- Fukata, Y., Kimura, T. & Kaibuchi, K. Axon specification in hippocampal neurons. Neurosci. Res. 43, 305–315 (2002).
Article CAS PubMed Google Scholar
- Craig, A. M. & Banker, G. Neuronal polarity. Annu. Rev. Neurosci. 17, 267–310 (1994).
Article CAS PubMed Google Scholar
- Nimchinsky, E. A., Sabatini, B. L. & Svoboda, K. Structure and function of dendritic spines. Annu. Rev. Physiol. 64, 313–353 (2002).
Article CAS PubMed Google Scholar
- Dotti, C. G., Sullivan, C. A. & Banker, G. A. The establishment of polarity by hippocampal neurons in culture. J. Neurosci. 8, 1454–1468 (1988).
Article CAS PubMed PubMed Central Google Scholar
- Ruthel, G. & Hollenbeck, P. J. Growth cones are not required for initial establishment of polarity or differential axon branch growth in cultured hippocampal neurons. J. Neurosci. 20, 2266–2274 (2000).
Article CAS PubMed PubMed Central Google Scholar
- Jacobson, C., Schnapp, B. & Banker, G. A. A change in the selective translocation of the Kinesin-1 motor domain marks the initial specification of the axon. Neuron 49, 797–804 (2006). Describes that the motor domain of kinesin 1 accumulates in a single neurite before polarization of a neuron.
Article CAS PubMed Google Scholar
- Andersen, S. S. & Bi, G. Q. Axon formation: a molecular model for the generation of neuronal polarity. Bioessays 22, 172–179 (2000). An excellent review that extensively discusses the positive and negative feedback loops in neuronal polarization.
Article CAS PubMed Google Scholar
- Goslin, K. & Banker, G. Experimental observations on the development of polarity by hippocampal neurons in culture. J. Cell Biol. 108, 1507–1516 (1989).
Article CAS PubMed Google Scholar
- Menager, C., Arimura, N., Fukata, Y. & Kaibuchi, K. PIP3 is involved in neuronal polarization and axon formation. J. Neurochem. 89, 109–118 (2004).
Article CAS PubMed Google Scholar
- Bradke, F. & Dotti, C. G. Differentiated neurons retain the capacity to generate axons from dendrites. Curr. Biol. 10, 1467–1470 (2000).
Article CAS PubMed Google Scholar
- Wadsworth, W. G., Bhatt, H. & Hedgecock, E. M. Neuroglia and pioneer neurons express UNC-6 to provide global and local netrin cues for guiding migrations in C. elegans. Neuron 16, 35–46 (1996).
Article CAS PubMed Google Scholar
- Serafini, T. et al. The netrins define a family of axon outgrowth-promoting proteins homologous to C. elegans UNC-6. Cell 78, 409–424 (1994).
Article CAS PubMed Google Scholar
- Hong, K. et al. A ligand-gated association between cytoplasmic domains of UNC5 and DCC family receptors converts netrin-induced growth cone attraction to repulsion. Cell 97, 927–941 (1999).
Article CAS PubMed Google Scholar
- Hedgecock, E. M., Culotti, J. G. & Hall, D. H. The unc-5, unc-6, and unc-40 genes guide circumferential migrations of pioneer axons and mesodermal cells on the epidermis in C. elegans. Neuron 4, 61–85 (1990).
Article CAS PubMed Google Scholar
- Adler, C. E., Fetter, R. D. & Bargmann, C. I. UNC-6/Netrin induces neuronal asymmetry and defines the site of axon formation. Nature Neurosci. 9, 511–518 (2006).
Article CAS PubMed Google Scholar
- Whitford, K. L., Dijkhuizen, P., Polleux, F. & Ghosh, A. Molecular control of cortical dendrite development. Annu. Rev. Neurosci. 25, 127–149 (2002).
Article CAS PubMed Google Scholar
- Prasad, B. C. & Clark, S. G. Wnt signaling establishes anteroposterior neuronal polarity and requires retromer in C. elegans. Development 133, 1757–1766 (2006).
Article CAS PubMed Google Scholar
- Hilliard, M. A. & Bargmann, C. I. Wnt signals and frizzled activity orient anterior-posterior axon outgrowth in C. elegans. Dev. Cell 10, 379–390 (2006).
Article CAS PubMed Google Scholar
- Logan, C. Y. & Nusse, R. The Wnt signaling pathway in development and disease. Annu. Rev. Cell Dev. Biol. 20, 781–810 (2004).
