Luger, K., Mader, A. W., Richmond, R. K., Sargent, D. F. & Richmond, T. J. Crystal structure of the nucleosome core particle at 2.8 Å resolution. Nature389, 251–260 (1997). ArticleCASPubMed Google Scholar
Heitz, E. Das heterochromatin der moose. I Jahrb Wiss Botanik69, 762–818 (1928) (in German). Google Scholar
Huisinga, K. L., Brower-Toland, B. & Elgin, S. C. The contradictory definitions of heterochromatin: transcription and silencing. Chromosoma115, 110–122 (2006). ArticleCASPubMed Google Scholar
Weiler, K. S. & Wakimoto, B. T. Heterochromatin and gene expression in Drosophila. Annu. Rev. Genet.29, 577–605 (1995). ArticleCASPubMed Google Scholar
Birchler, J. A., Bhadra, M. P. & Bhadra, U. Making noise about silence: repression of repeated genes in animals. Curr. Opin. Genet. Dev.10, 211–216 (2000). ArticleCASPubMed Google Scholar
Hall, I. M. & Grewal, S. I. in RNAi: A Guide To Gene Silencing (ed. Hannon, G. J.) 205–232 (Cold Spring Harbor Press, Cold Spring Harbor, 2003). Google Scholar
Martens, J. H. et al. The profile of repeat-associated histone lysine methylation states in the mouse epigenome. EMBO J.24, 800–812 (2005). ArticleCASPubMedPubMed Central Google Scholar
Boumil, R. M. & Lee, J. T. Forty years of decoding the silence in X-chromosome inactivation. Hum. Mol. Genet.10, 2225–2232 (2001). ArticleCASPubMed Google Scholar
Henikoff, S. Heterochromatin function in complex genomes. Biochim. Biophys. Acta.1470, 1–8 (2000). Google Scholar
Allshire, R. C., Nimmo, E. R., Ekwall, K., Javerzat, J. P. & Cranston, G. Mutations derepressing silent centromeric domains in fission yeast disrupt chromosome segregation. Genes Dev.9, 218–233 (1995). ArticleCASPubMed Google Scholar
Kellum, R. & Alberts, B. M. Heterochromatin protein 1 is required for correct chromosome segregation in Drosophila embryos. J. Cell Sci.108, 1419–1431 (1995). CASPubMed Google Scholar
Csink, A. K. & Henikoff, S. Genetic modification of heterochromatic association and nuclear organization in Drosophila. Nature381, 529–531 (1996). ArticleCASPubMed Google Scholar
Dernburg, A. F. et al. Perturbation of nuclear architecture by long-distance chromosome interactions. Cell85, 745–759 (1996). ArticleCASPubMed Google Scholar
Jia, S., Yamada, T. & Grewal, S. I. Heterochromatin regulates cell type-specific long-range chromatin interactions essential for directed recombination. Cell119, 469–480 (2004). This paper demonstrated a role for heterochromatin in promoting cell-type-specific, long-range spreading of a protein complex that is involved in promoting recombination. ArticleCASPubMed Google Scholar
Lu, B. Y., Emtage, P. C., Duyf, B. J., Hilliker, A. J. & Eissenberg, J. C. Heterochromatin protein 1 is required for the normal expression of two heterochromatin genes in Drosophila. Genetics155, 699–708 (2000). CASPubMedPubMed Central Google Scholar
Yasuhara, J. C. & Wakimoto, B. T. Oxymoron no more: the expanding world of heterochromatic genes. Trends Genet.22, 330–338 (2006). ArticleCASPubMed Google Scholar
Greil, F. et al. Distinct HP1 and Su(var)3–9 complexes bind to sets of developmentally coexpressed genes depending on chromosomal location. Genes Dev.17, 2825–2838 (2003). ArticleCASPubMedPubMed Central Google Scholar
Piacentini, L., Fanti, L., Berloco, M., Perrini, B. & Pimpinelli, S. Heterochromatin protein 1 (HP1) is associated with induced gene expression in Drosophila euchromatin. J. Cell Biol.161, 707–714 (2003). ArticleCASPubMedPubMed Central Google Scholar
Cryderman, D. E. et al. Role of Drosophila HP1 in euchromatic gene expression. Dev. Dyn.232, 767–774 (2005). ArticleCASPubMed Google Scholar
