Stromal cell contributions to the homeostasis and functionality of the immune system (original) (raw)
Bajenoff, M. & Germain, R. N. Seeing is believing: a focus on the contribution of microscopic imaging to our understanding of immune system function. Eur. J. Immunol.37, S18–S33 (2007). ArticleCASPubMed Google Scholar
Gretz, J. E., Anderson, A. O. & Shaw, S. Cords, channels, corridors and conduits: critical architectural elements facilitating cell interactions in the lymph node cortex. Immunol. Rev.156, 11–24 (1997). ArticleCASPubMed Google Scholar
Mebius, R. E. & Kraal, G. Structure and function of the spleen. Nature Rev. Immunol.5, 606–616 (2005). ArticleCAS Google Scholar
Steiniger, B., Barth, P. & Hellinger, A. The perifollicular and marginal zones of the human splenic white pulp: do fibroblasts guide lymphocyte immigration? Am. J. Pathol.159, 501–512 (2001). ArticleCASPubMedPubMed Central Google Scholar
Pellas, T. C. & Weiss, L. Migration pathways of recirculating murine B cells and CD4+ and CD8+ T lymphocytes. Am. J. Anat.187, 355–373 (1990). ArticleCASPubMed Google Scholar
Mitchell, J. Lymphocyte circulation in the spleen. Marginal zone bridging channels and their possible role in cell traffic. Immunology24, 93–107 (1973). CASPubMedPubMed Central Google Scholar
Bajenoff, M., Glaichenhaus, N. & Germain, R. N. Fibroblastic reticular cells guide T lymphocyte entry into and migration within the splenic T cell zone. J. Immunol.181, 3947–3954 (2008). ArticleCASPubMed Google Scholar
Pellas, T. C. & Weiss, L. Deep splenic lymphatic vessels in the mouse: a route of splenic exit for recirculating lymphocytes. Am. J. Anat.187, 347–354 (1990). ArticleCASPubMed Google Scholar
Khanna, K. M., McNamara, J. T. & Lefrancois, L. In situ imaging of the endogenous CD8 T cell response to infection. Science318, 116–120 (2007). ArticleCASPubMedPubMed Central Google Scholar
Katakai, T. et al. Organizer-like reticular stromal cell layer common to adult secondary lymphoid organs. J. Immunol.181, 6189–6200 (2008). This study shows that stromal cells at the edges of B cell follicles in lymph nodes and in marginal zones in the spleen are phenotypically unique. The authors propose that these cells be known as MRCs. ArticleCASPubMed Google Scholar
Cinamon, G., Zachariah, M. A., Lam, O. M., Foss, F. W. Jr & Cyster, J. G. Follicular shuttling of marginal zone B cells facilitates antigen transport. Nature Immunol.9, 54–62 (2007). ArticleCAS Google Scholar
Anderson, A. O. & Anderson, N. D. Studies on the structure and permeability of the microvasculature in normal rat lymph nodes. Am. J. Pathol.80, 387–418 (1975). CASPubMedPubMed Central Google Scholar
Katakai, T. et al. A novel reticular stromal structure in lymph node cortex: an immuno-platform for interactions among dendritic cells, T cells and B cells. Int. Immunol.16, 1133–1142 (2004). ArticleCASPubMed Google Scholar
Anderson, A. O. & Anderson, N. D. Lymphocyte emigration from high endothelial venules in rat lymph nodes. Immunology31, 731–748 (1976). CASPubMedPubMed Central Google Scholar
Cueni, L. N. & Detmar, M. The lymphatic system in health and disease. Lymphat. Res. Biol.6, 109–122 (2008). ArticlePubMed Google Scholar
Grigorova, I. L. et al. Cortical sinus probing, S1P1-dependent entry and flow-based capture of egressing T cells. Nature Immunol.10, 58–65 (2009). ArticleCAS Google Scholar
Pappu, R. et al. Promotion of lymphocyte egress into blood and lymph by distinct sources of sphingosine-1-phosphate. Science316, 295–298 (2007). ArticleCASPubMed Google Scholar
Matloubian, M. et al. Lymphocyte egress from thymus and peripheral lymphoid organs is dependent on S1P receptor 1. Nature427, 355–360 (2004). ArticleCASPubMed Google Scholar