Article CAS PubMed Google Scholar
- Montcouquiol, M., Crenshaw, E. B., 3rd & Kelley, M. W. Noncanonical Wnt signaling and neural polarity. Annu. Rev. Neurosci. 29, 363–386 (2006).
Article CAS PubMed Google Scholar
- Etienne-Manneville, S. & Hall, A. Rho GTPases in cell biology. Nature 420, 629–635 (2002).
Article CAS PubMed Google Scholar
- Huang, E. J. & Reichardt, L. F. Trk receptors: roles in neuronal signal transduction. Annu. Rev. Biochem. 72, 609–642 (2003).
Article CAS PubMed Google Scholar
- Da Silva, J. S., Hasegawa, T., Miyagi, T., Dotti, C. G. & Abad-Rodriguez, J. Asymmetric membrane ganglioside sialidase activity specifies axonal fate. Nature Neurosci. 8, 606–615 (2005).
Article CAS PubMed Google Scholar
- Esch, T., Lemmon, V. & Banker, G. Local presentation of substrate molecules directs axon specification by cultured hippocampal neurons. J. Neurosci. 19, 6417–6426 (1999).
Article CAS PubMed PubMed Central Google Scholar
- Shi, S. H., Jan, L. Y. & Jan, Y. N. Hippocampal neuronal polarity specified by spatially localized mPar3/mPar6 and PI 3-kinase activity. Cell 112, 63–75 (2003). A key paper that describes the effect of PI3K and the PAR complex on neuronal polarization.
Article CAS PubMed Google Scholar
- Schwamborn, J. C. & Puschel, A. W. The sequential activity of the GTPases Rap1B and Cdc42 determines neuronal polarity. Nature Neurosci. 7, 923–929 (2004).
Article CAS PubMed Google Scholar
- Horiguchi, K., Hanada, T., Fukui, Y. & Chishti, A. H. Transport of PIP3 by GAKIN, a kinesin-3 family protein, regulates neuronal cell polarity. J. Cell Biol. 174, 425–436 (2006).
Article CAS PubMed PubMed Central Google Scholar
- Rickert, P., Weiner, O. D., Wang, F., Bourne, H. R. & Servant, G. Leukocytes navigate by compass: roles of PI3Kγ and its lipid products. Trends Cell Biol. 10, 466–473 (2000).
Article CAS PubMed PubMed Central Google Scholar
- Servant, G. et al. Polarization of chemoattractant receptor signaling during neutrophil chemotaxis. Science 287, 1037–1040 (2000).
Article CAS PubMed PubMed Central Google Scholar
- Meili, R. et al. Chemoattractant-mediated transient activation and membrane localization of Akt/PKB is required for efficient chemotaxis to cAMP in Dictyostelium. Embo J. 18, 2092–2105 (1999).
Article CAS PubMed PubMed Central Google Scholar
- Jin, T., Zhang, N., Long, Y., Parent, C. A. & Devreotes, P. N. Localization of the G protein βγ complex in living cells during chemotaxis. Science 287, 1034–1036 (2000).
Article CAS PubMed Google Scholar
- Haugh, J. M., Codazzi, F., Teruel, M. & Meyer, T. Spatial sensing in fibroblasts mediated by 3′ phosphoinositides. J. Cell Biol. 151, 1269–1280 (2000).
Article CAS PubMed PubMed Central Google Scholar
- Van Haastert, P. J. & Devreotes, P. N. Chemotaxis: signalling the way forward. Nature Rev. Mol. Cell Biol. 5, 626–634 (2004).
Article CAS Google Scholar
- Weiner, O. D. Regulation of cell polarity during eukaryotic chemotaxis: the chemotactic compass. Curr. Opin. Cell Biol. 14, 196–202 (2002).
Article CAS PubMed PubMed Central Google Scholar
- Yamada, M. et al. Insulin receptor substrate (IRS)-1 and IRS-2 are tyrosine-phosphorylated and associated with phosphatidylinositol 3-kinase in response to brain-derived neurotrophic factor in cultured cerebral cortical neurons. J. Biol. Chem. 272, 30334–30339 (1997).
Article CAS PubMed Google Scholar
- Alessi, D. R. et al. Characterization of a 3-phosphoinositide-dependent protein kinase which phosphorylates and activates protein kinase Bα. Curr. Biol. 7, 261–269 (1997).