Vakoc, C. R., Mandat, S. A., Olenchock, B. A. & Blobel, G. A. Histone H3 lysine 9 methylation and HP1γ are associated with transcription elongation through mammalian chromatin. Mol. Cell19, 381–391 (2005). ArticleCASPubMed Google Scholar
Zofall, M. & Grewal, S. I. Swi6/HP1 recruits a JmjC domain protein to facilitate transcription of heterochromatic repeats. Mol. Cell22, 681–692 (2006). ArticleCASPubMed Google Scholar
Maison, C. & Almouzni, G. HP1 and the dynamics of heterochromatin maintenance. Nature Rev. Mol. Cell Biol.5, 296–304 (2004). ArticleCAS Google Scholar
Hiragami, K. & Festenstein, R. Heterochromatin protein 1: a pervasive controlling influence. Cell. Mol. Life Sci.62, 2711–2726 (2005). ArticleCASPubMed Google Scholar
Cheutin, T. et al. Maintenance of stable heterochromatin domains by dynamic HP1 binding. Science299, 721–725 (2003). ArticleCASPubMed Google Scholar
Festenstein, R. et al. Modulation of heterochromatin protein 1 dynamics in primary mammalian cells. Science299, 719–721 (2003). References 27 and 28 demonstrated that the heterochromatin protein HP1 is highly dynamic, even in heterochromatin domains, which are generally perceived to be highly stable. ArticleCASPubMed Google Scholar
Cheutin, T., Gorski, S. A., May, K. M., Singh, P. B. & Misteli, T. In vivo dynamics of Swi6 in yeast: evidence for a stochastic model of heterochromatin. Mol. Cell. Biol.24, 3157–3167 (2004). ArticleCASPubMedPubMed Central Google Scholar
Grunstein, M. Yeast heterochromatin: regulation of its assembly and inheritance by histones. Cell93, 325–328 (1998). ArticleCASPubMed Google Scholar
Nakayama, J., Rice, J. C., Strahl, B. D., Allis, C. D. & Grewal, S. I. Role of histone H3 lysine 9 methylation in epigenetic control of heterochromatin assembly. Science292, 110–113 (2001). This paper demonstrated that methylation of H3K9 is crucial for recruitment of Swi6/HP1 to heterochromatic loci. ArticleCASPubMed Google Scholar
Litt, M. D., Simpson, M., Gaszner, M., Allis, C. D. & Felsenfeld, G. Correlation between histone lysine methylation and developmental changes at the chicken β-globin locus. Science293, 2453–2455 (2001). ArticleCASPubMed Google Scholar
Noma, K., Allis, C. D. & Grewal, S. I. Transitions in distinct histone H3 methylation patterns at the heterochromatin domain boundaries. Science293, 1150–1155 (2001). ArticleCASPubMed Google Scholar
Cam, H. P. et al. Comprehensive analysis of heterochromatin- and RNAi-mediated epigenetic control of the fission yeast genome. Nature Genet.37, 809–819 (2005). ArticleCASPubMed Google Scholar
Martin, C. & Zhang, Y. The diverse functions of histone lysine methylation. Nature Rev. Mol. Cell Biol.6, 838–849 (2005). ArticleCAS Google Scholar
Lachner, M., O'Carroll, D., Rea, S., Mechtler, K. & Jenuwein, T. Methylation of histone H3 lysine 9 creates a binding site for HP1 proteins. Nature410, 116–120 (2001). ArticleCASPubMed Google Scholar
Bannister, A. J. et al. Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain. Nature410, 120–124 (2001). References 36 and 37 demonstrated that the chromodomain of HP1 binds with high affinity to H3K9me. ArticleCASPubMed Google Scholar
Schotta, G. et al. Central role of Drosophila SU(VAR)3–9 in histone H3-K9 methylation and heterochromatic gene silencing. EMBO J.21, 1121–1131 (2002). ArticleCASPubMedPubMed Central Google Scholar
Rea, S. et al. Regulation of chromatin structure by site-specific histone H3 methyltransferases. Nature406, 593–539 (2000). This paper showed that mammalian SUV39H1 and its fission yeast homologue Clr4 are histone H3K9-specific methyltranscferases, and identified the SET domain as the catalytic motif. ArticleCASPubMed Google Scholar
