Rethinking how DNA methylation patterns are maintained (original) (raw)
Cedar, H. & Bergman, Y. Linking DNA methylation and histone modification: patterns and paradigms. Nature Rev. Genet.10, 295–304 (2009). ArticleCASPubMed Google Scholar
Probst, A. V., Dunleavy, E. & Almouzni, G. Epigenetic inheritance during the cell cycle. Nature Rev. Mol. Cell Biol.10, 192–206 (2009). ArticleCAS Google Scholar
Riggs, A. D. X inactivation, differentiation, and DNA methylation. Cytogenet. Cell Genet.14, 9–25 (1975). ArticleCASPubMed Google Scholar
Holliday, R. & Pugh, J. E. DNA modification mechanisms and gene activity during development. Science187, 226–232 (1975). ArticleCASPubMed Google Scholar
Smith, H. O. & Kelly, S. V. in DNA Methylation: Biochemistry and Biological Significance (eds Razin, A., Cedar, H. & Riggs, A. D.) 39–71 (Springer, New York, 1984). Book Google Scholar
Chen, T., Ueda, Y., Dodge, J. E., Wang, Z. & Li, E. Establishment and maintenance of genomic methylation patterns in mouse embryonic stem cells by Dnmt3a and Dnmt3b. Mol. Cell. Biol.23, 5594–5605 (2003). ArticleCASPubMedPubMed Central Google Scholar
Liang, G. et al. Cooperativity between DNA methyltransferases in the maintenance methylation of repetitive elements. Mol. Cell. Biol.22, 480–491 (2002). ArticleCASPubMedPubMed Central Google Scholar
Okano, M., Bell, D. W., Haber, D. A. & Li, E. DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell99, 247–257 (1999). ArticleCASPubMed Google Scholar
Hansen, R. S. et al. The DNMT3B DNA methyltransferase gene is mutated in the ICF immunodeficiency syndrome. Proc. Natl Acad. Sci. USA96, 14412–14417 (1999). ArticleCASPubMedPubMed Central Google Scholar
Xu, G. L. et al. Chromosome instability and immunodeficiency syndrome caused by mutations in a DNA methyltransferase gene. Nature402, 187–191 (1999). ArticleCASPubMed Google Scholar
Bestor, T., Laudano, A., Mattaliano, R. & Ingram, V. Cloning and sequencing of a cDNA encoding DNA methyltransferase of mouse cells. The carboxyl-terminal domain of the mammalian enzyme is related to bacterial restriction methyltransferases. J. Mol. Biol.203, 971–983 (1988). ArticleCASPubMed Google Scholar
Bestor, T. H. & Ingram, V. M. Two DNA methyltransferases from murine erythroleukemia cells: purification, sequence specificity, and mode of interaction with DNA. Proc. Natl Acad. Sci. USA80, 5559–5563 (1983). ArticleCASPubMedPubMed Central Google Scholar
Hermann, A., Goyal, R. & Jeltsch, A. The Dnmt1 DNA-(cytosine-C5)-methyltransferase methylates DNA processively with high preference for hemimethylated target sites. J. Biol. Chem.279, 48350–48359 (2004). ArticleCASPubMed Google Scholar
Pradhan, S., Bacolla, A., Wells, R. D. & Roberts, R. J. Recombinant human DNA (cytosine-5) methyltransferase. I. Expression, purification, and comparison of de novo and maintenance methylation. J. Biol. Chem.274, 33002–33010 (1999). ArticleCASPubMed Google Scholar
Chuang, L. S. et al. Human DNA-(cytosine-5) methyltransferase–PCNA complex as a target for p21WAF1. Science277, 1996–2000 (1997). ArticleCASPubMed Google Scholar
Arita, K., Ariyoshi, M., Tochio, H., Nakamura, Y. & Shirakawa, M. Recognition of hemi-methylated DNA by the SRA protein UHRF1 by a base-flipping mechanism. Nature455, 818–821 (2008). ArticleCASPubMed Google Scholar
Avvakumov, G. V. et al. Structural basis for recognition of hemi-methylated DNA by the SRA domain of human UHRF1. Nature455, 822–825 (2008). ArticleCASPubMed Google Scholar
