Doetsch, F., Garcia-Verdugo, J. M. & Alvarez-Buylla, A. Regeneration of a germinal layer in the adult mammalian brain. Proc. Natl Acad. Sci. USA96, 11619–11624 (1999). ArticleCASPubMedPubMed Central Google Scholar
Doetsch, F., Caille, I., Lim, D. A., Garcia-Verdugo, J. M. & Alvarez-Buylla, A. Subventricular zone astrocytes are neural stem cells in the adult mammalian brain. Cell97, 703–716 (1999). Identified astroglial cells as the source of adult neurogenesis and as adult neural stem cells. This paper has revolutionized our thinking about astroglial cells. ArticleCASPubMed Google Scholar
Bedard, A. & Parent, A. Evidence of newly generated neurons in the human olfactory bulb. Brain Res. Dev. Brain Res.151, 159–168 (2004). ArticleCASPubMed Google Scholar
Sanai, N. et al. Unique astrocyte ribbon in adult human brain contains neural stem cells but lacks chain migration. Nature427, 740–744 (2004). ArticleCASPubMed Google Scholar
Alvarez-Buylla, A., Garcia-Verdugo, J. M. & Tramontin, A. D. A unified hypothesis on the lineage of neural stem cells. Nature Rev. Neurosci.2, 287–293 (2001). ArticleCAS Google Scholar
Gabay, L., Lowell, S., Rubin, L. L. & Anderson, D. J. Deregulation of dorsoventral patterning by FGF confers trilineage differentiation capacity on CNS stem cells in vitro. Neuron40, 485–499 (2003). ArticleCASPubMed Google Scholar
Hack, M. A., Sugimori, M., Lundberg, C., Nakafuku, M. & Götz, M. Regionalization and fate specification in neurospheres: the role of Olig2 and Pax6. Mol. Cell. Neurosci.25, 664–678 (2004). ArticleCASPubMed Google Scholar
Garcia, A. D., Doan, N. B., Imura, T., Bush, T. G. & Sofroniew, M. V. GFAP-expressing progenitors are the principal source of constitutive neurogenesis in adult mouse forebrain. Nature Neurosci.7, 1233–1241 (2004). ArticleCASPubMed Google Scholar
Johansson, C. B. et al. Identification of a neural stem cell in the adult mammalian central nervous system. Cell96, 25–34 (1999). ArticleCASPubMed Google Scholar
Capela, A. & Temple, S. LeX/ssea-1 is expressed by adult mouse CNS stem cells, identifying them as nonependymal. Neuron35, 865–875 (2002). ArticlePubMed Google Scholar
Seaberg, R. M. & van der Kooy, D. Adult rodent neurogenic regions: the ventricular subependyma contains neural stem cells, but the dentate gyrus contains restricted progenitors. J. Neurosci.22, 1784–1793 (2002). ArticleCASPubMedPubMed Central Google Scholar
Seri, B., Garcia-Verdugo, J. M., McEwen, B. S. & Alvarez-Buylla, A. Astrocytes give rise to new neurons in the adult mammalian hippocampus. J. Neurosci.21, 7153–7160 (2001). ArticleCASPubMedPubMed Central Google Scholar
Niemann, C. & Watt, F. M. Designer skin: lineage commitment in postnatal epidermis. Trends Cell Biol.12, 185–192 (2002). ArticleCASPubMed Google Scholar
Arvidsson, A., Collin, T., Kirik, D., Kokaia, Z. & Lindvall, O. Neuronal replacement from endogenous precursors in the adult brain after stroke. Nature Med.8, 963–970 (2002). ArticleCASPubMed Google Scholar
Lachapelle, F., Avellana-Adalid, V., Nait-Oumesmar, B. & Baron-Van Evercooren, A. Fibroblast growth factor-2 (FGF-2) and platelet-derived growth factor AB (PDGF AB) promote adult SVZ-derived oligodendrogenesis in vivo. Mol. Cell. Neurosci.20, 390–403 (2002). ArticleCASPubMed Google Scholar
Reynolds, B. A. & Weiss, S. Clonal and population analyses demonstrate that an EGF-responsive mammalian embryonic CNS precursor is a stem cell. Dev. Biol.175, 1–13 (1996). ArticleCASPubMed Google Scholar
Rakic, P. A small step for the cell, a giant leap for mankind: a hypothesis of neocortical expansion during evolution. Trends Neurosci.18, 383–388 (1995). ArticleCASPubMed Google Scholar
McConnell, S. K. Constructing the cerebral cortex: neurogenesis and fate determination. Neuron15, 761–768 (1995). ArticleCASPubMed Google Scholar
