Nechaev, S. & Adelman, K. Pol II waiting in the starting gates: regulating the transition from transcription initiation into productive elongation. Biochim. Biophys. Acta1809, 34–45 (2011). CASPubMed Google Scholar
Rosonina, E., Kaneko, S. & Manley, J. L. Terminating the transcript: breaking up is hard to do. Genes Dev.20, 1050–1056 (2006). CASPubMed Google Scholar
Gilmour, D. S. & Fan, R. Derailing the locomotive: transcription termination. J. Biol. Chem.283, 661–664 (2008). CASPubMed Google Scholar
Richard, P. & Manley, J. L. Transcription termination by nuclear RNA polymerases. Genes Dev.23, 1247–1269 (2009). CASPubMedPubMed Central Google Scholar
Merino, E. & Yanofsky, C. Transcription attenuation: a highly conserved regulatory strategy used by bacteria. Trends Genet.21, 260–264 (2005). CASPubMed Google Scholar
Naville, M. & Gautheret, D. Transcription attenuation in bacteria: theme and variations. Brief Funct. Genomics9, 178–189 (2010). CASPubMed Google Scholar
Kim, K. Y. & Levin, D. E. Mpk1 MAPK association with the Paf1 complex blocks Sen1-mediated premature transcription termination. Cell144, 745–756 (2011). CASPubMedPubMed Central Google Scholar
Jacquier, A. The complex eukaryotic transcriptome: unexpected pervasive transcription and novel small RNAs. Nature Rev. Genet.10, 833–844 (2009). CASPubMed Google Scholar
Shearwin, K. E., Callen, B. P. & Egan, J. B. Transcriptional interference — a crash course. Trends Genet.21, 339–345 (2005). CASPubMedPubMed Central Google Scholar
West, S. & Proudfoot, N. J. Transcriptional termination enhances protein expression in human cells. Mol. Cell33, 354–364 (2009). CASPubMedPubMed Central Google Scholar
Mapendano, C. K., Lykke-Andersen, S., Kjems, J., Bertrand, E. & Jensen, T. H. Crosstalk between mRNA 3′ end processing and transcription initiation. Mol. Cell40, 410–422 (2010). CASPubMed Google Scholar
Ardehali, M. B. & Lis, J. T. Tracking rates of transcription and splicing in vivo. Nature Struct. Mol. Biol.16, 1123–1124 (2009). CAS Google Scholar
Kireeva, M. L., Komissarova, N., Waugh, D. S. & Kashlev, M. The 8-nucleotide-long RNA:DNA hybrid is a primary stability determinant of the RNA polymerase II elongation complex. J. Biol. Chem.275, 6530–6536 (2000). CASPubMed Google Scholar
Komissarova, N., Becker, J., Solter, S., Kireeva, M. & Kashlev, M. Shortening of RNA:DNA hybrid in the elongation complex of RNA polymerase is a prerequisite for transcription termination. Mol. Cell10, 1151–1162 (2002). References 16 and 17 implicate the RNA–DNA hybrid of the transcription elongation complex as a primary target of Pol II and bacterial RNA polymerase termination mechanisms. CASPubMed Google Scholar
Lykke-Andersen, S. & Jensen, T. H. Overlapping pathways dictate termination of RNA polymerase II transcription. Biochimie89, 1177–1182 (2007). CASPubMed Google Scholar
Rondon, A. G., Mischo, H. E. & Proudfoot, N. J. Terminating transcription in yeast: whether to be a 'nerd' or a 'rat'. Nature Struct. Mol. Biol.15, 775–776 (2008). CAS Google Scholar
Logan, J., Falck-Pedersen, E., Darnell, J. E. Jr & Shenk, T. A poly(A) addition site and a downstream termination region are required for efficient cessation of transcription by RNA polymerase II in the mouse β maj-globin gene. Proc. Natl Acad. Sci. USA84, 8306–8310 (1987). CASPubMedPubMed Central Google Scholar
Whitelaw, E. & Proudfoot, N. α-thalassaemia caused by a poly(A) site mutation reveals that transcriptional termination is linked to 3′ end processing in the human α 2 globin gene. EMBO J.5, 2915–2922 (1986). CASPubMedPubMed Central Google Scholar
Edwalds-Gilbert, G., Prescott, J. & Falck-Pedersen, E. 3′ RNA processing efficiency plays a primary role in generating termination-competent RNA polymerase II elongation complexes. Mol. Cell. Biol.13, 3472–3480 (1993). CASPubMedPubMed Central Google Scholar