Wei, S. H. et al. Sphingosine 1-phosphate type 1 receptor agonism inhibits transendothelial migration of medullary T cells to lymphatic sinuses. Nature Immunol.6, 1228–1235 (2005). ArticleCAS Google Scholar
Jurisic, G. & Detmar, M. Lymphatic endothelium in health and disease. Cell Tissue Res.335, 97–108 (2009). ArticleCASPubMed Google Scholar
Glegg, R. E., Eidinger, D. & Leblond, C. P. Some carbohydrate components of reticular fibers. Science118, 614–616 (1953). ArticleCASPubMed Google Scholar
Clark, S. L. Jr. The reticulum of lymph nodes in mice studied with the electron microscope. Am. J. Anat.110, 217–257 (1962). ArticlePubMed Google Scholar
Tykocinski, M., Schinella, R. A. & Greco, M. A. Fibroblastic reticulum cells in human lymph nodes. An ultrastructural study. Arch. Pathol. Lab. Med.107, 418–422 (1983). CASPubMed Google Scholar
Anderson, A. O. & Shaw, S. T cell adhesion to endothelium: the FRC conduit system and other anatomic and molecular features which facilitate the adhesion cascade in lymph node. Semin. Immunol.5, 271–282 (1993). ArticleCASPubMed Google Scholar
Gretz, J. E., Norbury, C. C., Anderson, A. O., Proudfoot, A. E. & Shaw, S. Lymph-borne chemokines and other low molecular weight molecules reach high endothelial venules via specialized conduits while a functional barrier limits access to the lymphocyte microenvironments in lymph node cortex. J. Exp. Med.192, 1425–1440 (2000). ArticleCASPubMedPubMed Central Google Scholar
Nolte, M. A. et al. A conduit system distributes chemokines and small blood-borne molecules through the splenic white pulp. J. Exp. Med.198, 505–512 (2003). References 26 and 27 are the first to show the functional networks of conduits in lymph nodes and spleen, respectively, that are formed by FRCs. ArticleCASPubMedPubMed Central Google Scholar
Bajenoff, M. et al. Stromal cell networks regulate lymphocyte entry, migration, and territoriality in lymph nodes. Immunity25, 989–1001 (2006). This study shows, using two-photon laser scanning microscopy, that B and T cells dynamically crawl along FDC and FRC networks, respectively, in lymph nodes. ArticleCASPubMedPubMed Central Google Scholar
Van Vliet, E., Melis, M., Foidart, J. M. & Van Ewijk, W. Reticular fibroblasts in peripheral lymphoid organs identified by a monoclonal antibody. J. Histochem. Cytochem.34, 883–890 (1986). ArticleCASPubMed Google Scholar
Farr, A. G. et al. Characterization and cloning of a novel glycoprotein expressed by stromal cells in T-dependent areas of peripheral lymphoid tissues. J. Exp. Med.176, 1477–1482 (1992). ArticleCASPubMed Google Scholar
Luther, S. A., Tang, H. L., Hyman, P. L., Farr, A. G. & Cyster, J. G. Coexpression of the chemokines ELC and SLC by T zone stromal cells and deletion of the ELC gene in the plt/plt mouse. Proc. Natl Acad. Sci. USA97, 12694–12699 (2000). ArticleCASPubMedPubMed Central Google Scholar
Gunn, M. D. et al. A chemokine expressed in lymphoid high endothelial venules promotes the adhesion and chemotaxis of naive T lymphocytes. Proc. Natl Acad. Sci. USA95, 258–263 (1998). ArticleCASPubMedPubMed Central Google Scholar
Gunn, M. D. et al. A B-cell-homing chemokine made in lymphoid follicles activates Burkitt's lymphoma receptor-1. Nature391, 799–803 (1998). ArticleCASPubMed Google Scholar
Allen, C. D., Okada, T., Tang, H. L. & Cyster, J. G. Imaging of germinal center selection events during affinity maturation. Science315, 528–531 (2007). ArticleCASPubMed Google Scholar
Schwickert, T. A. et al. In vivo imaging of germinal centres reveals a dynamic open structure. Nature446, 83–87 (2007). ArticleCASPubMed Google Scholar
Balogh, P., Horvath, G. & Szakal, A. K. Immunoarchitecture of distinct reticular fibroblastic domains in the white pulp of mouse spleen. J. Histochem. Cytochem.52, 1287–1298 (2004). ArticleCASPubMed Google Scholar