Gray, G. E., Glover, J. C., Majors, J. & Sanes, J. R. Radial arrangement of clonally related cells in the chicken optic tectum: lineage analysis with a recombinant retrovirus. Proc. Natl Acad. Sci. USA85, 7356–7360 (1988). ArticleCASPubMedPubMed Central Google Scholar
Price, J. & Thurlow, L. Cell lineage in the rat cerebral cortex: a study using retroviral-mediated gene transfer. Development104, 473–482 (1988). CASPubMed Google Scholar
Luskin, M. B., Pearlman, A. L. & Sanes, J. R. Cell lineage in the cerebral cortex of the mouse studied in-vivo and in-vitro with a recombinant retrovirus. Neuron1, 635–647 (1988). ArticleCASPubMed Google Scholar
Grove, E. A., Williams, B. P., Li, D. -Q., Hajihosseini, M., Friedrich, A. & Price, J. Multiple restricted lineages in the embryonic rat cerebral cortex. Development117, 553–561 (1993). CASPubMed Google Scholar
Kornack, D. R. & Rakic, P. Radial and horizontal deployment of clonally related cells in the primate neocortex: relationship to distinct mitotic lineages. Neuron15, 311–321 (1995). ArticleCASPubMed Google Scholar
Mione, M. C., Cavanagh, J. F., Harris, B. & Parnavelas, J. G. Cell fate specification and symmetrical/asymmetrical divisions in the developing cerebral cortex. J. Neurosci.17, 2018–2029 (1997). ArticleCASPubMedPubMed Central Google Scholar
Reid, C. B., Tavazoie, S. F. & Walsh, C. A. Clonal dispersion and evidence for asymmetric cell division in ferret cortex. Development124, 2441–2450 (1997). CASPubMed Google Scholar
Chenn, A. & McConnell, S. K. Cleavage orientation and the asymmetric inheritance of Notch1 immunoreactivity in mammalian neurogenesis. Cell82, 631–641 (1995). Examined the cell division of neural progenitors live in slice cultures of the developing cerebral cortex. Led to the proposal that the orientation of cell division is correlated with, and predicts, the fate of daugther cells. ArticleCASPubMed Google Scholar
Noctor, S. C., Flint, A. C., Weissman, T. A., Dammerman, R. S. & Kriegstein, A. R. Neurons derived from radial glial cells establish radial units in neocortex. Nature409, 714–720 (2001). Observed the generation of neurons from GFP-labelled radial glial cells using live time-lapse video microscopy in slice cultures from the developing cerebral cortex. ArticleCASPubMed Google Scholar
Miyata, T., Kawaguchi, A., Okano, H. & Ogawa, M. Asymmetric inheritance of radial glial fibers by cortical neurons. Neuron31, 727–741 (2001). Revised the dogma that dividing precursors round up and retract their processes. Time-lapse video microscopy of labelled radial glial cells in cortical slice cultures showed that the radial process is maintained during cell division and is inherited by only one daugther cell. ArticleCASPubMed Google Scholar
Noctor, S. C., Martinez-Cerdeno, V., Ivic, L. & Kriegstein, A. R. Cortical neurons arise in symmetric and asymmetric division zones and migrate through specific phases. Nat. Neurosci.7, 136–144 (2004). ArticleCASPubMed Google Scholar
Haubensak, W., Attardo, A., Denk, W. & Huttner, W. B. Neurons arise in the basal neuroepithelium of the early mammalian telencephalon: a major site of neurogenesis. Proc. Natl Acad. Sci. USA101, 3196–3201 (2004). ArticleCASPubMedPubMed Central Google Scholar
Miyata, T. et al. Asymmetric production of surface-dividing and non-surface-dividing cortical progenitor cells. Development131, 3133–3145 (2004). References 29–31 used time-lapse imaging to describe basal/subventricular zone progenitors, which divide symmetrically to generate two neurons each. ArticleCASPubMed Google Scholar
Qian, X., Goderie, S. K., Shen, Q., Stern, J. H. & Temple, S. Intrinsic programs of patterned cell lineages in isolated vertebrate CNS ventricular zone cells. Development125, 3143–3152 (1998). CASPubMed Google Scholar