Plant, K. E., Dye, M. J., Lafaille, C. & Proudfoot, N. J. Strong polyadenylation and weak pausing combine to cause efficient termination of transcription in the human γ-globin gene. Mol. Cell. Biol.25, 3276–3285 (2005). CASPubMedPubMed Central Google Scholar
Kim, H. et al. Gene-specific RNA polymerase II phosphorylation and the CTD code. Nature Struct. Mol. Biol.17, 1279–1286 (2010). Provides genome-wide analysis of the dynamics of Pol II CTD phosphorylation and the recruitment of termination factors Pcf11, Nrd1 and Rat1. CAS Google Scholar
Mandel, C. R., Bai, Y. & Tong, L. Protein factors in pre-mRNA 3′-end processing. Cell. Mol. Life Sci.65, 1099–1122 (2008). CASPubMedPubMed Central Google Scholar
Millevoi, S. & Vagner, S. Molecular mechanisms of eukaryotic pre-mRNA 3′ end processing regulation. Nucleic Acids Res.38, 2757–2774 (2009). PubMedPubMed Central Google Scholar
Gromak, N., West, S. & Proudfoot, N. J. Pause sites promote transcriptional termination of mammalian RNA polymerase II. Mol. Cell. Biol.26, 3986–3996 (2006). Shows that a pause sequence promotes poly(A)-dependent terminationin vivo, and the efficiency of termination is influenced by the strength of the poly(A) site and its proximity to the pause site. CASPubMedPubMed Central Google Scholar
Glover-Cutter, K., Kim, S., Espinosa, J. & Bentley, D. L. RNA polymerase II pauses and associates with pre-mRNA processing factors at both ends of genes. Nature Struct. Mol. Biol.15, 71–78 (2008). CAS Google Scholar
Park, N. J., Tsao, D. C. & Martinson, H. G. The two steps of poly(A)-dependent termination, pausing and release, can be uncoupled by truncation of the RNA polymerase II carboxyl-terminal repeat domain. Mol. Cell. Biol.24, 4092–4103 (2004). CASPubMedPubMed Central Google Scholar
Nag, A., Narsinh, K. & Martinson, H. G. The poly(A)-dependent transcriptional pause is mediated by CPSF acting on the body of the polymerase. Nature Struct. Mol. Biol.14, 662–669 (2007). CAS Google Scholar
Kazerouninia, A., Ngo, B. & Martinson, H. G. Poly(A) signal-dependent degradation of unprocessed nascent transcripts accompanies poly(A) signal-dependent transcriptional pausing in vitro. RNA16, 197–210 (2010). References 33–35 from the Martinson laboratory show that poly(A)-dependent termination of Pol II can be separated into two steps, pausing and release, which depend on interactions of the cleavage and polyadenylation machinery with the body of Pol II and the Pol II CTD. CASPubMedPubMed Central Google Scholar
Alexander, R. D., Innocente, S. A., Barrass, J. D. & Beggs, J. D. Splicing-dependent RNA polymerase pausing in yeast. Mol. Cell40, 582–593 (2010). CASPubMedPubMed Central Google Scholar
Carrillo Oesterreich, F., Preibisch, S. & Neugebauer, K. M. Global analysis of nascent RNA reveals transcriptional pausing in terminal exons. Mol. Cell40, 571–581 (2010). CASPubMed Google Scholar
Kim, M. et al. The yeast Rat1 exonuclease promotes transcription termination by RNA polymerase II. Nature432, 517–522 (2004). CASPubMed Google Scholar
West, S., Gromak, N. & Proudfoot, N. J. Human 5′–3′ exonuclease Xrn2 promotes transcription termination at co-transcriptional cleavage sites. Nature432, 522–525 (2004). References 38 and 39 demonstrate that the 5′–3′ exoribonuclease Rat1 (XRN2 in mammals) is important for poly(A)-dependent termination and strengthen support for the torpedo model. CASPubMed Google Scholar