Bostick, M. et al. UHRF1 plays a role in maintaining DNA methylation in mammalian cells. Science317, 1760–1764 (2007). ArticleCASPubMed Google Scholar
Sharif, J. et al. The SRA protein Np95 mediates epigenetic inheritance by recruiting Dnmt1 to methylated DNA. Nature450, 908–912 (2007). ArticleCASPubMed Google Scholar
Robertson, K. D., Keyomarsi, K., Gonzales, F. A., Velicescu, M. & Jones, P. A. Differential mRNA expression of the human DNA methyltransferases (DNMTs) 1, 3a and 3b during the G0/G1 to S phase transition in normal and tumor cells. Nucleic Acids Res.28, 2108–2113 (2000). ArticleCASPubMedPubMed Central Google Scholar
Li, E., Bestor, T. H. & Jaenisch, R. Targeted mutation of the DNA methyltransferase gene results in embryonic lethality. Cell69, 915–926 (1992). ArticleCASPubMed Google Scholar
Chen, T. et al. Complete inactivation of DNMT1 leads to mitotic catastrophe in human cancer cells. Nature Genet.39, 391–396 (2007). ArticleCASPubMed Google Scholar
Bird, A. P. Use of restriction enzymes to study eukaryotic DNA methylation: II. The symmetry of methylated sites supports semi-conservative copying of the methylation pattern. J. Mol. Biol.118, 49–60 (1978). ArticleCASPubMed Google Scholar
Turker, M. S., Swisshelm, K., Smith, A. C. & Martin, G. M. A partial methylation profile for a CpG site is stably maintained in mammalian tissues and cultured cell lines. J. Biol. Chem.264, 11632–11636 (1989). CASPubMed Google Scholar
Pfeifer, G. P., Steigerwald, S. D., Hansen, R. S., Gartler, S. M. & Riggs, A. D. Polymerase chain reaction-aided genomic sequencing of an X chromosome-linked CpG island: methylation patterns suggest clonal inheritance, CpG site autonomy, and an explanation of activity state stability. Proc. Natl Acad. Sci. USA87, 8252–8256 (1990). ArticleCASPubMedPubMed Central Google Scholar
Riggs, A. D. & Xiong, Z. Methylation and epigenetic fidelity. Proc. Natl Acad. Sci. USA101, 4–5 (2004). ArticleCASPubMed Google Scholar
Laird, C. D. et al. Hairpin-bisulfite PCR: assessing epigenetic methylation patterns on complementary strands of individual DNA molecules. Proc. Natl Acad. Sci. USA101, 204–209 (2004). ArticleCASPubMed Google Scholar
Illingworth, R. S. & Bird, A. P. CpG islands — 'a rough guide'. FEBS Lett.583, 1713–1720 (2009). ArticleCASPubMed Google Scholar
Fatemi, M. et al. Footprinting of mammalian promoters: use of a CpG DNA methyltransferase revealing nucleosome positions at a single molecule level. Nucleic Acids Res.33, e176 (2005). ArticlePubMedPubMed Central Google Scholar
Gal-Yam, E. N. et al. Constitutive nucleosome depletion and ordered factor assembly at the GRP78 promoter revealed by single molecule footprinting. PLoS Genet.2, e160 (2006). ArticlePubMedPubMed Central Google Scholar
Ooi, S. K. & Bestor, T. H. The colorful history of active DNA demethylation. Cell133, 1145–1148 (2008). ArticleCASPubMed Google Scholar
Kriaucionis, S. & Heintz, N. The nuclear DNA base 5-hydroxymethylcytosine is present in Purkinje neurons and the brain. Science324, 929–930 (2009). ArticleCASPubMedPubMed Central Google Scholar
Tahiliani, M. et al. Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science324, 930–935 (2009). ArticleCASPubMedPubMed Central Google Scholar
Gonzalgo, M. L. et al. The role of DNA methylation in expression of the p19/p16 locus in human bladder cancer cell lines. Cancer Res.58, 1245–1252 (1998). CASPubMed Google Scholar