Hall, I. M. et al. Establishment and maintenance of a heterochromatin domain. Science297, 2232–2237 (2002). This paper established a link between RNAi and heterochromatin assembly in fission yeast, and showed that heterochromatin assembly that is nucleated at a repeat element can spread in a manner that is dependent upon Swi6/HP1. ArticleCASPubMed Google Scholar
Brasher, S. V. et al. The structure of mouse HP1 suggests a unique mode of single peptide recognition by the shadow chromo domain dimer. EMBO J.19, 1587–1597 (2000). ArticleCASPubMedPubMed Central Google Scholar
Cowieson, N. P., Partridge, J. F., Allshire, R. C. & McLaughlin, P. J. Dimerisation of a chromo shadow domain and distinctions from the chromodomain as revealed by structural analysis. Curr. Biol.10, 517–525 (2000). ArticleCASPubMed Google Scholar
Smothers, J. F. & Henikoff, S. The HP1 chromo shadow domain binds a consensus peptide pentamer. Curr. Biol.10, 27–30 (2000). ArticleCASPubMed Google Scholar
Lechner, M. S., Schultz, D. C., Negorev, D., Maul, G. G. & Rauscher, F. J., 3rd. The mammalian heterochromatin protein 1 binds diverse nuclear proteins through a common motif that targets the chromoshadow domain. Biochem. Biophys. Res. Commun.331, 929–937 (2005). ArticleCASPubMed Google Scholar
Yamada, T., Fischle, W., Sugiyama, T., Allis, C. D. & Grewal, S. I. The nucleation and maintenance of heterochromatin by a histone deacetylase in fission yeast. Mol. Cell20, 173–185 (2005). ArticleCASPubMed Google Scholar
Zhang, C. L., McKinsey, T. A. & Olson, E. N. Association of class II histone deacetylases with heterochromatin protein 1: potential role for histone methylation in control of muscle differentiation. Mol. Cell. Biol.22, 7302–7312 (2002). ArticleCASPubMedPubMed Central Google Scholar
Wysocka, J. et al. A PHD finger of NURF couples histone H3 lysine 4 trimethylation with chromatin remodelling. Nature422, 86–90 (2006). ArticleCAS Google Scholar
Pray-Grant, M. G., Daniel, J. A., Schieltz, D., Yates, J. R., 3rd & Grant, P. A. Chd1 chromodomain links histone H3 methylation with SAGA- and SLIK-dependent acetylation. Nature433, 434–438 (2005). ArticleCASPubMed Google Scholar
Carrozza, M. J. et al. Histone H3 methylation by Set2 directs deacetylation of coding regions by Rpd3S to suppress spurious intragenic transcription. Cell123, 581–592 (2005). ArticleCASPubMed Google Scholar
Joshi, A. A. & Struhl, K. Eaf3 chromodomain interaction with methylated H3-K36 links histone deacetylation to Pol II elongation. Mol. Cell20, 971–978 (2005). ArticleCASPubMed Google Scholar
Keogh, M. C. et al. Cotranscriptional set2 methylation of histone H3 lysine 36 recruits a repressive Rpd3 complex. Cell123, 593–605 (2005). ArticleCASPubMed Google Scholar
Nielsen, S. J. et al. Rb targets histone H3 methylation and HP1 to promoters. Nature412, 561–565 (2001). ArticleCASPubMed Google Scholar
Schultz, D., Ayyanathan, K., Negorev, D., Maul, G. & Rauscher, F. R. SETDB1: a novel KAP-1-associated histone H3, lysine 9-specific methyltransferase that contributes to HP1-mediated silencing of euchromatic genes by KRAB zinc-finger proteins. Genes Dev.16, 1855–1869 (2002). ArticleCAS Google Scholar
Dorer, D. R. & Henikoff, S. Expansions of transgene repeats cause heterochromatin formation and gene silencing in Drosophila. Cell77, 993–1002 (1994). ArticleCASPubMed Google Scholar
Luff, B., Pawlowski, L. & Bender, J. An inverted repeat triggers cytosine methylation of identical sequences in Arabidopsis. Mol. Cell3, 505–511 (1999). ArticleCASPubMed Google Scholar
Matzke, M. A. & Birchler, J. A. RNAi-mediated pathways in the nucleus. Nature Rev. Genet.6, 24–35 (2005). ArticleCASPubMed Google Scholar
Fire, A. et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature391, 806–811 (1998). This groundbreaking study revealed an unexpected role of dsRNA in controlling gene expression. ArticleCASPubMed Google Scholar