Mueller, S. N. & Ahmed, R. Lymphoid stroma in the initiation and control of immune responses. Immunol. Rev.224, 284–294 (2008). ArticleCASPubMed Google Scholar
Roozendaal, R. et al. Conduits mediate transport of low-molecular-weight antigen to lymph node follicles. Immunity30, 264–276 (2009). This study shows that stromal cells at the edges of B cell follicles in lymph nodes form conduits that can transport soluble antigen into the follicles from the SCS. ArticleCASPubMedPubMed Central Google Scholar
Junt, T. et al. Subcapsular sinus macrophages in lymph nodes clear lymph-borne viruses and present them to antiviral B cells. Nature450, 110–114 (2007). ArticleCASPubMed Google Scholar
Ellyard, J. I., Avery, D. T., Mackay, C. R. & Tangye, S. G. Contribution of stromal cells to the migration, function and retention of plasma cells in human spleen: potential roles of CXCL12, IL-6 and CD54. Eur. J. Immunol.35, 699–708 (2005). ArticleCASPubMed Google Scholar
van den Berg, T. K., van der Ende, M., Dopp, E. A., Kraal, G. & Dijkstra, C. D. Localization of beta 1 integrins and their extracellular ligands in human lymphoid tissues. Am. J. Pathol.143, 1098–1110 (1993). CASPubMedPubMed Central Google Scholar
Hargreaves, D. C. et al. A coordinated change in chemokine responsiveness guides plasma cell movements. J. Exp. Med.194, 45–56 (2001). ArticleCASPubMedPubMed Central Google Scholar
Weiss, L., Geduldig, U. & Weidanz, W. Mechanisms of splenic control of murine malaria: reticular cell activation and the development of a blood–spleen barrier. Am. J. Anat.176, 251–285 (1986). ArticleCASPubMed Google Scholar
Willard-Mack, C. L. Normal structure, function, and histology of lymph nodes. Toxicol. Pathol.34, 409–424 (2006). ArticlePubMed Google Scholar
Ushiki, T., Ohtani, O. & Abe, K. Scanning electron microscopic studies of reticular framework in the rat mesenteric lymph node. Anat. Rec.241, 113–122 (1995). ArticleCASPubMed Google Scholar
Alon, R. & Ley, K. Cells on the run: shear-regulated integrin activation in leukocyte rolling and arrest on endothelial cells. Curr. Opin. Cell. Biol.20, 525–532 (2008). ArticleCASPubMedPubMed Central Google Scholar
Petri, B., Phillipson, M. & Kubes, P. The physiology of leukocyte recruitment: an in vivo perspective. J. Immunol.180, 6439–6446 (2008). ArticleCASPubMed Google Scholar
Debes, G. F. et al. Chemokine receptor CCR7 required for T lymphocyte exit from peripheral tissues. Nature Immunol.6, 889–894 (2005). ArticleCAS Google Scholar
Bromley, S. K., Thomas, S. Y. & Luster, A. D. Chemokine receptor CCR7 guides T cell exit from peripheral tissues and entry into afferent lymphatics. Nature Immunol.6, 895–901 (2005). ArticleCAS Google Scholar
Lammermann, T. et al. Rapid leukocyte migration by integrin-independent flowing and squeezing. Nature453, 51–55 (2008). ArticlePubMedCAS Google Scholar
Miller, M. J., Wei, S. H., Parker, I. & Cahalan, M. D. Two-photon imaging of lymphocyte motility and antigen response in intact lymph node. Science296, 1869–1873 (2002). ArticleCASPubMed Google Scholar
Mempel, T. R., Henrickson, S. E. & Von Andrian, U. H. T-cell priming by dendritic cells in lymph nodes occurs in three distinct phases. Nature427, 154–159 (2004). ArticleCASPubMed Google Scholar
Nakano, H. et al. A novel mutant gene involved in T-lymphocyte-specific homing into peripheral lymphoid organs on mouse chromosome 4. Blood91, 2886–2895 (1998). CASPubMed Google Scholar
Asperti-Boursin, F., Real, E., Bismuth, G., Trautmann, A. & Donnadieu, E. CCR7 ligands control basal T cell motility within lymph node slices in a phosphoinositide 3-kinase-independent manner. J. Exp. Med.204, 1167–1179 (2007). ArticleCASPubMedPubMed Central Google Scholar