Article CAS PubMed Google Scholar
- Burgering, B. M. & Coffer, P. J. Protein kinase B (c-Akt) in phosphatidylinositol-3-OH kinase signal transduction. Nature 376, 599–602 (1995).
Article CAS PubMed Google Scholar
- Jiang, H., Guo, W., Liang, X. & Rao, Y. Both the establishment and the maintenance of neuronal polarity require active mechanisms: critical roles of GSK-3β and its upstream regulators. Cell 120, 123–135 (2005).
CAS PubMed Google Scholar
- Yoshimura, T. et al. GSK-3β regulates phosphorylation of CRMP-2 and neuronal polarity. Cell 120, 137–149 (2005). This work, together with that of reference 38, provides the evidence that the PI3K/Akt/GSK3β signal cascade has essential roles in neuronal polarization, especially in the determination of axon and dendrite fate.
Article CAS PubMed Google Scholar
- Yoshimura, T. et al. Ras regulates neuronal polarity via the PI3-kinase/Akt/GSK-3β/CRMP-2 pathway. Biochem. Biophys. Res. Commun. 340, 62–68 (2006).
Article CAS PubMed Google Scholar
- Gartner, A., Huang, X. & Hall, A. Neuronal polarity is regulated by glycogen synthase kinase-3 (GSK-3β) independently of Akt/PKB serine phosphorylation. J. Cell Sci. 119, 3927–3934 (2006).
Article CAS PubMed Google Scholar
- Yan, D., Guo, L. & Wang, Y. Requirement of dendritic Akt degradation by the ubiquitin-proteasome system for neuronal polarity. J. Cell Biol. 174, 415–424 (2006).
Article CAS PubMed PubMed Central Google Scholar
- Hogan, C. et al. Rap1 regulates the formation of E-cadherin-based cell–cell contacts. Mol. Cell Biol. 24, 6690–6700 (2004).
Article CAS PubMed PubMed Central Google Scholar
- Lova, P. et al. A selective role for phosphatidylinositol 3,4,5-trisphosphate in the Gi-dependent activation of platelet Rap1B. J. Biol. Chem. 278, 131–138 (2003).
Article CAS PubMed Google Scholar
- Kao, S., Jaiswal, R. K., Kolch, W. & Landreth, G. E. Identification of the mechanisms regulating the differential activation of the mapk cascade by epidermal growth factor and nerve growth factor in PC12 cells. J. Biol. Chem. 276, 18169–18177 (2001).
Article CAS PubMed Google Scholar
- Gotoh, T. et al. Identification of Rap1 as a target for the Crk SH3 domain-binding guanine nucleotide-releasing factor C3G. Mol. Cell Biol. 15, 6746–6753 (1995).
Article CAS PubMed PubMed Central Google Scholar
- Sasagawa, S., Ozaki, Y., Fujita, K. & Kuroda, S. Prediction and validation of the distinct dynamics of transient and sustained ERK activation. Nature Cell Biol. 7, 365–373 (2005).
Article CAS PubMed Google Scholar
- Vossler, M. R. et al. cAMP activates MAP kinase and Elk-1 through a B-Raf- and Rap1-dependent pathway. Cell 89, 73–82 (1997).
Article CAS PubMed Google Scholar
- York, R. D. et al. Rap1 mediates sustained MAP kinase activation induced by nerve growth factor. Nature 392, 622–626 (1998).
Article CAS PubMed Google Scholar
- Hancock, J. F. Ras proteins: different signals from different locations. Nature Rev. Mol. Cell Biol. 4, 373–384 (2003).
Article CAS Google Scholar
- Oinuma, I., Katoh, H. & Negishi, M. R-Ras controls axon specification upstream of GSK-3β through integrin-linked kinase. J. Biol. Chem. 282, 303–318 (2007).
Article CAS PubMed Google Scholar
- Dickson, B., Sprenger, F., Morrison, D. & Hafen, E. Raf functions downstream of Ras1 in the Sevenless signal transduction pathway. Nature 360, 600–603 (1992).
Article CAS PubMed Google Scholar
- Rodriguez-Viciana, P. et al. Phosphatidylinositol-3-OH kinase as a direct target of Ras. Nature 370, 527–532 (1994).
Article CAS PubMed Google Scholar
- Rodriguez-Viciana, P., Warne, P. H., Vanhaesebroeck, B., Waterfield, M. D. & Downward, J. Activation of phosphoinositide 3-kinase by interaction with Ras and by point mutation. Embo J. 15, 2442–2451 (1996).