Qian, X. et al. Timing of CNS cell generation: a programmed sequence of neuron and glial cell production from isolated murine cortical stem cells. Neuron28, 69–80 (2000). ArticleCASPubMed Google Scholar
Shen, Q., Zhong, W., Jan, Y. N. & Temple, S. Asymmetric Numb distribution is critical for asymmetric cell division of mouse cerebral cortical stem cells and neuroblasts. Development129, 4843–4853 (2002). CASPubMed Google Scholar
Götz, M., Hartfuss, E. & Malatesta, P. Radial glial cells as neuronal precursors: a new perspective on the correlation of morphology and lineage restriction in the developing cerebral cortex of mice. Brain Res. Bull.57, 777–788 (2002). ArticlePubMed Google Scholar
Kriegstein, A. R. & Götz, M. Radial glia diversity: a matter of cell fate. Glia43, 37–43 (2003). ArticlePubMed Google Scholar
Fishell, G. & Kriegstein, A. R. Neurons from radial glia: the consequences of asymmetric inheritance. Curr. Opin. Neurobiol.13, 34–41 (2003). ArticleCASPubMed Google Scholar
Huttner, W. B. & Brand, M. Asymmetric division and polarity of neuroepithelial cells. Curr. Opin. Neurobiol.7, 29–39 (1997). Presents the hypothesis that vertical cleavage planes can result in symmetric and asymmetric divisions of neuroepithelial cells, as such cleavages can either bisect or bypass the apical plasma membrane. ArticleCASPubMed Google Scholar
Wodarz, A. & Huttner, W. B. Asymmetric cell division during neurogenesis in Drosophila and vertebrates. Mech. Dev.120, 1297–1309 (2003). ArticleCASPubMed Google Scholar
Weigmann, A., Corbeil, D., Hellwig, A. & Huttner, W. B. Prominin, a novel microvilli-specific polytopic membrane protein of the apical surface of epithelial cells, is targeted to plasmalemmal protrusions of non-epithelial cells. Proc. Natl Acad. Sci. USA94, 12425–12430 (1997). ArticleCASPubMedPubMed Central Google Scholar
Corbeil, D., Röper, K., Fargeas, C. A., Joester, A. & Huttner, W. B. Prominin: a story of cholesterol, plasma membrane protrusions and human pathology. Traffic2, 82–91 (2001). ArticleCASPubMed Google Scholar
Aaku-Saraste, E., Hellwig, A. & Huttner, W. B. Loss of occludin and functional tight junctions, but not ZO-1, during neural tube closure — remodeling of the neuroepithelium prior to neurogenesis. Dev. Biol.180, 664–679 (1996). ArticleCASPubMed Google Scholar
Zhadanov, A. B. et al. Absence of the tight junctional protein AF-6 disrupts epithelial cell–cell junctions and cell polarity during mouse development. Curr. Biol.9, 880–888 (1999). ArticleCASPubMed Google Scholar
Manabe, N. et al. Association of ASIP/mPAR-3 with adherens junctions of mouse neuroepithelial cells. Dev. Dyn.225, 61–69 (2002). ArticleCASPubMed Google Scholar
Aaku-Saraste, E., Oback, B., Hellwig, A. & Huttner, W. B. Neuroepithelial cells downregulate their plasma membrane polarity prior to neural tube closure and neurogenesis. Mech. Dev.69, 71–81 (1997). ArticleCASPubMed Google Scholar
Campbell, K. & Götz, M. Radial glia: multi-purpose cells for vertebrate brain development. Trends Neurosci.25, 235–238 (2002). ArticleCASPubMed Google Scholar
Götz, M. Glial cells generate neurons — master control within CNS regions: developmental perspectives on neural stem cells. Neuroscientist9, 379–397 (2003). ArticlePubMedCAS Google Scholar
Williams, B. P. & Price, J. Evidence for multiple precursor cell types in the embryonic rat cerebral cortex. Neuron14, 1181–1188 (1995). ArticleCASPubMed Google Scholar
Malatesta, P., Hartfuss, E. & Götz, M. Isolation of radial glial cells by fluorescent-activated cell sorting reveals a neuronal lineage. Development127, 5253–5263 (2000). The first direct evidence for a role for radial glial cells as neuronal progenitors. CASPubMed Google Scholar