Luo, W., Johnson, A. W. & Bentley, D. L. The role of Rat1 in coupling mRNA 3′-end processing to transcription termination: implications for a unified allosteric-torpedo model. Genes Dev.20, 954–965 (2006). Reveals that in addition to its exoribonuclease activity, Rat1 helps recruit mRNA 3′-end-processing factors. The authors propose a model for the termination mechanism that incorporates both allosteric and torpedo components. CASPubMedPubMed Central Google Scholar
Lunde, B. M. et al. Cooperative interaction of transcription termination factors with the RNA polymerase II C-terminal domain. Nature Struct. Mol. Biol.17, 1195–1201 (2010). CAS Google Scholar
Teixeira, A. et al. Autocatalytic RNA cleavage in the human β-globin pre-mRNA promotes transcription termination. Nature432, 526–530 (2004). CASPubMed Google Scholar
Ghazal, G. et al. Yeast RNase III triggers polyadenylation-independent transcription termination. Mol. Cell36, 99–109 (2009). CASPubMed Google Scholar
Rondón, A., Mischo, H., Kawauchi, J. & Proudfoot, N. Fail-safe transcriptional termination for protein-coding genes in S. cerevisiae.Mol. Cell36, 88–98 (2009). PubMedPubMed Central Google Scholar
Nabavi, S. & Nazar, R. N. Pac1 endonuclease and Dhp1p 5′–3′ exonuclease are required for U3 snoRNA termination in Schizosaccharomyces pombe. FEBS Lett.584, 3436–3441 (2010). CASPubMed Google Scholar
Connelly, S. & Manley, J. L. A functional mRNA polyadenylation signal is required for transcription termination by RNA polymerase II. Genes Dev.2, 440–452 (1988). CASPubMed Google Scholar
Houseley, J. & Tollervey, D. The many pathways of RNA degradation. Cell136, 763–776 (2009). CASPubMed Google Scholar
Kim, H. D., Choe, J. & Seo, Y. S. The sen1+ gene of Schizosaccharomyces pombe, a homologue of budding yeast SEN1, encodes an RNA and DNA helicase. Biochemistry38, 14697–14710 (1999). CASPubMed Google Scholar
Steinmetz, E. J. & Brow, D. A. Repression of gene expression by an exogenous sequence element acting in concert with a heterogeneous nuclear ribonucleoprotein-like protein, Nrd1, and the putative helicase Sen1. Mol. Cell. Biol.16, 6993–7003 (1996). CASPubMedPubMed Central Google Scholar
Steinmetz, E. J., Conrad, N. K., Brow, D. A. & Corden, J. L. RNA-binding protein Nrd1 directs poly(A)-independent 3′-end formation of RNA polymerase II transcripts. Nature413, 327–331 (2001). CASPubMed Google Scholar
Steinmetz, E. J. et al. Genome-wide distribution of yeast RNA polymerase II and its control by Sen1 helicase. Mol. Cell24, 735–746 (2006). This paper establishes Sen1 as a general transcription termination factor in yeast for most snRNAs and snoRNAs and some short mRNA transcripts. CASPubMed Google Scholar
Ursic, D., Chinchilla, K., Finkel, J. S. & Culbertson, M. R. Multiple protein/protein and protein/RNA interactions suggest roles for yeast DNA/RNA helicase Sen1p in transcription, transcription-coupled DNA repair and RNA processing. Nucleic Acids Res.32, 2441–2452 (2004). CASPubMedPubMed Central Google Scholar
Finkel, J. S., Chinchilla, K., Ursic, D. & Culbertson, M. R. Sen1p performs two genetically separable functions in transcription and processing of U5 small nuclear RNA in Saccharomyces cerevisiae. Genetics184, 107–118 (2010). CASPubMedPubMed Central Google Scholar
Mischo, H. E. et al. Yeast Sen1 helicase protects the genome from transcription-associated instability. Mol. Cell41, 21–32 (2011). CASPubMedPubMed Central Google Scholar
Arigo, J. T., Eyler, D. E., Carroll, K. L. & Corden, J. L. Termination of cryptic unstable transcripts is directed by yeast RNA-binding proteins Nrd1 and Nab3. Mol. Cell23, 841–851 (2006). CASPubMed Google Scholar
Thiebaut, M., Kisseleva-Romanova, E., Rougemaille, M., Boulay, J. & Libri, D. Transcription termination and nuclear degradation of cryptic unstable transcripts: a role for the Nrd1-Nab3 pathway in genome surveillance. Mol. Cell23, 853–864 (2006). CASPubMed Google Scholar