Meister, G. & Tuschl, T. Mechanisms of gene silencing by double-stranded RNA. Nature431, 343–349 (2004). ArticleCASPubMed Google Scholar
Cox, D. N. et al. A novel class of evolutionarily conserved genes defined by piwi are essential for stem cell self-renewal. Genes Dev.12, 3715–3727 (1998). ArticleCASPubMedPubMed Central Google Scholar
Klar, A. J. Developmental choices in mating-type interconversion in fission yeast. Trends Genet.8, 208–213 (1992). ArticleCASPubMed Google Scholar
Grewal, S. I., Bonaduce, M. J. & Klar, A. J. Histone deacetylase homologs regulate epigenetic inheritance of transcriptional silencing and chromosome segregation in fission yeast. Genetics150, 563–576 (1998). CASPubMedPubMed Central Google Scholar
Volpe, T. A. et al. Regulation of heterochromatic silencing and histone H3 lysine-9 methylation by RNAi. Science297, 1833–1837 (2002). This paper demonstrated that the RNAi machinery is required for transcriptional silencing and heterochromatin formation at the centromeres in fission yeast. ArticleCASPubMed Google Scholar
Mochizuki, K., Fine, N. A., Fujisawa, T. & Gorovsky, M. A. Analysis of a piwi-related gene implicates small RNAs in genome rearrangement in tetrahymena. Cell110, 689–699 (2002). This paper showed that the RNAi machinery is required for programmed elimination of DNA sequences inTetrahymena thermophila, a process that involves heterochromatin formation at the eliminated DNA. ArticleCASPubMed Google Scholar
Taverna, S. D., Coyne, R. S. & Allis, C. D. Methylation of histone H3 at lysine 9 targets programmed DNA elimination in tetrahymena. Cell110, 701–711 (2002). ArticleCASPubMed Google Scholar
Pal-Bhadra, M. et al. Heterochromatic silencing and HP1 localization in Drosophila are dependent on the RNAi machinery. Science303, 669–672 (2004). This study demonstrated that the RNAi machinery is required for silencing and heterochromatin formation inD. melanogaster. ArticleCASPubMed Google Scholar
Zilberman, D., Cao, X. & Jacobsen, S. E. ARGONAUTE4 control of locus-specific siRNA accumulation and DNA and histone methylation. Science299, 716–719 (2003). These authors established that the RNAi machinery is required for heterochromatic gene silencing and control of transposable elements inA. thaliana. ArticleCASPubMed Google Scholar
Kanellopoulou, C. et al. Dicer-deficient mouse embryonic stem cells are defective in differentiation and centromeric silencing. Genes Dev.19, 489–501 (2005). ArticleCASPubMedPubMed Central Google Scholar
Fukagawa, T. et al. Dicer is essential for formation of the heterochromatin structure in vertebrate cells. Nature Cell Biol.6, 784–791 (2004). ArticleCASPubMed Google Scholar
Grishok, A., Sinskey, J. L. & Sharp, P. A. Transcriptional silencing of a transgene by RNAi in the soma of C. elegans. Genes Dev.19, 683–696 (2005). ArticleCASPubMedPubMed Central Google Scholar
Reinhart, B. J. & Bartel, D. P. Small RNAs correspond to centromere heterochromatic repeats. Science297, 1831 (2002). ArticleCASPubMed Google Scholar
Lippman, Z. et al. Role of transposable elements in heterochromatin and epigenetic control. Nature430, 471–476 (2004). ArticleCASPubMed Google Scholar
Aravin, A. A. et al. The small RNA profile during Drosophila melanogaster development. Dev. Cell5, 337–350 (2003). ArticleCASPubMed Google Scholar
Djupedal, I. et al. RNA Pol II subunit Rpb7 promotes centromeric transcription and RNAi-directed chromatin silencing. Genes Dev.19, 2301–2306 (2005). ArticleCASPubMedPubMed Central Google Scholar
Kato, H. et al. RNA polymerase II is required for RNAi-dependent heterochromatin assembly. Science309, 467–469 (2005). References 75 and 76 showed that mutations in RNA Pol II subunits affect RNAi-mediated heterochromatin assembly at fission yeast centromeres. ArticleCASPubMed Google Scholar