Article CAS PubMed PubMed Central Google Scholar
- Vojtek, A. B., Hollenberg, S. M. & Cooper, J. A. Mammalian Ras interacts directly with the serine/threonine kinase Raf. Cell 74, 205–214 (1993).
Article CAS PubMed Google Scholar
- Sasaki, A. T., Chun, C., Takeda, K. & Firtel, R. A. Localized Ras signaling at the leading edge regulates PI3K, cell polarity, and directional cell movement. J. Cell Biol. 167, 505–518 (2004).
Article CAS PubMed PubMed Central Google Scholar
- Dent, E. W. & Gertler, F. B. Cytoskeletal dynamics and transport in growth cone motility and axon guidance. Neuron 40, 209–227 (2003).
Article CAS PubMed Google Scholar
- Baas, P. W. & Buster, D. W. Slow axonal transport and the genesis of neuronal morphology. J. Neurobiol. 58, 3–17 (2004).
Article CAS PubMed Google Scholar
- Bradke, F. & Dotti, C. G. The role of local actin instability in axon formation. Science 283, 1931–1934 (1999).
Article CAS PubMed Google Scholar
- Bito, H. et al. A critical role for a Rho-associated kinase, p160ROCK, in determining axon outgrowth in mammalian CNS neurons. Neuron 26, 431–441 (2000).
Article CAS PubMed Google Scholar
- Chuang, J. Z. et al. The dynein light chain Tctex-1 has a dynein-independent role in actin remodeling during neurite outgrowth. Dev. Cell 9, 75–86 (2005).
Article CAS PubMed Google Scholar
- Kunda, P., Paglini, G., Quiroga, S., Kosik, K. & Caceres, A. Evidence for the involvement of Tiam1 in axon formation. J. Neurosci. 21, 2361–2372 (2001).
Article CAS PubMed PubMed Central Google Scholar
- Nishimura, T. et al. PAR-6-PAR-3 mediates Cdc42-induced Rac activation through the Rac GEFs STEF/Tiam1. Nature Cell Biol. 7, 270–277 (2005). This work, together with that of reference 62, provides evidence that the activity of Cdc42 and Rac1 is essential for neuronal polarization and neuronal maturation.
Article CAS PubMed Google Scholar
- Ridley, A. J. et al. Cell migration: integrating signals from front to back. Science 302, 1704–1709 (2003).
Article CAS PubMed Google Scholar
- Govek, E. E., Newey, S. E. & Van Aelst, L. The role of the Rho GTPases in neuronal development. Genes Dev. 19, 1–49 (2005). An excellent review that extensively describes a variety of signalling cascades that mediate Rho GTPases and the associating factors.
Article CAS PubMed Google Scholar
- Sebok, A. et al. Different roles for RhoA during neurite initiation, elongation, and regeneration in PC12 cells. J. Neurochem. 73, 949–960 (1999).
Article CAS PubMed Google Scholar
- Kranenburg, O. et al. Activation of RhoA by lysophosphatidic acid and Gα12/13 subunits in neuronal cells: induction of neurite retraction. Mol. Biol. Cell 10, 1851–1857 (1999).
Article CAS PubMed PubMed Central Google Scholar
- Kozma, R., Sarner, S., Ahmed, S. & Lim, L. Rho family GTPases and neuronal growth cone remodelling: relationship between increased complexity induced by Cdc42Hs, Rac1, and acetylcholine and collapse induced by RhoA and lysophosphatidic acid. Mol. Cell Biol. 17, 1201–1211 (1997).
Article CAS PubMed PubMed Central Google Scholar
- Tigyi, G. et al. Lysophosphatidic acid-induced neurite retraction in PC12 cells: control by phosphoinositide-Ca2+ signaling and Rho. J. Neurochem. 66, 537–548 (1996).
Article CAS PubMed Google Scholar
- Daniels, R. H., Hall, P. S. & Bokoch, G. M. Membrane targeting of p21-activated kinase 1 (PAK1) induces neurite outgrowth from PC12 cells. Embo J. 17, 754–764 (1998).
Article CAS PubMed PubMed Central Google Scholar
- Nikolic, M., Chou, M. M., Lu, W., Mayer, B. J. & Tsai, L. H. The p35/Cdk5 kinase is a neuron-specific Rac effector that inhibits Pak1 activity. Nature 395, 194–198 (1998).