Banerjee, S., Chalissery, J., Bandey, I. & Sen, R. Rho-dependent transcription termination: more questions than answers. J. Microbiol.44, 11–22 (2006). CASPubMedPubMed Central Google Scholar
Kawauchi, J., Mischo, H., Braglia, P., Rondon, A. & Proudfoot, N. J. Budding yeast RNA polymerases I and II employ parallel mechanisms of transcriptional termination. Genes Dev.22, 1082–1092 (2008). CASPubMedPubMed Central Google Scholar
Banerjee, A., Sammarco, M. C., Ditch, S., Wang, J. & Grabczyk, E. A novel tandem reporter quantifies RNA polymerase II termination in mammalian cells. PLoS ONE4, e6193 (2009). PubMedPubMed Central Google Scholar
Suraweera, A. et al. Functional role for senataxin, defective in ataxia oculomotor apraxia type 2, in transcriptional regulation. Hum. Mol. Genet.18, 3384–3396 (2009). CASPubMed Google Scholar
Matera, A. G., Terns, R. M. & Terns, M. P. Non-coding RNAs: lessons from the small nuclear and small nucleolar RNAs. Nature Rev. Mol. Cell Biol.8, 209–220 (2007). CAS Google Scholar
Egloff, S. et al. Serine-7 of the RNA polymerase II CTD is specifically required for snRNA gene expression. Science318, 1777–1779 (2007). This study reveals that Ser7-P Pol II CTD helps recruit the integrator complex, which is required for human snRNA 3′-end processing. CASPubMedPubMed Central Google Scholar
Ezzeddine, N. et al. A subset of Drosophila integrator proteins is essential for efficient U7 snRNA and spliceosomal snRNA 3′ end formation. Mol. Cell. Biol.31, 328–341 (2011). CASPubMed Google Scholar
Baillat, D. et al. Integrator, a multiprotein mediator of small nuclear RNA processing, associates with the C-terminal repeat of RNA polymerase II. Cell123, 265–276 (2005). CASPubMed Google Scholar
Dominski, Z., Yang, X.-C., Purdy, M., Wagner, E. J. & Marzluff, W. F. A CPSF-73 homologue is required for cell cycle progression but not cell growth and interacts with a protein having features of CPSF-100. Mol. Cell. Biol.25, 1489–1500 (2005). CASPubMedPubMed Central Google Scholar
Egloff, S., Al-Rawaf, H., O'Reilly, D. & Murphy, S. Chromatin structure is implicated in “late” elongation checkpoints on the U2 snRNA and β-actin genes. Mol. Cell. Biol.29, 4002–4013 (2009). CASPubMedPubMed Central Google Scholar
Ballarino, M. et al. Coupled RNA processing and transcription of intergenic primary microRNAs. Mol. Cell. Biol.29, 5632–5638 (2009). CASPubMedPubMed Central Google Scholar
Carninci, P. Molecular biology: the long and short of RNAs. Nature457, 974–975 (2009). CASPubMed Google Scholar
Dengl, S. & Cramer, P. Torpedo nuclease Rat1 is insufficient to terminate RNA polymerase II in vitro. J. Biol. Chem.284, 21270–21279 (2009). CASPubMedPubMed Central Google Scholar
Saeki, H. & Svejstrup, J. Q. Stability, flexibility, and dynamic interactions of colliding RNA polymerase II elongation complexes. Mol. Cell35, 191–205 (2009). CASPubMedPubMed Central Google Scholar
Xiang, S. et al. Structure and function of the 5′–3′ exoribonuclease Rat1 and its activating partner Rail. Nature458, 784–788 (2009). CASPubMedPubMed Central Google Scholar
Chang, J. H. & Xiang, S. Structural and biochemical studies of the 5′–3′ exoribonuclease Xrnl. Nature Cell Biol.18, 270–276 (2011). CAS Google Scholar
Epshtein, V., Dutta, D., Wade, J. & Nudler, E. An allosteric mechanism of Rho-dependent transcription termination. Nature463, 245–249 (2010). Demonstrates that the Rho termination factor associates directly withE. coliRNA polymerase and promotes termination by inducing an allosteric rearrangement of the RNA polymerase active site. Transduction of the termination signal is dependent on the lid and trigger loop domains of the RNA polymerase β′-subunit. CASPubMedPubMed Central Google Scholar
