesis. Cancer Res. (in the press).
Zhang, M. et al. Identification of tumor-initiating cells in a p53 null mouse model of breast cancer. Cancer Res.68, 4674–4682 (2008). ArticleCASPubMedPubMed Central Google Scholar
Malanchi, I. et al. Cutaneous cancer stem cell maintenance is dependent on β-catenin signalling. Nature452, 650–653 (2008). References 46–49 provide definitive evidence for the existence of CSCs in syngeneic mouse models of mammary and skin tumorigenesis. They further suggest that normal stem and progenitor markers have utility in the identification and isolation of CSCs. Google Scholar
Thiery, J. P. Epithelial–mesenchymal transitions in tumour progression. Nature Rev. Cancer2, 442–454 (2002). ArticleCAS Google Scholar
Mani, S. A. et al. Mesenchyme Forkhead 1 (FOXC2) plays a key role in metastasis and is associated with aggressive basal-like breast cancers. Proc. Natl Acad. Sci. USA104, 10069–10074 (2007). ArticleCASPubMedPubMed Central Google Scholar
Kaplan, R. N. et al. VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature438, 820–827 (2005). ArticleCASPubMedPubMed Central Google Scholar
Yang, Z. F. et al. Significance of CD90+ cancer stem cells in human liver cancer. Cancer Cell13, 153–166 (2008). ArticleCASPubMed Google Scholar
Light, R. W., Erozan, Y. S. & Ball, W. C. Jr. Cells in pleural fluid. Their value in differential diagnosis. Arch. Intern. Med.132, 854–860 (1973). ArticleCASPubMed Google Scholar
Liu, R. et al. The prognostic role of a gene signature from tumorigenic breast-cancer cells. N. Engl. J. Med.356, 217–226 (2007). ArticleCASPubMed Google Scholar
Shipitsin, M. et al. Molecular definition of breast tumor heterogeneity. Cancer Cell11, 259–273 (2007). ArticleCASPubMed Google Scholar
Shmelkov, S. V. et al. CD133 expression is not restricted to stem cells, and both CD133 and CD133 metastatic colon cancer cells initiate tumors. J. Clin. Invest.118, 2111–2120 (2008). CASPubMedPubMed Central Google Scholar
Rifkin, D. B. & Moscatelli, D. Recent developments in the cell biology of basic fibroblast growth factor. J. Cell Biol.109, 1–6 (1989). ArticleCASPubMed Google Scholar
Kuperwasser, C. et al. Reconstruction of functionally normal and malignant human breast tissues in mice. Proc. Natl Acad. Sci. USA101, 4966–4971 (2004). This study represents an important step in establishing humanized mouse models for solid tumours, demonstrating that a species-specific stromal niche is important for the growth of human epithelial cells. ArticleCASPubMedPubMed Central Google Scholar
Gupta, P. B. et al. Systemic stromal effects of estrogen promote the growth of estrogen receptor-negative cancers. Cancer Res.67, 2062–2071 (2007). ArticleCASPubMed Google Scholar
Takenaka, K. et al. Polymorphism in Sirpa modulates engraftment of human hematopoietic stem cells. Nature Immunol.8, 1313–1323 (2007). ArticleCAS Google Scholar
Shultz, L. D. et al. Human lymphoid and myeloid cell development in NOD/LtSz-scid IL2Rγnull mice engrafted with mobilized human hemopoietic stem cells. J. Immunol.174, 6477–6489 (2005). ArticleCASPubMed Google Scholar
Galli, R. et al. Isolation and characterization of tumorigenic, stem-like neural precursors from human glioblastoma. Cancer Res.64, 7011–7021 (2004). ArticleCASPubMed Google Scholar
Li, C. et al. Identification of pancreatic cancer stem cells. Cancer Res.67, 1030–1037 (2007). ArticleCASPubMed Google Scholar
Bissell, M. J. & Labarge, M. A. Context, tissue plasticity, and cancer: are tumor stem cells also regulated by the microenvironment? Cancer Cell7, 17–23 (2005). CASPubMedPubMed Central Google Scholar
Mehta, R. R., Graves, J. M., Hart, G. D., Shilkaitis, A. & Das Gupta, T. K. Growth and metastasis of human breast carcinomas with Matrigel in athymic mice. Breast Cancer Res. Treat.25, 65–71 (1993). ArticleCASPubMed Google Scholar
Henson, B. et al. An orthotopic floor-of-mouth model for locoregional growth and spread of human squamous cell carcinoma. J. Oral Pathol. Med.36, 363–370 (2007). ArticleCASPubMed Google Scholar
Prokhorova, T. A. et al. Teratoma formation by human embryonic stem cells is site-dependent and enhanced by the presence of Matrigel. Stem Cells Dev. 7 Apr 2008 (doi:10.1089/scd.2007.0266).