Article CAS PubMed Google Scholar
- Chen, X. Q., Tan, I., Leung, T. & Lim, L. The myotonic dystrophy kinase-related Cdc42-binding kinase is involved in the regulation of neurite outgrowth in PC12 cells. J. Biol. Chem. 274, 19901–19905 (1999).
Article CAS PubMed Google Scholar
- Banzai, Y., Miki, H., Yamaguchi, H. & Takenawa, T. Essential role of neural Wiskott–Aldrich syndrome protein in neurite extension in PC12 cells and rat hippocampal primary culture cells. J. Biol. Chem. 275, 11987–11992 (2000).
Article CAS PubMed Google Scholar
- Wang, S. et al. IQGAP3, a novel effector of Rac1 and Cdc42, regulates neurite outgrowth. J. Cell Sci. 23 Jan 2006 (doi:10.1242/jcs.03356).
Article CAS PubMed Google Scholar
- Habets, G. G. et al. Identification of an invasion-inducing gene, Tiam-1, that encodes a protein with homology to GDP–GTP exchangers for Rho-like proteins. Cell 77, 537–549 (1994).
Article CAS PubMed Google Scholar
- Hoshino, M. et al. Identification of the stef gene that encodes a novel guanine nucleotide exchange factor specific for Rac1. J. Biol. Chem. 274, 17837–17844 (1999).
Article CAS PubMed Google Scholar
- Watabe-Uchida, M., John, K. A., Janas, J. A., Newey, S. E. & Van Aelst, L. The Rac activator DOCK7 regulates neuronal polarity through local phosphorylation of stathmin/Op18. Neuron 51, 727–739 (2006).
Article CAS PubMed Google Scholar
- Cowan, C. R. & Hyman, A. A. Asymmetric cell division in _C. elegan_s: cortical polarity and spindle positioning. Annu. Rev. Cell Dev. Biol. 20, 427–453 (2004).
Article CAS PubMed Google Scholar
- Nishimura, T. et al. Role of the PAR-3-KIF3 complex in the establishment of neuronal polarity. Nature Cell Biol. 6, 328–334 (2004).
Article CAS PubMed Google Scholar
- Rolls, M. M. & Doe, C. Q. Baz, Par-6 and aPKC are not required for axon or dendrite specification in Drosophila. Nature Neurosci. 7, 1293–1295 (2004).
Article CAS PubMed Google Scholar
- Lin, D. et al. A mammalian PAR-3–PAR-6 complex implicated in Cdc42/Rac1 and aPKC signalling and cell polarity. Nature Cell Biol. 2, 540–547 (2000).
Article CAS PubMed Google Scholar
- Johansson, A., Driessens, M. & Aspenstrom, P. The mammalian homologue of the Caenorhabditis elegans polarity protein PAR-6 is a binding partner for the Rho GTPases Cdc42 and Rac1. J. Cell Sci. 113, 3267–3275 (2000).
CAS PubMed Google Scholar
- Chen, X. & Macara, I. G. Par-3 controls tight junction assembly through the Rac exchange factor Tiam1. Nature Cell Biol. 7, 262–269 (2005).
Article CAS PubMed Google Scholar
- Tolias, K. F., Cantley, L. C. & Carpenter, C. L. Rho family GTPases bind to phosphoinositide kinases. J. Biol. Chem. 270, 17656–17659 (1995).
Article CAS PubMed Google Scholar
- Keely, P. J., Westwick, J. K., Whitehead, I. P., Der, C. J. & Parise, L. V. Cdc42 and Rac1 induce integrin-mediated cell motility and invasiveness through PI3K. Nature 390, 632–636 (1997).
Article CAS PubMed Google Scholar
- Chan, T. O. et al. Small GTPases and tyrosine kinases coregulate a molecular switch in the phosphoinositide 3-kinase regulatory subunit. Cancer Cell 1, 181–191 (2002).
Article CAS PubMed Google Scholar
- Shi, S. H., Cheng, T., Jan, L. Y. & Jan, Y. N. APC and GSK-3β are involved in mPar3 targeting to the nascent axon and establishment of neuronal polarity. Curr. Biol. 14, 2025–2032 (2004).
Article CAS PubMed Google Scholar
- Zhang, H. & Macara, I. G. The polarity protein PAR-3 and TIAM1 cooperate in dendritic spine morphogenesis. Nature Cell Biol. 8, 227–237 (2006).