Okada, T. & Cyster, J. G. CC chemokine receptor 7 contributes to Gi-dependent T cell motility in the lymph node. J. Immunol.178, 2973–2978 (2007). ArticleCASPubMed Google Scholar
Worbs, T., Mempel, T. R., Bolter, J., von Andrian, U. H. & Forster, R. CCR7 ligands stimulate the intranodal motility of T lymphocytes in vivo. J. Exp. Med.204, 489–495 (2007). References 56–58 show the contribution of the FRC-derived CCR7 ligands CCL19 and CCL21 to T cell motility in lymph nodes. ArticleCASPubMedPubMed Central Google Scholar
Britschgi, M. R., Link, A., Lissandrin, T. K. & Luther, S. A. Dynamic modulation of CCR7 expression and function on naive T lymphocytes in vivo. J. Immunol.181, 7681–7688 (2008). ArticleCASPubMed Google Scholar
Woolf, E. et al. Lymph node chemokines promote sustained T lymphocyte motility without triggering stable integrin adhesiveness in the absence of shear forces. Nature Immunol.8, 1076–1085 (2007). ArticleCAS Google Scholar
Huang, J. H. et al. Requirements for T lymphocyte migration in explanted lymph nodes. J. Immunol.178, 7747–7755 (2007). ArticleCASPubMed Google Scholar
Kraal, G., Hoeben, K., Breve, J. & van den Berg, T. K. The role of sialic acid in the localization of lymphocytes in the spleen. Immunobiology190, 138–149 (1994). ArticleCASPubMed Google Scholar
Mueller, S. N. et al. Viral targeting of fibroblastic reticular cells contributes to immunosuppression and persistence during chronic infection. Proc. Natl Acad. Sci. USA104, 15430–15435 (2007). ArticleCASPubMedPubMed Central Google Scholar
Cyster, J. G. Chemokines, sphingosine-1-phosphate, and cell migration in secondary lymphoid organs. Annu. Rev. Immunol.23, 127–159 (2005). ArticleCASPubMed Google Scholar
Schwab, S. R. & Cyster, J. G. Finding a way out: lymphocyte egress from lymphoid organs. Nature Immunol.8, 1295–1301 (2007). ArticleCAS Google Scholar
Schwab, S. R. et al. Lymphocyte sequestration through S1P lyase inhibition and disruption of S1P gradients. Science309, 1735–1739 (2005). ArticleCASPubMed Google Scholar
Lo, C. G., Xu, Y., Proia, R. L. & Cyster, J. G. Cyclical modulation of sphingosine-1-phosphate receptor 1 surface expression during lymphocyte recirculation and relationship to lymphoid organ transit. J. Exp. Med.201, 291–301 (2005). ArticleCASPubMedPubMed Central Google Scholar
Pham, T. H., Okada, T., Matloubian, M., Lo, C. G. & Cyster, J. G. S1P1 receptor signaling overrides retention mediated by Gαi-coupled receptors to promote T cell egress. Immunity28, 122–133 (2008). ArticleCASPubMed Google Scholar
Kabashima, K. et al. Plasma cell S1P1 expression determines secondary lymphoid organ retention versus bone marrow tropism. J. Exp. Med.203, 2683–2690 (2006). ArticleCASPubMedPubMed Central Google Scholar
Villadangos, J. A. & Schnorrer, P. Intrinsic and cooperative antigen-presenting functions of dendritic-cell subsets in vivo. Nature Rev. Immunol.7, 543–555 (2007). ArticleCAS Google Scholar
Bajenoff, M., Granjeaud, S. & Guerder, S. The strategy of T cell antigen-presenting cell encounter in antigen-draining lymph nodes revealed by imaging of initial T cell activation. J. Exp. Med.198, 715–724 (2003). ArticleCASPubMedPubMed Central Google Scholar
Qi, H., Egen, J. G., Huang, A. Y. & Germain, R. N. Extrafollicular activation of lymph node B cells by antigen-bearing dendritic cells. Science312, 1672–1676 (2006). ArticleCASPubMed Google Scholar
Sixt, M. et al. The conduit system transports soluble antigens from the afferent lymph to resident dendritic cells in the T cell area of the lymph node. Immunity22, 19–29 (2005). This study uses the injection of soluble antigens into subcutaneous tissues to show that molecules draining through the FRC conduits in lymph nodes can be picked up, processed and presented to T cells by dendritic cells probing the conduits with their processes. ArticleCASPubMed Google Scholar