Malatesta, P. et al. Neuronal or glial progeny: regional differences in radial glia fate. Neuron37, 751–764 (2003). Showed that there are regional differences in radial glial-cell fate. Radial glial cells from the dorsal telencephalon generate the bulk of neurons in this region, whereas those from the ventral telencephalon generate only a few neurons. ArticleCASPubMed Google Scholar
Anthony, T. E., Klein, C., Fishell, G. & Heintz, N. Radial glia serve as neuronal progenitors in all regions of the central nervous system. Neuron41, 881–890 (2004). This work contradicts the results of reference 50, and indicates that radial glial cells function as neuronal progenitors in all regions of the CNS. ArticleCASPubMed Google Scholar
Hartfuss, E., Galli, R., Heins, N. & Gotz, M. Characterization of CNS precursor subtypes and radial glia. Dev. Biol.229, 15–30 (2001). ArticleCASPubMed Google Scholar
Chenn, A., Zhang, Y. A., Chang, B. T. & McConnell, S. K. Intrinsic polarity of mammalian neuroepithelial cells. Mol. Cell. Neurosci.11, 183–193 (1998). ArticleCASPubMed Google Scholar
Halfter, W., Dong, S., Yip, Y. P., Willem, M. & Mayer, U. A critical function of the pial basement membrane in cortical histogenesis. J. Neurosci.22, 6029–6040 (2002). ArticleCASPubMedPubMed Central Google Scholar
Gadisseux, J. F. & Evrard, P. Glial-neuronal relationship in the developing central nervous system. A histochemical-electron microscope study of radial glial cell particulate glycogen in normal and reeler mice and the human fetus. Dev. Neurosci.7, 12–32 (1985). ArticleCASPubMed Google Scholar
Noctor, S. C. et al. Dividing precursor cells of the embryonic cortical ventricular zone have morphological and molecular characteristics of radial glia. J. Neurosci.22, 3161–3173 (2002). ArticleCASPubMedPubMed Central Google Scholar
Williams, B. P. et al. A PDGF-regulated immediate early gene response initiates neuronal differentiation in ventricular zone progenitor cells. Neuron18, 553–562 (1997). ArticleCASPubMed Google Scholar
McCarthy, M., Turnbull, D. H., Walsh, C. A. & Fishell, G. Telencephalic neural progenitors appear to be restricted to regional and glial fates before the onset of neurogenesis. J. Neurosci.21, 6772–6781 (2001). ArticleCASPubMedPubMed Central Google Scholar
Reid, C. B., Liang, I. & Walsh, C. Systematic widespread clonal organization in cerebral cortex. Neuron15, 299–310 (1995). ArticleCASPubMed Google Scholar
Graus-Porta, D. et al. β1-class integrins regulate the development of laminae and folia in the cerebral and cerebellar cortex. Neuron31, 367–379 (2001). ArticleCASPubMed Google Scholar
Turner, D. L. & Cepko, C. A common progenitor for neurons and glia persists in rat retina late in development. Nature328, 131–136 (1987). ArticleCASPubMed Google Scholar
Turner, D. L., Snyder, E. Y. & Cepko, C. L. Lineage-independent determination of cell type in the embryonic mouse retina. Neuron4, 833–845 (1990). ArticleCASPubMed Google Scholar
Smart, I. H. M. Proliferative characteristics of the ependymal layer during the early development of the mouse neocortex: a pilot study based on recording the number, location and plane of cleavage of mitotic figures. J. Anat.116, 67–91 (1973). A classic pioneering study of neuronal progenitor cell division. CASPubMedPubMed Central Google Scholar
Tarabykin, V., Stoykova, A., Usman, N. & Gruss, P. Cortical upper layer neurons derive from the subventricular zone as indicated by Svet1 gene expression. Development128, 1983–1993 (2001). CASPubMed Google Scholar
Englund, C. et al. Pax6, Tbr2, and Tbr1 are expressed sequentially by radial glia, intermediate progenitor cells, and postmitotic neurons in developing neocortex. J. Neurosci.25, 247–251 (2005). ArticleCASPubMedPubMed Central Google Scholar
