Quantum error correction Research Papers (original) (raw)

185 Followers

Most cited papers in Quantum error correction

Intrinsic parameter fluctuations introduced by discreteness of charge and matter will play an increasingly important role when semiconductor devices are scaled to decananometer and nanometer dimensions in next-generation integrated... more

Intrinsic parameter fluctuations introduced by discreteness of charge and matter will play an increasingly important role when semiconductor devices are scaled to decananometer and nanometer dimensions in next-generation integrated circuits and systems. In this paper, we review the analytical and the numerical simulation techniques used to study and predict such intrinsic parameters fluctuations. We consider random discrete dopants, trapped charges, atomic-scale interface roughness, and line edge roughness as sources of intrinsic parameter fluctuations. The presented theoretical approach based on Green's functions is restricted to the case of random discrete charges. The numerical simulation approaches based on the drift diffusion approximation with density gradient quantum corrections covers all of the listed sources of fluctuations. The results show that the intrinsic fluctuations in conventional MOSFETs, and later in double gate architectures, will reach levels that will affect the yield and the functionality of the next generation analog and digital circuits unless appropriate changes to the design are made. The future challenges that have to be addressed in order to improve the accuracy and the predictive power of the intrinsic fluctuation simulations are also discussed.

Projective measurement of single electron and nuclear spins has evolved from a gedanken experiment to a problem relevant for applications in atomic-scale technologies like quantum computing. Although several approaches allow for detection... more

Projective measurement of single electron and nuclear spins has evolved from a gedanken experiment to a problem relevant for applications in atomic-scale technologies like quantum computing. Although several approaches allow for detection of a spin of single atoms and molecules, multiple repetitions of the experiment that are usually required for achieving a detectable signal obscure the intrinsic quantum nature of the spin's behavior. We demonstrated single-shot, projective measurement of a single nuclear spin in diamond using a quantum nondemolition measurement scheme, which allows real-time observation of an individual nuclear spin's state in a room-temperature solid. Such an ideal measurement is crucial for realization of, for example, quantum error correction protocols in a quantum register.

When a quantum mechanical system undergoes an adiabatic cyclic evolution it acquires a geometrical phase factor in addition to the dynamical one. This effect has been demonstrated in a variety of microscopic systems. Advances in... more

When a quantum mechanical system undergoes an adiabatic cyclic evolution it acquires a geometrical phase factor in addition to the dynamical one. This effect has been demonstrated in a variety of microscopic systems. Advances in nanotechnologies should enable the laws of quantum dynamics to be tested at the macroscopic level, by providing controllable artificial two-level systems (for example, in quantum dots and superconducting devices). Here we propose an experimental method to detect geometric phases in a superconducting device. The setup is a Josephson junction nanocircuit consisting of a superconducting electron box. We discuss how interferometry based on geometrical phases may be realized, and show how the effect may applied to the design of gates for quantum computation.

In loop quantum cosmology the quantum dynamics is well understood. We approximate the full quantum dynamics in the infinite dimensional Hilbert space by projecting it on a finite dimensional submanifold thereof, spanned by suitably chosen... more

In loop quantum cosmology the quantum dynamics is well understood. We approximate the full quantum dynamics in the infinite dimensional Hilbert space by projecting it on a finite dimensional submanifold thereof, spanned by suitably chosen semiclassical states. This submanifold is isomorphic with the classical phase space and the projected dynamical flow provides effective equations incorporating the leading quantum corrections to the classical equations of motion. Numerical work has been done using quantum states which are semiclassical at late times. These states follow the classical trajectory until the density is on the order of 1% of the Planck density then deviate strongly from the classical trajectory. The effective equations we obtain reproduce this behavior to surprising accuracy.

We propose to use the recently predicted two-dimensional "weak-pairing" px + ipy superfluid state of fermionic cold atoms as a platform for topological quantum computation. In the core of a vortex, this state supports a... more

We propose to use the recently predicted two-dimensional "weak-pairing" px + ipy superfluid state of fermionic cold atoms as a platform for topological quantum computation. In the core of a vortex, this state supports a zero-energy Majorana mode, which moves to finite energy in the corresponding topologically trivial "strong-pairing" state. By braiding vortices in the "weak-pairing" state, unitary quantum gates can be applied to the Hilbert space of Majorana zero modes. For readout of the topological qubits, we propose realistic schemes suitable for atomic superfluids.

We propose local strategies to protect global quantum information. The protocols, which are quantum error correcting codes for dissipative systems, are based on environment measurements, direct feedback control and simple encoding of the... more

We propose local strategies to protect global quantum information. The protocols, which are quantum error correcting codes for dissipative systems, are based on environment measurements, direct feedback control and simple encoding of the logical qubits into physical qutrits whose decaying transitions are indistinguishable and equally probable. The simple addition of one extra level in the description of the subsystems allows for local actions to fully and deterministically protect global resources, such as entanglement. We present codes for both quantum jump and quantum state diffusion measurement strategies and test them against several sources of inefficiency. The use of qutrits in information protocols suggests further characterization of qutrit-qutrit disentanglement dynamics, which we also give together with simple local environment measurement schemes able to prevent distillability sudden death and even enhance entanglement in situations in which our feedback error correction is not possible.

Log In