Jeong, S. et al. Selective anchoring of DNA methyltransferases 3A/3B to nucleosomes containing methylated DNA. Mol. Cell. Biol. 20 Jul 2009 (doi:10.1128/MCB.00484-09). ArticleCASPubMedPubMed Central Google Scholar
Egger, G. et al. Identification of DNMT1 (DNA methyltransferase 1) hypomorphs in somatic knockouts suggests an essential role for DNMT1 in cell survival. Proc. Natl Acad. Sci. USA103, 14080–14085 (2006). ArticleCASPubMedPubMed Central Google Scholar
Schermelleh, L. et al. Dynamics of Dnmt1 interaction with the replication machinery and its role in postreplicative maintenance of DNA methylation. Nucleic Acids Res.35, 4301–4312 (2007). ArticleCASPubMedPubMed Central Google Scholar
Bernstein, B. E., Meissner, A. & Lander, E. S. The mammalian epigenome. Cell128, 669–681 (2007). ArticleCASPubMed Google Scholar
Zilberman, D., Coleman-Derr, D., Ballinger, T. & Henikoff, S. Histone H2A.Z and DNA methylation are mutually antagonistic chromatin marks. Nature456, 125–129 (2008). ArticleCASPubMedPubMed Central Google Scholar
Dong, K. B. et al. DNA methylation in ES cells requires the lysine methyltransferase G9a but not its catalytic activity. EMBO J.27, 2691–2701 (2008). ArticleCASPubMedPubMed Central Google Scholar
Epsztejn-Litman, S. et al. De novo DNA methylation promoted by G9a prevents reprogramming of embryonically silenced genes. Nature Struct. Mol. Biol.15, 1176–1183 (2008). ArticleCAS Google Scholar
Smallwood, A., Esteve, P. O., Pradhan, S. & Carey, M. Functional cooperation between HP1 and DNMT1 mediates gene silencing. Genes Dev.21, 1169–1178 (2007). ArticleCASPubMedPubMed Central Google Scholar
Vire, E. et al. The polycomb group protein EZH2 directly controls DNA methylation. Nature439, 871–874 (2006). ArticleCASPubMed Google Scholar
Kondo, Y. et al. Gene silencing in cancer by histone H3 lysine 27 trimethylation independent of promoter DNA methylation. Nature Genet.40, 741–750 (2008). ArticleCASPubMed Google Scholar
Fuks, F., Hurd, P. J., Deplus, R. & Kouzarides, T. The DNA methyltransferases associate with HP1 and the SUV39H1 histone methyltransferase. Nucleic Acids Res.31, 2305–2312 (2003). ArticleCASPubMedPubMed Central Google Scholar
Honda, S. & Selker, E. U. Direct interaction between DNA methyltransferase DIM-2 and HP1 is required for DNA methylation in Neurospora crassa. Mol. Cell. Biol.28, 6044–6055 (2008). ArticleCASPubMedPubMed Central Google Scholar
Robertson, K. D. et al. DNMT1 forms a complex with Rb, E2F1 and HDAC1 and represses transcription from E2F-responsive promoters. Nature Genet.25, 338–342 (2000). ArticleCASPubMed Google Scholar
Robertson, A. K., Geiman, T. M., Sankpal, U. T., Hager, G. L. & Robertson, K. D. Effects of chromatin structure on the enzymatic and DNA binding functions of DNA methyltransferases DNMT1 and Dnmt3a in vitro. Biochem. Biophys. Res. Commun.322, 110–118 (2004). ArticleCASPubMed Google Scholar
Gowher, H. et al. De novo methylation of nucleosomal DNA by the mammalian Dnmt1 and Dnmt3A DNA methyltransferases. Biochemistry44, 9899–9904 (2005). ArticleCASPubMed Google Scholar
Dennis, K., Fan, T., Geiman, T., Yan, Q. & Muegge, K. Lsh, a member of the SNF2 family, is required for genome-wide methylation. Genes Dev.15, 2940–2944 (2001). ArticleCASPubMedPubMed Central Google Scholar