Lang, W. H., Platt, T. & Reeder, R. H. Escherichia coli Rho factor induces release of yeast RNA polymerase II but not polymerase I or III. Proc. Natl Acad. Sci. USA95, 4900–4905 (1998). CASPubMedPubMed Central Google Scholar
Schmidt, M. C. & Chamberlin, M. J. nusA protein of Escherichia coli is an efficient transcription termination factor for certain terminator sites. J. Mol. Biol.195, 809–818 (1987). CASPubMed Google Scholar
Sullivan, S. L. & Gottesman, M. E. Requirement for E. coli NusG protein in factor-dependent transcription termination. Cell68, 989–994 (1992). CASPubMed Google Scholar
Mason, S. W., Li, J. & Greenblatt, J. Host factor requirements for processive antitermination of transcription and suppression of pausing by the N protein of bacteriophage λ. J. Biol. Chem.267, 19418–19426 (1992). CASPubMed Google Scholar
Torres, M., Condon, C., Balada, J. M., Squires, C. & Squires, C. L. Ribosomal protein S4 is a transcription factor with properties remarkably similar to NusA, a protein involved in both non-ribosomal and ribosomal RNA antitermination. EMBO J.20, 3811–3820 (2001). CASPubMedPubMed Central Google Scholar
Shankar, S., Hatoum, A. & Roberts, J. W. A transcription antiterminator constructs a NusA-dependent shield to the emerging transcript. Mol. Cell27, 914–927 (2007). CASPubMedPubMed Central Google Scholar
Ha, K. S., Toulokhonov, I., Vassylyev, D. G. & Landick, R. The NusA N-terminal domain is necessary and sufficient for enhancement of transcriptional pausing via interaction with the RNA exit channel of RNA polymerase. J. Mol. Biol.401, 708–725 (2010). Findings from this study show that interaction of the NusA termination factor with regions of bacterial RNA polymerase near the RNA exit channel (such as the β-flap and β′-dock) stimulates pausing and release. CASPubMedPubMed Central Google Scholar
Toulokhonov, I., Artsimovitch, I. & Landick, R. Allosteric control of RNA polymerase by a site that contacts nascent RNA hairpins. Science292, 730–733 (2001). CASPubMed Google Scholar
Deighan, P., Diez, C. M., Leibman, M., Hochschild, A. & Nickels, B. E. The bacteriophage λQ antiterminator protein contacts the β-flap domain of RNA polymerase. Proc. Natl Acad. Sci. USA105, 15305–15310 (2008). CASPubMedPubMed Central Google Scholar
Mooney, R. A., Schweimer, K., Rösch, P., Gottesman, M. & Landick, R. Two structurally independent domains of E. coli NusG create regulatory plasticity via distinct interactions with RNA polymerase and regulators. J. Mol. Biol.391, 341–358 (2009). Reveals how interactions with two separate protein domains of NusG contribute to its RNA polymerase termination and antitermination activities. The NusG NTD contacts the RNA polymerase β′-clamp helices while its CTD binds Rho or other transcriptional regulators. CASPubMedPubMed Central Google Scholar
Nickels, B. E. Genetic assays to define and characterize protein–protein interactions involved in gene regulation. Methods47, 53–62 (2009). CASPubMed Google Scholar
Belogurov, G. A., Mooney, R. A., Svetlov, V., Landick, R. & Artsimovitch, I. Functional specialization of transcription elongation factors. EMBO J.28, 112–122 (2009). CASPubMed Google Scholar
Belogurov, G. A., Sevostyanova, A., Svetlov, V. & Artsimovitch, I. Functional regions of the N-terminal domain of the antiterminator RfaH. Mol. Microbiol.76, 286–301 (2010). CASPubMedPubMed Central Google Scholar
Komarnitsky, P., Cho, E. J. & Buratowski, S. Different phosphorylated forms of RNA polymerase II and associated mRNA processing factors during transcription. Genes Dev.14, 2452–2460 (2000). Shows that dynamic phosphorylation of the Pol II CTD contributes to differential recruitment of mRNA processing factors, a discovery that forms the basis of the CTD code hypothesis. CASPubMedPubMed Central Google Scholar