Marshall, G. P. 2nd, Reynolds, B. A. & Laywell, E. D. Using the neurosphere assay to quantify neural stem cells in vivo. Curr. Pharm. Biotechnol.8, 141–145 (2007). ArticleCASPubMed Google Scholar
Reynolds, B. A. & Rietze, R. L. Neural stem cells and neurospheres — re-evaluating the relationship. Nature Meth.2, 333–336 (2005). The sphere assay, originally developed for neural cells, has formed an important basis for the development of anin vitroassay to study both normal stem and progenitor cells and tumour-initiating cells in a variety of solid tumours including brain (reference 73) and breast (reference 78). ArticleCAS Google Scholar
Kondo, T. & Raff, M. Oligodendrocyte precursor cells reprogrammed to become multipotential CNS stem cells. Science289, 1754–1757 (2000). ArticleCASPubMed Google Scholar
Clement, V., Sanchez, P., de Tribolet, N., Radovanovic, I. & Ruiz i Altaba, A. HEDGEHOG–GLI1 signaling regulates human glioma growth, cancer stem cell self-renewal, and tumorigenicity. Curr. Biol.17, 165–172 (2007). ArticleCASPubMed Google Scholar
Diamandis, P. et al. Chemical genetics reveals a complex functional ground state of neural stem cells. Nature Chem. Biol.3, 268–273 (2007). ArticleCAS Google Scholar
Beier, D. et al. Temozolomide preferentially depletes cancer stem cells in glioblastoma. Cancer Res.68, 5706–5715 (2008). ArticleCASPubMed Google Scholar
Yu, F. et al. let-7 regulates self renewal and tumorigenicity of breast cancer cells. Cell131, 1109–1123 (2007). ArticleCASPubMed Google Scholar
Dontu, G. et al. In vitro propagation and transcriptional profiling of human mammary stem/progenitor cells. Genes Dev.17, 1253–1270 (2003). ArticleCASPubMedPubMed Central Google Scholar
Ishikawa, F. et al. Chemotherapy-resistant human AML stem cells home to and engraft within the bone-marrow endosteal region. Nature Biotechnol.25, 1315–1321 (2007). ArticleCAS Google Scholar
Shachaf, C. M. et al. MYC inactivation uncovers pluripotent differentiation and tumour dormancy in hepatocellular cancer. Nature431, 1112–1117 (2004). ArticleCASPubMed Google Scholar
Guzman, M. L. et al. The sesquiterpene lactone parthenolide induces apoptosis of human acute myelogenous leukemia stem and progenitor cells. Blood105, 4163–4169 (2005). ArticleCASPubMedPubMed Central Google Scholar
Jin, L., Hope, K. J., Zhai, Q., Smadja-Joffe, F. & Dick, J. E. Targeting of CD44 eradicates human acute myeloid leukemic stem cells. Nature Med.12, 1167–1174 (2006). ArticlePubMedCAS Google Scholar
Krause, D. S., Lazarides, K., von Andrian, U. H. & Van Etten, R. A. Requirement for CD44 in homing and engraftment of BCR–ABL-expressing leukemic stem cells. Nature Med.12, 1175–1180 (2006). ArticleCASPubMed Google Scholar
Lee, J. et al. Epigenetic-mediated dysfunction of the bone morphogenetic protein pathway inhibits differentiation of glioblastoma-initiating cells. Cancer Cell13, 69–80 (2008). ArticleCASPubMedPubMed Central Google Scholar
Walkley, C. R. et al. A microenvironment-induced myeloproliferative syndrome caused by retinoic acid receptor γ deficiency. Cell129, 1097–1110 (2007). ArticleCASPubMedPubMed Central Google Scholar