Nieto, M. et al. Expression of Cux-1 and Cux-2 in the subventricular zone and upper layers II–IV of the cerebral cortex. J. Comp. Neurol.479, 168–180 (2004). ArticleCASPubMed Google Scholar
Zimmer, C., Tiveron, M. C., Bodmer, R. & Cremer, H. Dynamics of Cux2 expression suggests that an early pool of SVZ precursors is fated to become upper cortical layer neurons. Cereb. Cortex14, 1408–1420 (2004). ArticlePubMed Google Scholar
Smart, I. H., Dehay, C., Giroud, P., Berland, M. & Kennedy, H. Unique morphological features of the proliferative zones and postmitotic compartments of the neural epithelium giving rise to striate and extrastriate cortex in the monkey. Cereb. Cortex12, 37–53 (2002). ArticlePubMed Google Scholar
Jan, Y. N. & Jan, L. Y. Asymmetric cell division in the Drosophila nervous system. Nature Rev. Neurosci.2, 772–779 (2001). ArticleCAS Google Scholar
Knoblich, J. A. Asymmetric cell division during animal development. Nature Rev. Mol. Cell Biol.2, 11–20 (2001). ArticleCAS Google Scholar
Landrieu, P. & Goffinet, A. Mitotic spindle fiber orientation in relation to cell migration in the neo-cortex of normal and reeler mouse. Neurosci. Lett.13, 69–72 (1979). ArticleCASPubMed Google Scholar
Kosodo, Y. et al. Asymmetric distribution of the apical plasma membrane during neurogenic divisions of mammalian neuroepithelial cells. EMBO J.23, 2314–2324 (2004). This study confirmed the hypothesis proposed in reference 38 that vertical cleavage planes can result in symmetric and asymmetric divisions of neuroepithelial cells. ArticleCASPubMedPubMed Central Google Scholar
Iacopetti, P. et al. Expression of the antiproliferative gene TIS21 at the onset of neurogenesis identifies single neuroepithelial cells that switch from proliferative to neuron-generating division. Proc. Natl Acad. Sci. USA96, 4639–4644 (1999). This paper describes the first pan-neurogenic marker,Tis21, which is expressed in progenitors that undergo neurogenic divisions, but not in progenitors that undergo proliferative divisions. ArticleCASPubMedPubMed Central Google Scholar
Heins, N. et al. Emx2 promotes symmetric cell divisions and a multipotential fate in precursors from the cerebral cortex. Mol. Cell. Neurosci.18, 485–502 (2001). ArticleCASPubMed Google Scholar
Heins, N. et al. Glial cells generate neurons: the role of the transcription factor Pax6. Nature Neurosci.5, 308–315 (2002). This work shows that PAX6 is important for the neurogenesis of radial glial cells in the developing cerebral cortex, and is also sufficient to instruct the neurogenesis of postnatal astrocytesin vitro. ArticleCASPubMed Google Scholar
Gönczy, P., Grill, S., Stelzer, E. H., Kirkham, M. & Hyman, A. A. Spindle positioning during the asymmetric first cell division of Caenorhabditis elegans embryos. Novartis Found. Symp.237, 164–175 (2001). PubMed Google Scholar
Haydar, T. F., Ang, E. Jr . & Rakic, P. Mitotic spindle rotation and mode of cell division in the developing telencephalon. Proc. Natl Acad. Sci. USA100, 2890–2895 (2003). ArticleCASPubMedPubMed Central Google Scholar
Reinsch, S. & Karsenti, E. Orientation of spindle axis and distribution of plasma membrane proteins during cell division in polarized MDCKII cells. J. Cell Biol.126, 1509–1526 (1994). ArticleCASPubMed Google Scholar
Bond, J. et al. ASPM is a major determinant of cerebral cortical size. Nature Genet.32, 316–320 (2002). ArticleCASPubMed Google Scholar
Kouprina, N. et al. Accelerated evolution of the ASPM gene controlling brain size begins prior to human brain expansion. PLoS Biol.2, 653–663 (2004). ArticleCAS Google Scholar