Article CAS PubMed Google Scholar
- Chen, Y. M. et al. Microtubule affinity-regulating kinase 2 functions downstream of the PAR-3/PAR-6/atypical PKC complex in regulating hippocampal neuronal polarity. Proc. Natl Acad. Sci. USA 103, 8534–8539 (2006).
Article CAS PubMed PubMed Central Google Scholar
- Drewes, G., Ebneth, A., Preuss, U., Mandelkow, E. M. & Mandelkow, E. MARK, a novel family of protein kinases that phosphorylate microtubule-associated proteins and trigger microtubule disruption. Cell 89, 297–308 (1997).
Article CAS PubMed Google Scholar
- Suzuki, A. et al. aPKC acts upstream of PAR-1b in both the establishment and maintenance of mammalian epithelial polarity. Curr. Biol. 14, 1425–1435 (2004).
Article CAS PubMed Google Scholar
- Hurov, J. B., Watkins, J. L. & Piwnica-Worms, H. Atypical PKC phosphorylates PAR-1 kinases to regulate localization and activity. Curr. Biol. 14, 736–741 (2004).
Article CAS PubMed Google Scholar
- Kusakabe, M. & Nishida, E. The polarity-inducing kinase Par-1 controls Xenopus gastrulation in cooperation with 14–3-3 and aPKC. Embo J. 23, 4190–4201 (2004).
Article CAS PubMed PubMed Central Google Scholar
- Kishi, M., Pan, Y. A., Crump, J. G. & Sanes, J. R. Mammalian SAD kinases are required for neuronal polarization. Science 307, 929–932 (2005).
Article CAS PubMed Google Scholar
- Arimura, N., Menager, C., Fukata, Y. & Kaibuchi, K. Role of CRMP-2 in neuronal polarity. J. Neurobiol. 58, 34–47 (2004).
Article CAS PubMed Google Scholar
- Goshima, Y., Nakamura, F., Strittmatter, P. & Strittmatter, S. M. Collapsin-induced growth cone collapse mediated by an intracellular protein related to UNC-33. Nature 376, 509–514 (1995).
Article CAS PubMed Google Scholar
- Hedgecock, E. M., Culotti, J. G., Thomson, J. N. & Perkins, L. A. Axonal guidance mutants of Caenorhabditis elegans identified by filling sensory neurons with fluorescein dyes. Dev. Biol. 111, 158–170 (1985).
Article CAS PubMed Google Scholar
- Inagaki, N. et al. CRMP-2 induces axons in cultured hippocampal neurons. Nature Neurosci. 4, 781–782 (2001). A key paper showing that overexpression of Crmp2 induces multiple axons in cultured neurons. Most importantly, this paper is one of the early reports showing that the polarity-regulating molecules could interchange the fate of a neurite from dendrite to axon.
Article CAS PubMed Google Scholar
- Fukata, Y. et al. CRMP-2 binds to tubulin heterodimers to promote microtubule assembly. Nature Cell Biol. 4, 583–591 (2002).
Article CAS PubMed Google Scholar
- Frise, E., Knoblich, J. A., Younger-Shepherd, S., Jan, L. Y. & Jan, Y. N. The Drosophila Numb protein inhibits signaling of the Notch receptor during cell–cell interaction in sensory organ lineage. Proc. Natl Acad. Sci. USA 93, 11925–11932 (1996).
Article CAS PubMed PubMed Central Google Scholar
- Spana, E. P. & Doe, C. Q. Numb antagonizes Notch signaling to specify sibling neuron cell fates. Neuron 17, 21–26 (1996).
Article CAS PubMed Google Scholar
- Berdnik, D., Torok, T., Gonzalez-Gaitan, M. & Knoblich, J. A. The endocytic protein α-Adaptin is required for numb-mediated asymmetric cell division in Drosophila. Dev. Cell 3, 221–231 (2002).
Article CAS PubMed Google Scholar
- Santolini, E. et al. Numb is an endocytic protein. J. Cell Biol. 151, 1345–1352 (2000).
Article CAS PubMed PubMed Central Google Scholar
- Nishimura, T. et al. CRMP-2 regulates polarized Numb-mediated endocytosis for axon growth. Nature Cell Biol. 5, 819–826 (2003).
Article CAS PubMed Google Scholar
- Kawano, Y. et al. CRMP-2 is involved in kinesin-1-dependent transport of the Sra-1/WAVE1 complex and axon formation. Mol. Cell Biol. 25, 9920–9935 (2005).