Licatalosi, D. D. et al. Functional interaction of yeast pre-mRNA 3′ end processing factors with RNA polymerase II. Mol. Cell9, 1101–1111 (2002). CASPubMed Google Scholar
Ahn, S. H., Kim, M. & Buratowski, S. Phosphorylation of serine 2 within the RNA polymerase II C-terminal domain couples transcription and 3′ end processing. Mol. Cell13, 67–76 (2004). CASPubMed Google Scholar
Chapman, R. D. et al. Transcribing RNA polymerase II is phosphorylated at CTD residue serine-7. Science318, 1780–1782 (2007). Identifies dynamic phosphorylation of the Pol II CTD at Ser7as a new component of the CTD code. CASPubMed Google Scholar
Guo, J., Garrett, M., Micklem, G. & Brogna, S. Poly(A) signals located near the 5′ end of genes are silenced by a general mechanism that prevents premature 3′-end processing. Mol. Cell. Biol.31, 639–651 (2011). CASPubMed Google Scholar
Gudipati, R. K., Villa, T., Boulay, J. & Libri, D. Phosphorylation of the RNA polymerase II C-terminal domain dictates transcription termination choice. Nature Struct. Mol. Biol.15, 786–794 (2008). Shows that the selection of the poly(A)-dependent versus Sen1-dependent termination pathway is influenced by the phosphorylation status of the Pol II CTD, which is in turn influenced by the distance that Pol II travels from the transcription start site. CAS Google Scholar
Jenks, M. H., O'Rourke, T. W. & Reines, D. Properties of an intergenic terminator and start site switch that regulate IMD2 transcription in yeast. Mol. Cell. Biol.28, 3883–3893 (2008). CASPubMedPubMed Central Google Scholar
Vasiljeva, L., Kim, M., Mutschler, H., Buratowski, S. & Meinhart, A. The Nrd1–Nab3–Sen1 termination complex interacts with the Ser5-phosphorylated RNA polymerase II C-terminal domain. Nature Struct. Mol. Biol.15, 795–804 (2008). CAS Google Scholar
Mayer, A. et al. Uniform transitions of the general RNA polymerase II transcription complex. Nature Struct. Mol. Biol.17, 1272–1278 (2010). CAS Google Scholar
Tietjen, J. R. et al. Chemical-genomic dissection of the CTD code. Nature Struct. Mol. Biol.17, 1154–1161 (2010). References 95 and 96 provide genome-wide analyses of the dynamics of Pol II CTD-phosphorylation and identify gene-specific patterns of CTD marks or transcription factor recruitment, respectively. CAS Google Scholar
Kim, M. et al. Distinct pathways for snoRNA and mRNA termination. Mol. Cell24, 723–734 (2006). Reveals that many poly(A)-dependent and Sen1-dependent termination factors can be localized to both mRNA and snoRNA-encoding genes, but their requirements for termination are gene-specific. CASPubMed Google Scholar
Egloff, S. et al. The integrator complex recognizes a new double mark on the RNA polymerase II carboxyl-terminal domain. J. Biol. Chem.285, 20564–20569 (2010). CASPubMedPubMed Central Google Scholar
Singh, N. et al. The Ess1 prolyl isomerase is required for transcription termination of small noncoding RNAs via the Nrd1 pathway. Mol. Cell36, 255–266 (2009). CASPubMedPubMed Central Google Scholar
Werner-Allen, J. W. et al. _cis_-proline-mediated Ser(P)5 dephosphorylation by the RNA polymerase II C-terminal domain phosphatase Ssu72. J. Biol. Chem.286, 5717–5726 (2011). CASPubMed Google Scholar
Selth, L. A., Sigurdsson, S. & Svejstrup, J. Q. Transcript Elongation by RNA Polymerase II. Annu. Rev. Biochem.79, 271–293 (2010). CASPubMed Google Scholar
Kim, M., Ahn, S. H., Krogan, N. J., Greenblatt, J. F. & Buratowski, S. Transitions in RNA polymerase II elongation complexes at the 3′ ends of genes. EMBO J.23, 354–364 (2004). CASPubMedPubMed Central Google Scholar
Jaehning, J. A. The Paf1 complex: platform or player in RNA polymerase II transcription? Biochim. Biophys. Acta1799, 379–388 (2010). CASPubMedPubMed Central Google Scholar