Burgess, R. W., Deitcher, D. L. & Schwarz, T. L. The synaptic protein syntaxin1 is required for cellularization of Drosophila embryos. J. Cell Biol.138, 861–875 (1997). ArticleCASPubMedPubMed Central Google Scholar
Nacry, P., Mayer, U. & Jurgens, G. Genetic dissection of cytokinesis. Plant Mol. Biol.43, 719–733 (2000). ArticleCASPubMed Google Scholar
Low, S. H. et al. Syntaxin 2 and endobrevin are required for the terminal step of cytokinesis in mammalian cells. Dev. Cell4, 753–759 (2003). ArticleCASPubMed Google Scholar
Mostov, K. E., Verges, M. & Altschuler, Y. Membrane traffic in polarized epithelial cells. Curr. Opin. Cell Biol.12, 483–490 (2000). ArticleCASPubMed Google Scholar
Low, S. H. et al. Retinal pigment epithelial cells exhibit unique expression and localization of plasma membrane syntaxins which may contribute to their trafficking phenotype. J. Cell Sci.115, 4545–4553 (2002). ArticleCASPubMed Google Scholar
Jahn, R. & Südhof, T. C. Membrane fusion and exocytosis. Annu. Rev. Biochem.68, 863–911 (1999). ArticleCASPubMed Google Scholar
Chae, T. H., Kim, S., Marz, K. E., Hanson, P. I. & Walsh, C. A. The HYH mutation uncovers roles for α-SNAP in apical protein localization and control of neural cell fate. Nature Genet.36, 264–270 (2004). ArticleCASPubMed Google Scholar
Sheen, V. L. et al. Mutations in ARFGEF2 implicate vesicle trafficking in neural progenitor proliferation and migration in the human cerebral cortex. Nature Genet.36, 69–76 (2004). ArticleCASPubMed Google Scholar
Saito, K. et al. Morphological asymmetry in dividing retinal progenitor cells. Dev. Growth Differ.45, 219–229 (2003). ArticlePubMed Google Scholar
Roegiers, F. & Jan, Y. N. Asymmetric cell division. Curr. Opin. Cell Biol.16, 195–205 (2004). ArticleCASPubMed Google Scholar
Zhong, W. Diversifying neural cells through order of birth and asymmetry of division. Neuron37, 11–14 (2003). ArticleCASPubMed Google Scholar
Kerjaschki, D., Noronha-Blob, L., Sacktor, B. & Farquhar, M. G. Microdomains of distinctive glycoprotein composition in the kidney proximal tubule brush border. J. Cell Biol.98, 1505–1513 (1984). ArticleCASPubMed Google Scholar
Herz, J. & Bock, H. H. Lipoprotein receptors in the nervous system. Annu. Rev. Biochem.71, 405–434 (2002). ArticleCASPubMed Google Scholar
May, P. & Herz, J. LDL receptor-related proteins in neurodevelopment. Traffic4, 291–301 (2003). ArticleCASPubMed Google Scholar
Machold, R. et al. Sonic hedgehog is required for progenitor cell maintenance in telencephalic stem cell niches. Neuron39, 937–950 (2003). ArticleCASPubMed Google Scholar
Fargeas, C. A., Corbeil, D. & Huttner, W. B. AC133 antigen, CD133, prominin-1, prominin-2, etc. : prominin family gene products in need of a rational nomenclature. Stem Cells21, 506–508 (2003). ArticleCASPubMed Google Scholar
Röper, K., Corbeil, D. & Huttner, W. B. Retention of prominin in microvilli reveals distinct cholesterol-based lipid microdomains in the apical plasma membrane. Nature Cell Biol.2, 582–592 (2000). ArticlePubMed Google Scholar
Takekuni, K. et al. Direct binding of cell polarity protein PAR-3 to cell–cell adhesion molecule nectin at neuroepithelial cells of developing mouse. J. Biol. Chem.278, 5497–500 (2003). ArticleCASPubMed Google Scholar
Lin, D. et al. A mammalian PAR-3–PAR-6 complex implicated in Cdc42/Rac1 and aPKC signalling and cell polarity. Nature Cell Biol.2, 540–547 (2000). ArticleCASPubMed Google Scholar
Ohno, S. Intercellular junctions and cellular polarity: the PAR–aPKC complex, a conserved core cassette playing fundamental roles in cell polarity. Curr. Opin. Cell Biol.13, 641–648 (2001). ArticleCASPubMed Google Scholar
Chenn, A. & Walsh, C. A. Increased neuronal production, enlarged forebrains and cytoarchitectural distortions in β-catenin overexpressing transgenic mice. Cereb. Cortex13, 599–606 (2003). ArticlePubMed Google Scholar