Dudziak, D. et al. Differential antigen processing by dendritic cell subsets in vivo. Science315, 107–111 (2007). CASPubMed Google Scholar
Kissenpfennig, A. et al. Dynamics and function of Langerhans cells in vivo: dermal dendritic cells colonize lymph node areas distinct from slower migrating Langerhans cells. Immunity22, 643–654 (2005). ArticleCASPubMed Google Scholar
Forster, R. et al. CCR7 coordinates the primary immune response by establishing functional microenvironments in secondary lymphoid organs. Cell99, 23–33 (1999). ArticleCASPubMed Google Scholar
Gunn, M. D. et al. Mice lacking expression of secondary lymphoid organ chemokine have defects in lymphocyte homing and dendritic cell localization. J. Exp. Med.189, 451–460 (1999). ArticleCASPubMedPubMed Central Google Scholar
Ato, M., Nakano, H., Kakiuchi, T. & Kaye, P. M. Localization of marginal zone macrophages is regulated by C-C chemokine ligands 21/19. J. Immunol.173, 4815–4820 (2004). ArticleCASPubMed Google Scholar
Flanagan, K., Moroziewicz, D., Kwak, H., Horig, H. & Kaufman, H. L. The lymphoid chemokine CCL21 costimulates naive T cell expansion and Th1 polarization of non-regulatory CD4+ T cells. Cell. Immunol.231, 75–84 (2004). ArticleCASPubMed Google Scholar
Friedman, R. S., Jacobelli, J. & Krummel, M. F. Surface-bound chemokines capture and prime T cells for synapse formation. Nature Immunol.7, 1101–1108 (2006). ArticleCAS Google Scholar
Marsland, B. J. et al. CCL19 and CCL21 induce a potent proinflammatory differentiation program in licensed dendritic cells. Immunity22, 493–505 (2005). ArticleCASPubMed Google Scholar
Yanagawa, Y. & Onoe, K. CCR7 ligands induce rapid endocytosis in mature dendritic cells with concomitant up-regulation of Cdc42 and Rac activities. Blood101, 4923–4929 (2003). ArticleCASPubMed Google Scholar
Yanagawa, Y. & Onoe, K. CCL19 induces rapid dendritic extension of murine dendritic cells. Blood100, 1948–1956 (2002). ArticleCASPubMed Google Scholar
Castellino, F. & Germain, R. N. Chemokine-guided CD4+ T cell help enhances generation of IL-6RαhighIL-7Rαhigh prememory CD8+ T cells. J. Immunol.178, 778–787 (2007). ArticleCASPubMed Google Scholar
Anderson, A. O. & Shaw, S. Conduit for privileged communications in the lymph node. Immunity22, 3–5 (2005). ArticleCASPubMed Google Scholar
Pape, K. A., Catron, D. M., Itano, A. A. & Jenkins, M. K. The humoral immune response is initiated in lymph nodes by B cells that acquire soluble antigen directly in the follicles. Immunity26, 491–502 (2007). ArticleCASPubMed Google Scholar
Hall, J. G. & Morris, B. The immediate effect of antigens on the cell output of a lymph node. Br. J. Exp. Pathol.46, 450–454 (1965). CASPubMedPubMed Central Google Scholar
Shiow, L. R. et al. CD69 acts downstream of interferon-α/β to inhibit S1P1 and lymphocyte egress from lymphoid organs. Nature440, 540–544 (2006). ArticleCASPubMed Google Scholar
Soderberg, K. A. et al. Innate control of adaptive immunity via remodeling of lymph node feed arteriole. Proc. Natl Acad. Sci. USA102, 16315–16320 (2005). ArticleCASPubMedPubMed Central Google Scholar
Chen, Q. et al. Fever-range thermal stress promotes lymphocyte trafficking across high endothelial venules via an interleukin 6 trans-signaling mechanism. Nature Immunol.7, 1299–1308 (2006). ArticleCAS Google Scholar
Anderson, N. D., Anderson, A. O. & Wyllie, R. G. Microvascular changes in lymph nodes draining skin allografts. Am. J. Pathol.81, 131–160 (1975). CASPubMedPubMed Central Google Scholar
Angeli, V. et al. B cell-driven lymphangiogenesis in inflamed lymph nodes enhances dendritic cell mobilization. Immunity24, 203–215 (2006). ArticleCASPubMed Google Scholar
Chyou, S. et al. Fibroblast-type reticular stromal cells regulate the lymph node vasculature. J. Immunol.181, 3887–3896 (2008). ArticleCASPubMed Google Scholar