Partridge, J. F., Scott, K. S., Bannister, A. J., Kouzarides, T. & Allshire, R. C. _cis_-acting DNA from fission yeast centromeres mediates histone H3 methylation and recruitment of silencing factors and cohesin to an ectopic site. Curr. Biol.12, 1652–1660 (2002). ArticleCASPubMed Google Scholar
Grewal, S. I. & Klar, A. J. A recombinationally repressed region between mat2 and mat3 loci shares homology to centromeric repeats and regulates directionality of mating-type switching in fission yeast. Genetics146, 1221–1238 (1997). CASPubMedPubMed Central Google Scholar
Noma, K. et al. RITS acts in cis to promote RNA interference-mediated transcriptional and post-transcriptional silencing. Nature Genet.36, 1174–1180 (2004). ArticleCASPubMed Google Scholar
Jia, S., Noma, K. & Grewal, S. I. RNAi-independent heterochromatin nucleation by the stress-activated ATF/CREB family proteins. Science304, 1971–1976 (2004). ArticleCASPubMed Google Scholar
Kim, H. S., Choi, E. S., Shin, J. A., Jang, Y. K. & Park, S. D. Regulation of Swi6/HP1-dependent heterochromatin assembly by cooperation of components of the mitogen-activated protein kinase pathway and a histone deacetylase Clr6. J. Biol. Chem.279, 42850–42859 (2004). ArticleCASPubMed Google Scholar
Kanoh, J., Sadaie, M., Urano, T. & Ishikawa, F. Telomere binding protein Taz1 establishes Swi6 heterochromatin independently of RNAi at telomeres. Curr. Biol.15, 1808–1819 (2005). ArticleCASPubMed Google Scholar
Hansen, K. R., Ibarra, P. T. & Thon, G. Evolutionary-conserved telomere-linked helicase genes of fission yeast are repressed by silencing factors, RNAi components and the telomere-binding protein Taz1. Nucl. Acids Res.34, 78–88 (2006). ArticleCASPubMedPubMed Central Google Scholar
Nakagawa, H. et al. Fission yeast CENP-B homologs nucleate centromeric heterochromatin by promoting heterochromatin-specific histone tail modifications. Genes Dev.16, 1766–1778 (2002). ArticleCASPubMedPubMed Central Google Scholar
Gonzalo, S. & Blasco, M. A. Role of Rb family in the epigenetic definition of chromatin. Cell Cycle4, 752–755 (2005). ArticleCASPubMed Google Scholar
Verdel, A. et al. RNAi-mediated targeting of heterochromatin by the RITS complex. Science303, 672–676 (2004). This paper reported the identification of the RITS complex, which is involved in RNAi-mediated heterochromatin assembly and silencing in fission yeast. ArticleCASPubMedPubMed Central Google Scholar
Petrie, V. J., Wuitschick, J. D., Givens, C. D., Kosinski, A. M. & Partridge, J. F. RNA interference (RNAi)-dependent and RNAi-independent association of the Chp1 chromodomain protein with distinct heterochromatic loci in fission yeast. Mol. Cell. Biol.25, 2331–2346 (2005). ArticleCASPubMedPubMed Central Google Scholar
Sugiyama, T., Cam, H., Verdel, A., Moazed, D. & Grewal, S. I. RNA-dependent RNA polymerase is an essential component of a self-enforcing loop coupling heterochromatin assembly to siRNA production. Proc. Natl Acad. Sci. USA102, 152–157 (2005). ArticleCASPubMed Google Scholar
Buhler, M., Verdel, A. & Moazed, D. Tethering RITS to a nascent transcript initiates RNAi- and heterochromatin-dependent gene silencing. Cell125, 873–886 (2006). ArticleCASPubMed Google Scholar
Motamedi, M. R. et al. Two RNAi complexes, RITS and RDRC, physically interact and localize to noncoding centromeric RNAs. Cell119, 789–802 (2004). ArticleCASPubMed Google Scholar
Irvine, D. V. et al. Argonaute slicing is required for heterochromatic silencing and spreading. Science313, 1134–1137 (2006). ArticleCASPubMed Google Scholar
Zofall, M. & Grewal, S. I. RNAi-mediated heterochromatin assembly in fission yeast. Cold Spring Harb. Symp. Quant. Biol. (in the press).