Spada, F. et al. DNMT1 but not its interaction with the replication machinery is required for maintenance of DNA methylation in human cells. J. Cell Biol.176, 565–571 (2007). ArticleCASPubMedPubMed Central Google Scholar
Schlesinger, Y. et al. Polycomb-mediated methylation on Lys27 of histone H3 pre-marks genes for de novo methylation in cancer. Nature Genet.39, 232–236 (2007). ArticleCASPubMed Google Scholar
Felsenfeld, G. & Groudine, M. Controlling the double helix. Nature421, 448–453 (2003). ArticlePubMed Google Scholar
Hansen, K. H. et al. A model for transmission of the H3K27me3 epigenetic mark. Nature Cell Biol.10, 1291–1300 (2008). ArticleCASPubMed Google Scholar
Felsenfeld, G. in Epigenetics (eds Allis, C. D., Jenuwein, T. & Reinberg, D.) 15–22 (Cold Spring Harb. Lab. Press, New York, 2007). Google Scholar
Watson, J. D. & Crick, F. H. Molecular structure of nucleic acids; a structure for deoxyribose nucleic acid. Nature171, 737–738 (1953). ArticleCASPubMed Google Scholar
Berger, S. L., Kouzarides, T., Shiekhattar, R. & Shilatifard, A. An operational definition of epigenetics. Genes Dev.23, 781–783 (2009). ArticleCASPubMedPubMed Central Google Scholar
Moving AHEAD with an international human epigenome project. Nature454, 711–715 (2008).
Kato, Y. et al. Role of the Dnmt3 family in de novo methylation of imprinted and repetitive sequences during male germ cell development in the mouse. Hum. Mol. Genet.16, 2272–2280 (2007). ArticleCASPubMed Google Scholar
La Salle, S. et al. Loss of spermatogonia and wide-spread DNA methylation defects in newborn male mice deficient in DNMT3L. BMC Dev. Biol.7, 104 (2007). ArticlePubMedPubMed Central Google Scholar
Jackson-Grusby, L. et al. Loss of genomic methylation causes p53-dependent apoptosis and epigenetic deregulation. Nature Genet.27, 31–39 (2001). ArticleCASPubMed Google Scholar
Tsumura, A. et al. Maintenance of self-renewal ability of mouse embryonic stem cells in the absence of DNA methyltransferases Dnmt1, Dnmt3a and Dnmt3b. Genes Cells11, 805–814 (2006). ArticleCASPubMed Google Scholar
Bourc'his, D., Xu, G. L., Lin, C. S., Bollman, B. & Bestor, T. H. Dnmt3L and the establishment of maternal genomic imprints. Science294, 2536–2539 (2001). ArticleCASPubMed Google Scholar
Goll, M. G. et al. Methylation of tRNAAsp by the DNA methyltransferase homolog Dnmt2. Science311, 395–398 (2006). ArticleCASPubMed Google Scholar
Okano, M., Xie, S. & Li, E. Dnmt2 is not required for de novo and maintenance methylation of viral DNA in embryonic stem cells. Nucleic Acids Res.26, 2536–2540 (1998). ArticleCASPubMedPubMed Central Google Scholar
Tachibana, M. et al. G9a histone methyltransferase plays a dominant role in euchromatic histone H3 lysine 9 methylation and is essential for early embryogenesis. Genes Dev.16, 1779–1791 (2002). ArticleCASPubMedPubMed Central Google Scholar
Wang, J. et al. The lysine demethylase LSD1 (KDM1) is required for maintenance of global DNA methylation. Nature Genet.41, 125–129 (2009). ArticleCASPubMed Google Scholar
Chen, T. & Li, E. Establishment and maintenance of DNA methylation patterns in mammals. Curr. Top. Microbiol. Immunol.301, 179–201 (2006). CASPubMed Google Scholar
Rhee, I. et al. CpG methylation is maintained in human cancer cells lacking DNMT1. Nature404, 1003–1007 (2000). ArticleCASPubMed Google Scholar
Rhee, I. et al. DNMT1 and DNMT3b cooperate to silence genes in human cancer cells. Nature416, 552–556 (2002). ArticleCASPubMed Google Scholar