Katakai, T., Hara, T., Sugai, M., Gonda, H. & Shimizu, A. Lymph node fibroblastic reticular cells construct the stromal reticulum via contact with lymphocytes. J. Exp. Med.200, 783–795 (2004). Using FRC-derived stromal cell lines, this study shows the dynamic interplay between T cells and FRCs for the formation of the complex stromal networks in SLOs. ArticleCASPubMedPubMed Central Google Scholar
Mueller, S. N. et al. Regulation of homeostatic chemokine expression and cell trafficking during immune responses. Science317, 670–674 (2007). This study provides the first evidence that chemokine expression by SLO stromal cells (FRCs and FDCs) can be regulated during immune responses, with functional consequences for immune cell trafficking. ArticleCASPubMed Google Scholar
Hammerschmidt, S. I. et al. Stromal mesenteric lymph node cells are essential for the generation of gut-homing T cells in vivo. J. Exp. Med.205, 2483–2490 (2008). ArticleCASPubMedPubMed Central Google Scholar
Ahrendt, M., Hammerschmidt, S. I., Pabst, O., Pabst, R. & Bode, U. Stromal cells confer lymph node-specific properties by shaping a unique microenvironment influencing local immune responses. J. Immunol.181, 1898–1907 (2008). ArticleCASPubMed Google Scholar
Thomas, S., Kolumam, G. A. & Murali-Krishna, K. Antigen presentation by nonhemopoietic cells amplifies clonal expansion of effector CD8 T cells in a pathogen-specific manner. J. Immunol.178, 5802–5811 (2007). ArticleCASPubMed Google Scholar
Mueller, S. N. & Ahmed, R. High antigen levels are the cause of T cell exhaustion during chronic viral infection. Proc. Natl Acad. Sci. USA106, 8623–8628 (2009). ArticleCASPubMedPubMed Central Google Scholar
Goldrath, A. W., Bogatzki, L. Y. & Bevan, M. J. Naive T cells transiently acquire a memory-like phenotype during homeostasis-driven proliferation. J. Exp. Med.192, 557–564 (2000). ArticleCASPubMedPubMed Central Google Scholar
Schluns, K. S., Kieper, W. C., Jameson, S. C. & Lefrancois, L. Interleukin-7 mediates the homeostasis of naive and memory CD8 T cells in vivo. Nature Immunol.1, 426–432 (2000). ArticleCAS Google Scholar
Dummer, W., Ernst, B., LeRoy, E., Lee, D. & Surh, C. Autologous regulation of naive T cell homeostasis within the T cell compartment. J. Immunol.166, 2460–2468 (2001). ArticleCASPubMed Google Scholar
Zhou, Y. W. et al. Murine lymph node-derived stromal cells effectively support survival but induce no activation/proliferation of peripheral resting T cells in vitro. Immunology109, 496–503 (2003). ArticleCASPubMedPubMed Central Google Scholar
Link, A. et al. Fibroblastic reticular cells in lymph nodes regulate the homeostasis of naive T cells. Nature Immunol.8, 1255–1265 (2007). By isolating FRCs from lymph nodes, this study shows that FRCs are a primary source of IL-7 and that they are important for the homeostasis of naive T cells by providing IL-7 and CCL19. ArticleCAS Google Scholar
Repass, J. F. et al. IL7-hCD25 and IL7-Cre BAC transgenic mouse lines: new tools for analysis of IL-7 expressing cells. Genesis47, 281–287 (2009). ArticleCASPubMed Google Scholar
Gaudin, E., Rosado, M., Agenes, F., McLean, A. & Freitas, A. A. B-cell homeostasis, competition, resources, and positive selection by self-antigens. Immunol. Rev.197, 102–115 (2004). ArticleCASPubMed Google Scholar
Woodland, R. T., Schmidt, M. R. & Thompson, C. B. BLyS and B cell homeostasis. Semin. Immunol.18, 318–326 (2006). ArticleCASPubMed Google Scholar
Gardner, J. M. et al. Deletional tolerance mediated by extrathymic Aire-expressing cells. Science321, 843–847 (2008). This study shows the existence of extrathymic AIRE-expressing cells in SLOs, including those of non-haematopoietic origin. These AIRE-expressing cells can mediate deletional tolerance. ArticleCASPubMedPubMed Central Google Scholar