Chenn, A. & Walsh, C. A. Regulation of cerebral cortical size by control of cell cycle exit in neural precursors. Science297, 365–369 (2002). ArticleCASPubMed Google Scholar
Zechner, D. et al. β-Catenin signals regulate cell growth and the balance between progenitor cell expansion and differentiation in the nervous system. Dev. Biol.258, 406–418 (2003). ArticleCASPubMed Google Scholar
Machon, O., van den Bout, C. J., Backman, M., Kemler, R. & Krauss, S. Role of β-catenin in the developing cortical and hippocampal neuroepithelium. Neuroscience122, 129–143 (2003). ArticleCASPubMed Google Scholar
Sauer, F. C. Mitosis in the neural tube. J. Comp. Neurol.62, 377–405 (1935). Article Google Scholar
Takahashi, T., Nowakowski, R. S. & Caviness, V. S. Cell cycle parameters and patterns of nuclear movement in the neocortical proliferative zone of the fetal mouse. J. Neurosci.13, 820–833 (1993). ArticleCASPubMedPubMed Central Google Scholar
Frade, J. M. Interkinetic nuclear movement in the vertebrate neuroepithelium: encounters with an old acquaintance. Prog. Brain Res.136, 67–71 (2002). ArticlePubMed Google Scholar
Messier, P. -E. & Auclair, C. Inhibition of nuclear migration in the absence of microtubules in the chick embryo. J. Embryol. Exp. Morph.30, 661–671 (1973). CASPubMed Google Scholar
Messier, P. E. Microtubules, interkinetic nuclear migration and neurulation. Experientia34, 289–296 (1978). ArticleCASPubMed Google Scholar
Reinsch, S. & Gönczy, P. Mechanisms of nuclear positioning. J. Cell Sci.111, 2283–2295 (1998). CASPubMed Google Scholar
Morris, N. R. Nuclear positioning: the means is at the ends. Curr. Opin. Cell Biol.15, 54–59 (2003). ArticleCASPubMed Google Scholar
Faulkner, N. E. et al. A role for the lissencephaly gene lis1 in mitosis and cytoplasmic dynein function. Nature Cell Biol.2, 784–791 (2000). ArticleCASPubMed Google Scholar
Sapir, T., Elbaum, M. & Reiner, O. Reduction of microtubule catastrophe events by LIS1, platelet-activating factor acetylhydrolase subunit. EMBO J.16, 6977–6984 (1997). ArticleCASPubMedPubMed Central Google Scholar
Olson, E. C. & Walsh, C. A. Smooth, rough and upside-down neocortical development. Curr. Opin. Genet. Dev.12, 320–327 (2002). ArticleCASPubMed Google Scholar
MacLean-Fletcher, S. & Pollard, T. D. Mechanism of action of cytochalasin B on actin. Cell20, 329–341 (1980). ArticleCASPubMed Google Scholar
Karfunkel, P. The activity of microtubules and microfilaments in neurulation in the chick. J. Exp. Zool.181, 289–301 (1972). ArticleCASPubMed Google Scholar
Messier, P. -E. & Auclair, C. Effect of cytochalasin B on interkinetic nuclear migration in the chick embryo. Dev. Biol.36, 218–223 (1974). ArticleCASPubMed Google Scholar
Tullio, A. N. et al. Structural abnormalities develop in the brain after ablation of the gene encoding nonmuscle myosin II-B heavy chain. J. Comp. Neurol.433, 62–74 (2001). ArticleCASPubMed Google Scholar
Götz, M., Stoykova, A. & Gruss, P. Pax6 controls radial glia differentiation in the cerebral cortex. Neuron21, 1031–1044 (1998). ArticlePubMed Google Scholar
Estivill-Torrus, G., Pearson, H., van Heyningen, V., Price, D. J. & Rashbass, P. Pax6 is required to regulate the cell cycle and the rate of progression from symmetrical to asymmetrical division in mammalian cortical progenitors. Development129, 455–466 (2002). CASPubMed Google Scholar
Murciano, A., Zamora, J., Lopez-Sanchez, J. & Frade, J. M. Interkinetic nuclear movement may provide spatial clues to the regulation of neurogenesis. Mol. Cell. Neurosci.21, 285–300 (2002). ArticleCASPubMed Google Scholar