Alén, C. et al. A role for chromatin remodeling in transcriptional termination by RNA polymerase II. Mol. Cell10, 1441–1452 (2002). PubMed Google Scholar
Wood, A. J. et al. Regulation of alternative polyadenylation by genomic imprinting. Genes Dev.22, 1141–1146 (2008). CASPubMedPubMed Central Google Scholar
Spies, N., Nielsen, C. B., Padgett, R. A. & Burge, C. B. Biased chromatin signatures around polyadenylation sites and exons. Mol. Cell36, 245–254 (2009). CASPubMedPubMed Central Google Scholar
Alló, M. & Kornblihtt, A. R. Gene silencing: small RNAs control RNA polymerase II elongation. Curr. Biol.20, R704–R707 (2010). PubMed Google Scholar
Fan, X. et al. Nucleosome depletion at yeast terminators is not intrinsic and can occur by a transcriptional mechanism linked to 3′-end formation. Proc. Natl Acad. Sci. USA107, 17945–17950 (2010). CASPubMedPubMed Central Google Scholar
Mayr, C. & Bartel, D. P. Widespread shortening of 3′UTRs by alternative cleavage and polyadenylation activates oncogenes in cancer cells. Cell138, 673–684 (2009). CASPubMedPubMed Central Google Scholar
Calvo, O. & Manley, J. L. Strange bedfellows: polyadenylation factors at the promoter. Genes Dev.17, 1321–1327 (2003). CASPubMed Google Scholar
Venters, B. J. & Pugh, B. F. How eukaryotic genes are transcribed. Crit. Rev. Biochem. Mol. Biol.44, 117–141 (2009). CASPubMedPubMed Central Google Scholar
Hampsey, M., Singh, B. N., Ansari, A., Lainé, J.-P. & Krishnamurthy, S. Control of eukaryotic gene expression: gene loops and transcriptional memory. Adv. Enzyme Regul. 29 Oct 2010 (doi:10.1016/j.advenzreg.2010.10.001). CASPubMed Google Scholar
El Kaderi, B., Medler, S., Raghunayakula, S. & Ansari, A. Gene looping is conferred by activator-dependent interaction of transcription initiation and termination machineries. J. Biol. Chem.284, 25015–25025 (2009). CASPubMedPubMed Central Google Scholar
Wang, Y., Fairley, J. A. & Roberts, S. G. E. Phosphorylation of TFIIB links transcription initiation and termination. Curr. Biol.20, 548–553 (2010). CASPubMedPubMed Central Google Scholar
Moore, M. J. & Proudfoot, N. J. Pre-mRNA processing reaches back to transcription and ahead to translation. Cell136, 688–700 (2009). CASPubMed Google Scholar
Lykke-Andersen, S., Mapendano, C. K. & Jensen, T. H. An ending is a new beginning: transcription termination supports re-initiation. Cell Cycle10, 863–865 (2011). CASPubMed Google Scholar
Glover-Cutter, K. et al. TFIIH-associated Cdk7 kinase functions in phosphorylation of C-terminal domain Ser7 residues, promoter-proximal pausing, and termination by RNA polymerase II. Mol. Cell. Biol.29, 5455–5464 (2009). CASPubMedPubMed Central Google Scholar
Jimeno-González, S., Haaning, L. L., Malagon, F. & Jensen, T. H. The yeast 5′-3′ exonuclease Rat1p functions during transcription elongation by RNA polymerase II. Mol. Cell37, 580–587 (2010). PubMed Google Scholar
Opalka, N. et al. Complete structural model of Escherichia coli RNA polymerase from a hybrid approach. PLoS Biol.8, e1000483 (2010). PubMedPubMed Central Google Scholar
Cramer, P., Bushnell, D. A. & Kornberg, R. D. Structural basis of transcription: RNA polymerase II at 2.8 angstrom resolution. Science292, 1863–1876 (2001). CASPubMed Google Scholar
Kettenberger, H., Armache, K. J. & Cramer, P. Complete RNA polymerase II elongation complex structure and its interactions with NTP and TFIIS. Mol. Cell16, 955–965 (2004). CASPubMed Google Scholar
Birse, C. E., Minvielle-Sebastia, L., Lee, B. A., Keller, W. & Proudfoot, N. J. Coupling termination of transcription to messenger RNA maturation in yeast. Science280, 298–301 (1998). CASPubMed Google Scholar