Lee, J. W. et al. Peripheral antigen display by lymph node stroma promotes T cell tolerance to intestinal self. Nature Immunol.8, 181–190 (2007). ArticleCAS Google Scholar
Scandella, E. et al. Restoration of lymphoid organ integrity through the interaction of lymphoid tissue-inducer cells with stroma of the T cell zone. Nature Immunol.9, 667–675 (2008). This paper indicates that lymphoid tissue inducer cells might have a role in restoring SLO structure after damage from pathogens that infect the lymphoid tissues. ArticleCAS Google Scholar
Choi, Y. K., Fallert, B. A., Murphey-Corb, M. A. & Reinhart, T. A. Simian immunodeficiency virus dramatically alters expression of homeostatic chemokines and dendritic cell markers during infection in vivo. Blood101, 1684–1691 (2003). ArticleCASPubMed Google Scholar
Ato, M., Stager, S., Engwerda, C. R. & Kaye, P. M. Defective CCR7 expression on dendritic cells contributes to the development of visceral leishmaniasis. Nature Immunol.3, 1185–1191 (2002). ArticleCAS Google Scholar
Smelt, S. C., Engwerda, C. R., McCrossen, M. & Kaye, P. M. Destruction of follicular dendritic cells during chronic visceral leishmaniasis. J. Immunol.158, 3813–3821 (1997). CASPubMed Google Scholar
Davis, K. J. et al. Pathology of experimental Ebola virus infection in African green monkeys. Involvement of fibroblastic reticular cells. Arch. Pathol. Lab. Med.121, 805–819 (1997). CASPubMed Google Scholar
Steele, K. E., Anderson, A. O. & Mohamadzadeh, M. Fibroblastic reticular cell infection by hemorrhagic fever viruses. Immunotherapy1, 187–197 (2009). ArticleCASPubMed Google Scholar
Mercer, J. A., Wiley, C. A. & Spector, D. H. Pathogenesis of murine cytomegalovirus infection: identification of infected cells in the spleen during acute and latent infections. J. Virol.62, 987–997 (1988). CASPubMedPubMed Central Google Scholar
Pomeroy, C., Hilleren, P. J. & Jordan, M. C. Latent murine cytomegalovirus DNA in splenic stromal cells of mice. J. Virol.65, 3330–3334 (1991). CASPubMedPubMed Central Google Scholar
Weiss, L. Mechanisms of splenic control of murine malaria: cellular reactions of the spleen in lethal (strain 17XL) Plasmodium yoelii malaria in BALB/c mice, and the consequences of pre-infective splenectomy. Am. J. Trop. Med. Hyg.41, 144–160 (1989). ArticleCASPubMed Google Scholar
Heikenwalder, M. et al. Lymphotoxin-dependent prion replication in inflammatory stromal cells of granulomas. Immunity29, 998–1008 (2008). ArticleCASPubMed Google Scholar
Andriko, J. W., Kaldjian, E. P., Tsokos, M., Abbondanzo, S. L. & Jaffe, E. S. Reticulum cell neoplasms of lymph nodes: a clinicopathologic study of 11 cases with recognition of a new subtype derived from fibroblastic reticular cells. Am. J. Surg. Pathol.22, 1048–1058 (1998). ArticleCASPubMed Google Scholar
Moyron-Quiroz, J. E. et al. Role of inducible bronchus associated lymphoid tissue (iBALT) in respiratory immunity. Nature Med.10, 927–934 (2004). ArticleCASPubMed Google Scholar
Meier, D. et al. Ectopic lymphoid-organ development occurs through interleukin 7-mediated enhanced survival of lymphoid-tissue-inducer cells. Immunity26, 643–654 (2007). ArticleCASPubMed Google Scholar
Marinkovic, T. et al. Interaction of mature CD3+CD4+ T cells with dendritic cells triggers the development of tertiary lymphoid structures in the thyroid. J. Clin. Invest.116, 2622–2632 (2006). ArticleCASPubMedPubMed Central Google Scholar
Katakai, T., Hara, T., Sugai, M., Gonda, H. & Shimizu, A. Th1-biased tertiary lymphoid tissue supported by CXC chemokine ligand 13-producing stromal network in chronic lesions of autoimmune gastritis. J. Immunol.171, 4359–4368 (2003). ArticleCASPubMed Google Scholar