Jia, S., Kobayashi, R. & Grewal, S. I. Ubiquitin ligase component Cul4 associates with Clr4 histone methyltransferase to assemble heterochromatin. Nature Cell Biol.7, 1007–1013 (2005). ArticleCASPubMed Google Scholar
Horn, P. J., Bastie, J. N. & Peterson, C. L. A Rik1-associated, cullin-dependent E3 ubiquitin ligase is essential for heterochromatin formation. Genes Dev.19, 1705–1714 (2005). ArticleCASPubMedPubMed Central Google Scholar
Hong, E. E., Villen, J., Gerace, E. L., Gygi, S. P. & Moazed, D. A Cullin E3 ubiquitin ligase complex associates with Rik1 and the Clr4 histone H3-K9 methyltransferase and is required for RNAi-mediated heterochromatin formation. RNA Biol.2, 106–111 (2005). ArticleCASPubMed Google Scholar
Thon, G. et al. The Clr7 and Clr8 directionality factors and the Pcu4 cullin mediate heterochromatin formation in the fission yeast Schizosaccharomyces pombe. Genetics171, 1583–1595 (2005). ArticleCASPubMedPubMed Central Google Scholar
Neuwald, A. F. & Poleksic, A. PSI-BLAST searches using hidden markov models of structural repeats: prediction of an unusual sliding DNA clamp and of β-propellers in UV-damaged DNA-binding protein. Nucleic Acids Res.28, 3570–3580 (2000). ArticleCASPubMedPubMed Central Google Scholar
Gaszner, M. & Felsenfeld, G. Insulators: exploiting transcriptional and epigenetic mechanisms. Nature Rev. Genet.7, 703–713 (2006). ArticleCASPubMed Google Scholar
Labrador, M. & Corces, V. G. Setting the boundaries of chromatin domains and nuclear organization. Cell111, 151–154 (2002). ArticleCASPubMed Google Scholar
Bi, X. & Broach, J. R. Chromosomal boundaries in S. cerevisiae. Curr. Opin. Genet. Dev.11, 199–204 (2001). ArticleCASPubMed Google Scholar
Thon, G., Bjerling, P., Bunner, C. M. & Verhein-Hansen, J. Expression-state boundaries in the mating-type region of fission yeast. Genetics161, 611–622 (2002). CASPubMedPubMed Central Google Scholar
Noma, K., Cam, H. P., Maraia, R. J. & Grewal, S. I. A role for TFIIIC transcription factor complex in genome organization. Cell125, 859–872 (2006). ArticleCASPubMed Google Scholar
Yusufzai, T. M., Tagami, H., Nakatani, Y. & Felsenfeld, G. CTCF tethers an insulator to subnuclear sites, suggesting shared insulator mechanisms across species. Mol. Cell13, 291–298 (2004). ArticleCASPubMed Google Scholar
Ishii, K., Arib, G., Lin, C., Van Houwe, G. & Laemmli, U. K. Chromatin boundaries in budding yeast: the nuclear pore connection. Cell109, 551–562 (2002). ArticleCASPubMed Google Scholar
Scott, K. C., Merrett, S. L. & Willard, H. F. A heterochromatin barrier partitions the fission yeast centromere into discrete chromatin domains. Curr. Biol.16, 119–129 (2006). ArticleCASPubMed Google Scholar
Partridge, J. F., Borgstrom, B. & Allshire, R. C. Distinct protein interaction domains and protein spreading in a complex centromere. Genes Dev.14, 783–791 (2000). CASPubMedPubMed Central Google Scholar
Shogren-Knaak, M. et al. Histone H4-K16 acetylation controls chromatin structure and protein interactions. Science311, 844–847 (2006). ArticleCASPubMed Google Scholar
Tamaru, H. & Selker, E. U. A histone H3 methyltransferase controls DNA methylation in Neurospora crassa. Nature414, 277–283 (2001). ArticleCASPubMed Google Scholar
Chan, S. W., Henderson, I. R. & Jacobsen, S. E. Gardening the genome: DNA methylation in Arabidopsis thaliana. Nature Rev. Genet.6, 351–360 (2005). ArticleCASPubMed Google Scholar
Ohki, I. et al. Solution structure of the methyl-CpG binding domain of human MBD1 in complex with methylated DNA. Cell105, 487–497 (2001). ArticleCASPubMed Google Scholar
Bird, A. P. & Wolffe, A. P. Methylation-induced repression-belts, braces, and chromatin. Cell99, 451–454 (1999). ArticleCASPubMed Google Scholar