Article CAS PubMed PubMed Central Google Scholar
- Kobayashi, K. et al. p140Sra-1 (specifically Rac1-associated protein) is a novel specific target for Rac1 small GTPase. J. Biol. Chem. 273, 291–295 (1998).
Article CAS PubMed Google Scholar
- Schenck, A. et al. CYFIP/Sra-1 controls neuronal connectivity in Drosophila and links the Rac1 GTPase pathway to the fragile X protein. Neuron 38, 887–898 (2003).
Article CAS PubMed Google Scholar
- Miki, H., Suetsugu, S. & Takenawa, T. WAVE, a novel WASP-family protein involved in actin reorganization induced by Rac. Embo J. 17, 6932–6941 (1998).
Article CAS PubMed PubMed Central Google Scholar
- Cole, A. R. et al. GSK-3 phosphorylation of the Alzheimer epitope within collapsin response mediator proteins regulates axon elongation in primary neurons. J. Biol. Chem. 279, 50176–50180 (2004).
Article CAS PubMed Google Scholar
- Uchida, Y. et al. Semaphorin3A signalling is mediated via sequential Cdk5 and GSK3b phosphorylation of CRMP2: implication of common phosphorylating mechanism underlying axon guidance and Alzheimer's disease. Genes Cells 10, 165–179 (2005).
Article CAS PubMed Google Scholar
- Arimura, N. et al. Phosphorylation by Rho kinase regulates CRMP-2 activity in growth cones. Mol. Cell. Biol. 25, 9973–9984 (2005).
Article CAS PubMed PubMed Central Google Scholar
- Hanger, D. P., Hughes, K., Woodgett, J. R., Brion, J. P. & Anderton, B. H. Glycogen synthase kinase-3 induces Alzheimer's disease-like phosphorylation of tau: generation of paired helical filament epitopes and neuronal localisation of the kinase. Neurosci. Lett. 147, 58–62 (1992).
Article CAS PubMed Google Scholar
- Mandelkow, E. M. et al. Glycogen synthase kinase-3 and the Alzheimer-like state of microtubule-associated protein tau. FEBS Lett. 314, 315–321 (1992).
Article CAS PubMed Google Scholar
- Lucas, F. R., Goold, R. G., Gordon-Weeks, P. R. & Salinas, P. C. Inhibition of GSK-3beta leading to the loss of phosphorylated MAP-1B is an early event in axonal remodelling induced by WNT-7a or lithium. J. Cell Sci. 111, 1351–1361 (1998).
CAS PubMed Google Scholar
- Zumbrunn, J., Kinoshita, K., Hyman, A. A. & Nathke, I. S. Binding of the adenomatous polyposis coli protein to microtubules increases microtubule stability and is regulated by GSK3 β phosphorylation. Curr. Biol. 11, 44–49 (2001).
Article CAS PubMed Google Scholar
- Mandelkow, E. M. et al. Tau domains, phosphorylation, and interactions with microtubules. Neurobiol. Aging 16, 355–362; discussion 362–353 (1995).
Article CAS PubMed Google Scholar
- Zhou, F. Q., Zhou, J., Dedhar, S., Wu, Y. H. & Snider, W. D. NGF-induced axon growth is mediated by localized inactivation of GSK-3β and functions of the microtubule plus end binding protein APC. Neuron 42, 897–912 (2004).
Article CAS PubMed Google Scholar
- Takei, Y., Teng, J., Harada, A. & Hirokawa, N. Defects in axonal elongation and neuronal migration in mice with disrupted tau and map1b genes. J. Cell Biol. 150, 989–1000 (2000).
Article CAS PubMed PubMed Central Google Scholar
- Baas, P. W. Microtubules and neuronal polarity: lessons from mitosis. Neuron 22, 23–31 (1999).
Article CAS PubMed Google Scholar
- Kim, W. Y. et al. Essential roles for GSK-3 in neurotrophin-induced and hippocampal axon growth. Neuron 52, 981–996 (2006).
Article CAS PubMed PubMed Central Google Scholar
- Al-Khouri, A. M., Ma, Y., Togo, S. H., Williams, S. & Mustelin, T. Cooperative phosphorylation of the tumor suppressor phosphatase and tensin homologue (PTEN) by casein kinases and glycogen synthase kinase 3β. J. Biol. Chem. 280, 35195–35202 (2005).