Calegari, F. & Huttner, W. B. An inhibition of cyclin-dependent kinases that lengthens, but does not arrest, neuroepithelial cell cycle induces premature neurogenesis. J. Cell Sci.116, 4947–4955 (2003). This study formulates the cell-cycle length hypothesis, which is supported by the finding that lengthening the cell cycle of neuroepithelial cells can be sufficient to switch neuroepithelial cells from proliferative to neurogenic divisions. ArticleCASPubMed Google Scholar
Takahashi, T., Nowakowski, R. S. & Caviness, V. S. The cell cycle of the pseudostratified ventricular epithelium of the embryonic murine cerebral wall. J. Neurosci.15, 6046–6057 (1995). A seminal study showing that the cell cycle of ventricular zone cells lengthens concomitant with the onset and progression of neurogenesis. ArticleCASPubMedPubMed Central Google Scholar
Durand, B. & Raff, M. A cell-intrinsic timer that operates during oligodendrocyte development. Bioessays22, 64–71 (2000). ArticleCASPubMed Google Scholar
Ohnuma, S., Philpott, A. & Harris, W. A. Cell cycle and cell fate in the nervous system. Curr. Opin. Neurobiol.11, 66–73 (2001). ArticleCASPubMed Google Scholar
Cremisi, F., Philpott, A. & Ohnuma, S. Cell cycle and cell fate interactions in neural development. Curr. Opin. Neurobiol.13, 26–33 (2003). ArticleCASPubMed Google Scholar
Bally-Cuif, L. & Hammerschmidt, M. Induction and patterning of neuronal development, and its connection to cell cycle control. Curr. Opin. Neurobiol.13, 16–25 (2003). ArticleCASPubMed Google Scholar
Matsuda, S., Rouault, J., Magaud, J. & Berthet, C. In search of a function for the TIS21/PC3/BTG1/TOB family. FEBS Lett.497, 67–72 (2001). ArticleCASPubMed Google Scholar
Tirone, F. The gene PC3TIS21/BTG2, prototype member of the PC3/BTG/TOB family: regulator in control of cell growth, differentiation, and DNA repair? J. Cell Physiol.187, 155–165 (2001). ArticleCASPubMed Google Scholar
Malatesta, P. et al. PC3 overexpression affects the pattern of cell division of rat cortical precursors. Mech. Dev.90, 17–28 (2000). ArticleCASPubMed Google Scholar
Canzoniere, D. et al. Dual control of neurogenesis by PC3 through cell cycle inhibition and induction of Math1. J. Neurosci.24, 3355–3369 (2004). ArticleCASPubMedPubMed Central Google Scholar
Lukaszewicz, A., Savatier, P., Cortay, V., Kennedy, H. & Dehay, C. Contrasting effects of basic fibroblast growth factor and neurotrophin 3 on cell cycle kinetics of mouse cortical stem cells. J. Neurosci.22, 6610–6622 (2002). ArticleCASPubMedPubMed Central Google Scholar
Takahashi, T., Nowakowski, R. S. & Caviness, V. S. The leaving or Q fraction of the murine cerebral proliferative epithelium: a general model of neocortical neuronogenesis. J. Neurosci.16, 6183–6196 (1996). ArticleCASPubMedPubMed Central Google Scholar
Hatakeyama, J. et al. Hes genes regulate size, shape and histogenesis of the nervous system by control of the timing of neural stem cell differentiation. Development131, 5539–5550 (2004). ArticleCASPubMed Google Scholar
Klezovitch, O., Fernandez, T. E., Tapscott, S. J. & Vasioukhin, V. Loss of cell polarity causes severe brain dysplasia in Lgl1 knockout mice. Genes Dev.18, 559–571 (2004). ArticleCASPubMedPubMed Central Google Scholar
Doetsch, F., Petreanu, L., Caille, I., Garcia-Verdugo, J. M. & Alvarez-Buylla, A. EGF converts transit-amplifying neurogenic precursors in the adult brain into multipotent stem cells. Neuron36, 1021–1034 (2002). ArticleCASPubMed Google Scholar
Spoelgen, R. et al. LRP2/megalin is required for patterning of the ventral telencephalon. Development132, 405–414 (2005). ArticleCASPubMed Google Scholar
Calegari, F., Haubensak, W., Haffner, C. & Huttner, W. B. Selective lengthening of the cell cycle in the neurogenic subpopulation of neural progenitor cells during mouse brain development. J. Neurosci.25, 6533–6538 (2005). ArticleCASPubMedPubMed Central Google Scholar