Calabrese, C. et al. A perivascular niche for brain tumor stem cells. Cancer Cell11, 69–82 (2007). This study and reference 21 suggest that CSCs in tumours are maintained by an aberrant vascular niche and that glioblastoma CSCs have potent angiogenic activity. ArticleCASPubMed Google Scholar
Folkins, C. et al. Anticancer therapies combining antiangiogenic and tumor cell cytotoxic effects reduce the tumor stem-like cell fraction in glioma xenograft tumors. Cancer Res.67, 3560–3564 (2007). ArticleCASPubMed Google Scholar
Hambardzumyan, D. et al. PI3K pathway regulates survival of cancer stem cells residing in the perivascular niche following radiation in medulloblastoma in vivo. Genes Dev.22, 436–448 (2008). ArticleCASPubMedPubMed Central Google Scholar
Blazek, E. R., Foutch, J. L. & Maki, G. Daoy medulloblastoma cells that express CD133 are radioresistant relative to CD133− cells, and the CD133+ sector is enlarged by hypoxia. Int. J. Radiat. Oncol. Biol. Phys.67, 1–5 (2007). ArticleCASPubMed Google Scholar
Phillips, T. M., McBride, W. H. & Pajonk, F. The response of CD24−/low/CD44+ breast cancer-initiating cells to radiation. J. Natl Cancer Inst.98, 1777–1785 (2006). ArticlePubMed Google Scholar
Woodward, W. A. et al. WNT/β-catenin mediates radiation resistance of mouse mammary progenitor cells. Proc. Natl Acad. Sci. USA104, 618–623 (2007). ArticleCASPubMedPubMed Central Google Scholar
Al-Hajj, M. Cancer stem cells and oncology therapeutics. Curr. Opin. Oncol.19, 61–64 (2007). PubMed Google Scholar
Li, X. et al. Intrinsic resistance of tumorigenic breast cancer cells to chemotherapy. J. Natl Cancer Inst.100, 672–679 (2008). References 77 and 94 provide evidence for a subpopulation of chemotherapy-resistant cancer-initiating cells in breast cancer patients. ArticleCASPubMed Google Scholar
Shafee, N. et al. Cancer stem cells contribute to cisplatin resistance in Brca1/_p53_-mediated mouse mammary tumors. Cancer Res.68, 3243–3250 (2008). ArticleCASPubMedPubMed Central Google Scholar
Todaro, M. et al. Colon cancer stem cells dictate tumor growth and resist cell death by production of interleukin-4. Cell Stem Cell1, 389–402 (2007). ArticleCASPubMed Google Scholar
Johnstone, R. W., Cretney, E. & Smyth, M. J. P-glycoprotein protects leukemia cells against caspase-dependent, but not caspase-independent, cell death. Blood93, 1075–1085 (1999). CASPubMed Google Scholar
Blair, A., Hogge, D. E., Ailles, L. E., Lansdorp, P. M. & Sutherland, H. J. Lack of expression of Thy-1 (CD90) on acute myeloid leukemia cells with long-term proliferative ability in vitro and in vivo. Blood89, 3104–3112 (1997). CASPubMed Google Scholar
Jordan, C. T. et al. The interleukin-3 receptor alpha chain is a unique marker for human acute myelogenous leukemia stem cells. Leukemia14, 1777–1784 (2000). ArticleCASPubMed Google Scholar
Chang, H. H., Hemberg, M., Barahona, M., Ingber, D. E. & Huang, S. Transcriptome-wide noise controls lineage choice in mammalian progenitor cells. Nature453, 544–547 (2008). ArticleCASPubMedPubMed Central Google Scholar
Hope, K. J., Jin, L. & Dick, J. E. Acute myeloid leukemia originates from a hierarchy of leukemic stem cell classes that differ in self-renewal capacity. Nature Immunol.5, 738–743 (2004). ArticleCAS Google Scholar