Murchison, E. P., Partridge, J. F., Tam, O. H., Cheloufi, S. & Hannon, G. J. Characterization of Dicer-deficient murine embryonic stem cells. Proc. Natl Acad. Sci. USA102, 12135–12140 (2005). ArticleCASPubMedPubMed Central Google Scholar
Haussecker, D. & Proudfoot, N. J. Dicer-dependent turnover of intergenic transcripts from the human β-globin gene cluster. Mol. Cell. Biol.25, 9724–9733 (2005). ArticleCASPubMedPubMed Central Google Scholar
Sigova, A., Rhind, N. & Zamore, P. D. A single Argonaute protein mediates both transcriptional and posttranscriptional silencing in Schizosaccharomyces pombe. Genes Dev.18, 2359–2367 (2004). ArticleCASPubMedPubMed Central Google Scholar
Maison, C. et al. Higher-order structure in pericentric heterochromatin involves a distinct pattern of histone modification and an RNA component. Nature Genet.30, 329–334 (2002). ArticlePubMed Google Scholar
Muchardt, C. et al. Coordinated methyl and RNA binding is required for heterochromatin localization of mammalian HP1α. EMBO Rep.3, 975–981 (2002). ArticleCASPubMedPubMed Central Google Scholar
Seum, C., Delattre, M., Spierer, A. & Spierer, P. Ectopic HP1 promotes chromosome loops and variegated silencing in Drosophila. EMBO J.20, 812–818 (2001). ArticleCASPubMedPubMed Central Google Scholar
Li, Y., Danzer, J. R., Alvarez, P., Belmont, A. S. & Wallrath, L. L. Effects of tethering HP1 to euchromatic regions of the Drosophila genome. Development130, 1817–1824 (2003). ArticleCASPubMed Google Scholar
Hall, I. M., Noma, K. & Grewal, S. I. RNA interference machinery regulates chromosome dynamics during mitosis and meiosis in fission yeast. Proc. Natl Acad. Sci. USA100, 193–198 (2003). ArticleCASPubMed Google Scholar
Grimaud, C. et al. RNAi components are required for nuclear clustering of Polycomb group response elements. Cell124, 957–971 (2006). ArticleCASPubMed Google Scholar
Pal-Bhadra, M., Bhadra, U. & Birchler, J. A. Interrelationship of RNA interference and transcriptional gene silencing in Drosophila. Cold Spring Harb. Symp. Quant. Biol.69, 433–438 (2004). ArticleCASPubMed Google Scholar
Lei, E. P. & Corces, V. G. RNA interference machinery influences the nuclear organization of a chromatin insulator. Nature Genet.38, 936–941 (2006). ArticleCASPubMed Google Scholar
Gasser, S. M. Positions of potential: nuclear organization and gene expression. Cell104, 639–642 (2001). ArticleCASPubMed Google Scholar
Heard, E. Delving into the diversity of facultative heterochromatin: the epigenetics of the inactive X chromosome. Curr. Opin. Genet. Dev.15, 482–489 (2005). ArticleCASPubMed Google Scholar
Peters, A. H. et al. Loss of the Suv39h histone methyltransferases impairs mammalian heterochromatin and genome stability. Cell107, 323–337 (2001). ArticleCASPubMed Google Scholar
Karpen, G. H., Le, M. H. & Le, H. Centric heterochromatin and the efficiency of achiasmate disjunction in Drosophila female meiosis. Science273, 118–122 (1996). ArticleCASPubMed Google Scholar
Bernard, P. et al. Requirement of heterochromatin for cohesion at centromeres. Science294, 2539–2542 (2001). ArticleCASPubMed Google Scholar
Nonaka, N. et al. Recruitment of cohesin to heterochromatic regions by Swi6/HP1 in fission yeast. Nature Cell Biol.4, 89–93 (2002). References 129 and 130 showed that Swi6/HP1 preferentially recruit cohesin to heterochromatic loci including pericentric regions, which is essential for proper chromosome segregation. ArticleCASPubMed Google Scholar
Ekwall, K. The roles of histone modifications and small RNA in centromere function. Chromosome Res.12, 535–542 (2004). ArticleCASPubMed Google Scholar
Pidoux, A. L. & Allshire, R. C. Kinetochore and heterochromatin domains of the fission yeast centromere. Chromosome Res.12, 521–534 (2004). ArticleCASPubMed Google Scholar