Sadowski, M., Dichtl, B., Hübner, W. & Keller, W. Independent functions of yeast Pcf11p in pre-mRNA 3′ end processing and in transcription termination. EMBO J.22, 2167–2177 (2003). CASPubMedPubMed Central Google Scholar
Zhang, Z., Fu, J. & Gilmour, D. S. CTD-dependent dismantling of the RNA polymerase II elongation complex by the pre-mRNA 3′-end processing factor, Pcf11. Genes Dev.19, 1572–1580 (2005). CASPubMedPubMed Central Google Scholar
Dichtl, B. et al. Yhh1p/Cft1p directly links poly(A) site recognition and RNA polymerase II transcription termination. EMBO J.21, 4125–4135 (2002). CASPubMedPubMed Central Google Scholar
Garas, M., Dichtl, B. & Keller, W. The role of the putative 3′ end processing endonuclease Ysh1p in mRNA and snoRNA synthesis. RNA14, 2671–2684 (2008). CASPubMedPubMed Central Google Scholar
Nedea, E. et al. Organization and function of APT, a subcomplex of the yeast cleavage and polyadenylation factor involved in the formation of mRNA and small nucleolar RNA 3′-ends. J. Biol. Chem.278, 33000–33010 (2003). CASPubMed Google Scholar
Nedea, E. et al. The Glc7 phosphatase subunit of the cleavage and polyadenylation factor is essential for transcription termination on snoRNA genes. Mol. Cell29, 577–587 (2008). CASPubMed Google Scholar
Ghazy, M. A., He, X., Singh, B. N., Hampsey, M. & Moore, C. The essential N terminus of the Pta1 scaffold protein is required for snoRNA transcription termination and Ssu72 function but is dispensable for pre-mRNA 3′-end processing. Mol. Cell. Biol.29, 2296–2307 (2009). CASPubMedPubMed Central Google Scholar
Ganem, C. et al. Ssu72 is a phosphatase essential for transcription termination of snoRNAs and specific mRNAs in yeast. EMBO J.22, 1588–1598 (2003). CASPubMedPubMed Central Google Scholar
Steinmetz, E. J. & Brow, D. A. Ssu72 protein mediates both poly(A)-coupled and poly(A)-independent termination of RNA polymerase II transcription. Mol. Cell. Biol.23, 6339–6349 (2003). CASPubMedPubMed Central Google Scholar
Xue, Y. et al. Saccharomyces cerevisiae RAI1 (YGL246c) is homologous to human DOM3Z and encodes a protein that binds the nuclear exoribonuclease Rat1p. Mol. Cell. Biol.20, 4006–4015 (2000). CASPubMedPubMed Central Google Scholar
Kaneko, S., Rozenblatt-Rosen, O., Meyerson, M. & Manley, J. L. The multifunctional protein p54nrb/PSF recruits the exonuclease XRN2 to facilitate pre-mRNA 3′ processing and transcription termination. Genes Dev.21, 1779–1789 (2007). CASPubMedPubMed Central Google Scholar
Arigo, J. T., Carroll, K. L., Ames, J. M. & Corden, J. L. Regulation of yeast NRD1 expression by premature transcription termination. Mol. Cell21, 641–651 (2006). CASPubMed Google Scholar
Barillà, D., Lee, B. A. & Proudfoot, N. J. Cleavage/polyadenylation factor IA associates with the carboxyl-terminal domain of RNA polymerase II in Saccharomyces cerevisiae. Proc. Natl Acad. Sci. USA98, 445–450 (2001). PubMedPubMed Central Google Scholar
McCracken, S. et al. The C-terminal domain of RNA polymerase II couples mRNA processing to transcription. Nature385, 357–361 (1997). CASPubMed Google Scholar
Steinmetz, E. J., Ng, S. B., Cloute, J. P. & Brow, D. A. _cis_- and _trans_-acting determinants of transcription termination by yeast RNA polymerase II. Mol. Cell. Biol.26, 2688–2696 (2006). CASPubMedPubMed Central Google Scholar
Mueller, C. L., Porter, S. E., Hoffman, M. G. & Jaehning, J. A. The Paf1 complex has functions independent of actively transcribing RNA polymerase II. Mol. Cell14, 447–456 (2004). CASPubMed Google Scholar
Sheldon, K. E., Mauger, D. M. & Arndt, K. M. A requirement for the Saccharomyces cerevisiae Paf1 complex in snoRNA 3′ end formation. Mol. Cell20, 225–236 (2005). CASPubMedPubMed Central Google Scholar