Kleinsmith, L. J. & Pierce, G. B., Jr. Multipotentiality of single embryonal carcinoma cells. Cancer Res.24, 1544–1551 (1964). CASPubMed Google Scholar
Lowe, S. W. & Sherr, C. J. Tumor suppression by _Ink4a_-Arf: progress and puzzles. Curr. Opin. Genet. Dev.13, 77–83 (2003). ArticleCASPubMed Google Scholar
Molofsky, A. V., He, S., Bydon, M., Morrison, S. J. & Pardal, R. Bmi-1 promotes neural stem cell self-renewal and neural development but not mouse growth and survival by repressing the p16Ink4a and p19Arf senescence pathways. Genes Dev.19, 1432–1437 (2005). ArticleCASPubMedPubMed Central Google Scholar
Pardal, R., Molofsky, A. V., He, S. & Morrison, S. J. Stem cell self-renewal and cancer cell proliferation are regulated by common networks that balance the activation of proto-oncogenes and tumor suppressors. Cold Spring Harb. Symp. Quant. Biol.70, 177–185 (2005). ArticleCASPubMed Google Scholar
Leung, C. et al. Bmi1 is essential for cerebellar development and is overexpressed in human medulloblastomas. Nature428, 337–341 (2004). ArticleCASPubMed Google Scholar
He, X. C., Zhang, J. & Li, L. Cellular and molecular regulation of hematopoietic and intestinal stem cell behavior. Ann. N. Y. Acad. Sci.1049, 28–38 (2005). ArticleCASPubMed Google Scholar
Haramis, A. P. et al. De novo crypt formation and juvenile polyposis on BMP inhibition in mouse intestine. Science303, 1684–1686 (2004). ArticleCASPubMed Google Scholar
He, X. C. et al. BMP signaling inhibits intestinal stem cell self-renewal through suppression of Wnt–β-catenin signaling. Nature Genet.36, 1117–1121 (2004). ArticleCASPubMed Google Scholar
Ming Kwan, K., Li, A. G., Wang, X. J., Wurst, W. & Behringer, R. R. Essential roles of BMPR-IA signaling in differentiation and growth of hair follicles and in skin tumorigenesis. Genesis39, 10–25 (2004). ArticlePubMedCAS Google Scholar
Ayyanan, A. et al. Increased Wnt signaling triggers oncogenic conversion of human breast epithelial cells by a Notch-dependent mechanism. Proc. Natl Acad. Sci. USA103, 3799–3804 (2006). ArticleCASPubMedPubMed Central Google Scholar
Shackleton, M. et al. Generation of a functional mammary gland from a single stem cell. Nature439, 84–88 (2006). ArticleCASPubMed Google Scholar
Mizrak, D., Brittan, M. & Alison, M. R. CD133: molecule of the moment. J. Pathol.214, 3–9 (2008). ArticleCASPubMed Google Scholar
Prince, M. E. et al. Identification of a subpopulation of cells with cancer stem cell properties in head and neck squamous cell carcinoma. Proc. Natl Acad. Sci. USA104, 973–978 (2007). ArticleCASPubMedPubMed Central Google Scholar
Wu, C. et al. Side population cells isolated from mesenchymal neoplasms have tumor initiating potential. Cancer Res.67, 8216–8222 (2007). ArticleCASPubMed Google Scholar
Clarke, M. F. et al. Cancer stem cells — perspectives on current status and future directions: AACR Workshop on cancer stem cells. Cancer Res.66, 9339–9344 (2006). ArticleCASPubMed Google Scholar
Singh, S. K. et al. Identification of a cancer stem cell in human brain tumors. Cancer Res.63, 5821–5828 (2003). CASPubMed Google Scholar