Obuse, C. et al. A conserved Mis12 centromere complex is linked to heterochromatic HP1 and outer kinetochore protein Zwint-1. Nature Cell Biol.6, 1135–1141 (2004). ArticleCASPubMed Google Scholar
Ainsztein, A. M., Kandels-Lewis, S. E., Mackay, A. M. & Earnshaw, W. C. INCENP centromere and spindle targeting: identification of essential conserved motifs and involvement of heterochromatin protein HP1. J. Cell Biol.143, 1763–1774 (1998). ArticleCASPubMedPubMed Central Google Scholar
Pinsky, B. A. & Biggins, S. The spindle checkpoint: tension versus attachment. Trends Cell Biol.15, 486–493 (2005). ArticleCASPubMed Google Scholar
Pak, D. T. et al. Association of the origin recognition complex with heterochromatin and HP1 in higher eukaryotes. Cell91, 311–323 (1997). ArticleCASPubMed Google Scholar
Murzina, N., Verreault, A., Laue, E. & Stillman, B. Heterochromatin dynamics in mouse cells: interaction between chromatin assembly factor 1 and HP1 proteins. Mol. Cell4, 529–540 (1999). ArticleCASPubMed Google Scholar
Bailis, J. M., Bernard, P., Antonelli, R., Allshire, R. C. & Forsburg, S. L. Hsk1–Dfp1 is required for heterochromatin-mediated cohesion at centromeres. Nature Cell Biol.5, 1111–1116 (2003). ArticleCASPubMed Google Scholar
Klose, R. J. et al. The transcriptional repressor JHDM3A demethylates trimethyl histone H3 lysine 9 and lysine 36. Nature442, 312–316 (2006). ArticleCASPubMed Google Scholar
Fodor, B. D. et al. Jmjd2b antagonizes H3K9 trimethylation at pericentric heterochromatin in mammalian cells. Genes Dev.20, 1557–1562 (2006). ArticleCASPubMedPubMed Central Google Scholar
Whetstine, J. R. et al. Reversal of histone lysine trimethylation by the JMJD2 family of histone demethylases. Cell125, 467–481 (2006). ArticleCASPubMed Google Scholar
Fischle, W. et al. Regulation of HP1-chromatin binding by histone H3 methylation and phosphorylation. Nature438, 1116–1122 (2005). ArticleCASPubMed Google Scholar
Hirota, T., Lipp, J. J., Toh, B. H. & Peters, J. M. Histone H3 serine 10 phosphorylation by Aurora B causes HP1 dissociation from heterochromatin. Nature438, 1176–1180 (2005). References 142 and 143 showed that the association of HP1 with H3K9me can be regulated by the phosphorylation of adjacent serine 10 residue. ArticleCASPubMed Google Scholar
Eissenberg, J. C., Ge, Y. W. & Hartnett, T. Increased phosphorylation of HP1, a heterochromatin-associated protein of Drosophila, is correlated with heterochromatin assembly. J. Biol. Chem.269, 21315–21321 (1994). CASPubMed Google Scholar
Lomberk, G., Bensi, D., Fernandez-Zapico, M. E. & Urrutia, R. Evidence for the existence of an HP1-mediated subcode within the histone code. Nature Cell Biol.8, 407–415 (2006). ArticleCASPubMed Google Scholar
Shin, J. A. et al. SUMO modification is involved in the maintenance of heterochromatin stability in fission yeast. Mol. Cell19, 817–828 (2005). ArticleCASPubMed Google Scholar
Minc, E., Allory, Y., Worman, H. J., Courvalin, J. C. & Buendia, B. Localization and phosphorylation of HP1 proteins during the cell cycle in mammalian cells. Chromosoma108, 220–234 (1999). ArticleCASPubMed Google Scholar
Freitag, M., Hickey, P. C., Khlafallah, T. K., Read, N. D. & Selker, E. U. HP1 is essential for DNA methylation in Neurospora. Mol. Cell13, 427–434 (2004). This paper showed that the HP1 homologue ofN. crassais required for DNA methylation at the relics of transposons. ArticleCASPubMed Google Scholar
Alleman, M. et al. An RNA-dependent RNA polymerase is required for paramutation in maize. Nature442, 295–298 (2006). ArticleCASPubMed Google Scholar
Mandell, J. G., Goodrich, K. J., Bahler, J. & Cech, T. R. Expression of a RecQ helicase homolog affects progression through crisis in fission yeast lacking telomerase. J. Biol. Chem.280, 5249–5257 (2005). ArticleCASPubMed Google Scholar