Article CAS PubMed Google Scholar
- Zmuda, J. F. & Rivas, R. J. The Golgi apparatus and the centrosome are localized to the sites of newly emerging axons in cerebellar granule neurons in vitro. Cell Motil. Cytoskeleton 41, 18–38 (1998).
Article CAS PubMed Google Scholar
- Lefcort, F. & Bentley, D. Organization of cytoskeletal elements and organelles preceding growth cone emergence from an identified neuron in situ. J. Cell Biol. 108, 1737–1749 (1989).
Article CAS PubMed Google Scholar
- de Anda, F. C. et al. Centrosome localization determines neuronal polarity. Nature 436, 704–708 (2005).
Article CAS PubMed Google Scholar
- Zolessi, F. R., Poggi, L., Wilkinson, C. J., Chien, C. B. & Harris, W. A. Polarization and orientation of retinal ganglion cells in vivo. Neural Develop. 1, 1–21 (2006). An important paper showing the morphological and molecular differences between retinal ganglion cells in vivo and in vitro.
Article Google Scholar
- Hirokawa, N. & Takemura, R. Molecular motors and mechanisms of directional transport in neurons. Nature Rev. Neurosci. 6, 201–214 (2005).
Article CAS Google Scholar
- Brady, S. T. A novel brain ATPase with properties expected for the fast axonal transport motor. Nature 317, 73–75 (1985).
Article CAS PubMed Google Scholar
- Vale, R. D., Reese, T. S. & Sheetz, M. P. Identification of a novel force-generating protein, kinesin, involved in microtubule-based motility. Cell 42, 39–50 (1985).
Article CAS PubMed PubMed Central Google Scholar
- Kuznetsov, S. A. et al. The quaternary structure of bovine brain kinesin. Embo J. 7, 353–356 (1988).
Article CAS PubMed PubMed Central Google Scholar
- Bloom, G. S., Wagner, M. C., Pfister, K. K. & Brady, S. T. Native structure and physical properties of bovine brain kinesin and identification of the ATP-binding subunit polypeptide. Biochemistry 27, 3409–3416 (1988).
Article CAS PubMed Google Scholar
- Nakata, T. & Hirokawa, N. Microtubules provide directional cues for polarized axonal transport through interaction with kinesin motor head. J. Cell Biol. 162, 1045–1055 (2003).
Article CAS PubMed PubMed Central Google Scholar
- Kimura, T. et al. Tubulin and CRMP-2 complex is transported via Kinesin-1. J. Neurochem. 93, 1371–1382 (2005).
Article CAS PubMed Google Scholar
- Ferreira, A., Niclas, J., Vale, R. D., Banker, G. & Kosik, K. S. Suppression of kinesin expression in cultured hippocampal neurons using antisense oligonucleotides. J. Cell Biol. 117, 595–606 (1992).
Article CAS PubMed Google Scholar
- Kamal, A., Stokin, G. B., Yang, Z., Xia, C. H. & Goldstein, L. S. Axonal transport of amyloid precursor protein is mediated by direct binding to the kinesin light chain subunit of kinesin-1. Neuron 28, 449–459 (2000).
Article CAS PubMed Google Scholar
- Verhey, K. J. et al. Cargo of kinesin identified as JIP scaffolding proteins and associated signaling molecules. J. Cell Biol. 152, 959–970 (2001).
Article CAS PubMed PubMed Central Google Scholar
- Tsuboi, D., Hikita, T., Qadota, H., Amano, M. & Kaibuchi, K. Regulatory machinery of UNC-33 Ce-CRMP localization in neurites during neuronal development in Caenorhabditis elegans. J. Neurochem. 95, 1629–1641 (2005).
Article CAS PubMed Google Scholar
- Morfini, G., Szebenyi, G., Elluru, R., Ratner, N. & Brady, S. T. Glycogen synthase kinase 3 phosphorylates kinesin light chains and negatively regulates kinesin-based motility. Embo J. 21, 281–293 (2002).
Article CAS PubMed PubMed Central Google Scholar
- Toriyama, M. et al. Shootin1: a protein involved in the organization of an asymmetric signal for neuronal polarization. J. Cell Biol. 175, 147–157 (2006).
Article CAS PubMed PubMed Central Google Scholar
- Solecki, D. J., Govek, E. E., Tomoda, T. & Hatten, M. E. Neuronal polarity in CNS development. Genes Dev. 20, 2639–2647 (2006).
Article CAS PubMed Google Scholar