Module: tf | TensorFlow v2.16.1 (original) (raw)
pip install tensorflow
Modules
audio module: Public API for tf._api.v2.audio namespace
autodiff module: Public API for tf._api.v2.autodiff namespace
autograph module: Public API for tf._api.v2.autograph namespace
bitwise module: Public API for tf._api.v2.bitwise namespace
compat module: Public API for tf._api.v2.compat namespace
config module: Public API for tf._api.v2.config namespace
data module: Public API for tf._api.v2.data namespace
debugging module: Public API for tf._api.v2.debugging namespace
distribute module: Public API for tf._api.v2.distribute namespace
dtypes module: Public API for tf._api.v2.dtypes namespace
errors module: Public API for tf._api.v2.errors namespace
experimental module: Public API for tf._api.v2.experimental namespace
feature_column module: Public API for tf._api.v2.feature_column namespace
graph_util module: Public API for tf._api.v2.graph_util namespace
image module: Public API for tf._api.v2.image namespace
io module: Public API for tf._api.v2.io namespace
keras module: DO NOT EDIT.
linalg module: Public API for tf._api.v2.linalg namespace
lite module: Public API for tf._api.v2.lite namespace
lookup module: Public API for tf._api.v2.lookup namespace
math module: Public API for tf._api.v2.math namespace
mlir module: Public API for tf._api.v2.mlir namespace
nest module: Public API for tf._api.v2.nest namespace
nn module: Public API for tf._api.v2.nn namespace
profiler module: Public API for tf._api.v2.profiler namespace
quantization module: Public API for tf._api.v2.quantization namespace
queue module: Public API for tf._api.v2.queue namespace
ragged module: Public API for tf._api.v2.ragged namespace
random module: Public API for tf._api.v2.random namespace
raw_ops module: Public API for tf._api.v2.raw_ops namespace
saved_model module: Public API for tf._api.v2.saved_model namespace
sets module: Public API for tf._api.v2.sets namespace
signal module: Public API for tf._api.v2.signal namespace
sparse module: Public API for tf._api.v2.sparse namespace
strings module: Public API for tf._api.v2.strings namespace
summary module: Public API for tf._api.v2.summary namespace
sysconfig module: Public API for tf._api.v2.sysconfig namespace
test module: Public API for tf._api.v2.test namespace
tpu module: Public API for tf._api.v2.tpu namespace
train module: Public API for tf._api.v2.train namespace
types module: Public API for tf._api.v2.types namespace
version module: Public API for tf._api.v2.version namespace
xla module: Public API for tf._api.v2.xla namespace
Classes
class AggregationMethod: A class listing aggregation methods used to combine gradients.
class CriticalSection: Critical section.
class DType: Represents the type of the elements in a Tensor
.
class DeviceSpec: Represents a (possibly partial) specification for a TensorFlow device.
class GradientTape: Record operations for automatic differentiation.
class Graph: A TensorFlow computation, represented as a dataflow graph.
class IndexedSlices: A sparse representation of a set of tensor slices at given indices.
class IndexedSlicesSpec: Type specification for a tf.IndexedSlices.
class Module: Base neural network module class.
class Operation: Represents a graph node that performs computation on tensors.
class OptionalSpec: Type specification for tf.experimental.Optional.
class RaggedTensor: Represents a ragged tensor.
class RaggedTensorSpec: Type specification for a tf.RaggedTensor.
class RegisterGradient: A decorator for registering the gradient function for an op type.
class SparseTensor: Represents a sparse tensor.
class SparseTensorSpec: Type specification for a tf.sparse.SparseTensor.
class Tensor: A tf.Tensor represents a multidimensional array of elements.
class TensorArray: Class wrapping dynamic-sized, per-time-step, Tensor arrays.
class TensorArraySpec: Type specification for a tf.TensorArray.
class TensorShape: Represents the shape of a Tensor
.
class TensorSpec: Describes the type of a tf.Tensor.
class TypeSpec: Specifies a TensorFlow value type.
class UnconnectedGradients: Controls how gradient computation behaves when y does not depend on x.
class Variable: See the variable guide.
class VariableAggregation: Indicates how a distributed variable will be aggregated.
class VariableSynchronization: Indicates when a distributed variable will be synced.
class constant_initializer: Initializer that generates tensors with constant values.
class name_scope: A context manager for use when defining a Python op.
class ones_initializer: Initializer that generates tensors initialized to 1.
class random_normal_initializer: Initializer that generates tensors with a normal distribution.
class random_uniform_initializer: Initializer that generates tensors with a uniform distribution.
class zeros_initializer: Initializer that generates tensors initialized to 0.
Functions
Assert(...): Asserts that the given condition is true.
abs(...): Computes the absolute value of a tensor.
acos(...): Computes acos of x element-wise.
acosh(...): Computes inverse hyperbolic cosine of x element-wise.
add(...): Returns x + y element-wise.
add_n(...): Returns the element-wise sum of a list of tensors.
approx_top_k(...): Returns min/max k values and their indices of the input operand in an approximate manner.
argmax(...): Returns the index with the largest value across axes of a tensor.
argmin(...): Returns the index with the smallest value across axes of a tensor.
argsort(...): Returns the indices of a tensor that give its sorted order along an axis.
as_dtype(...): Converts the given type_value
to a tf.DType.
as_string(...): Converts each entry in the given tensor to strings.
asin(...): Computes the trignometric inverse sine of x element-wise.
asinh(...): Computes inverse hyperbolic sine of x element-wise.
assert_equal(...): Assert the condition x == y
holds element-wise.
assert_greater(...): Assert the condition x > y
holds element-wise.
assert_less(...): Assert the condition x < y
holds element-wise.
assert_rank(...): Assert that x
has rank equal to rank
.
atan(...): Computes the trignometric inverse tangent of x element-wise.
atan2(...): Computes arctangent of y/x
element-wise, respecting signs of the arguments.
atanh(...): Computes inverse hyperbolic tangent of x element-wise.
batch_to_space(...): BatchToSpace for N-D tensors of type T.
bitcast(...): Bitcasts a tensor from one type to another without copying data.
boolean_mask(...): Apply boolean mask to tensor.
broadcast_dynamic_shape(...): Computes the shape of a broadcast given symbolic shapes.
broadcast_static_shape(...): Computes the shape of a broadcast given known shapes.
broadcast_to(...): Broadcast an array for a compatible shape.
case(...): Create a case operation.
cast(...): Casts a tensor to a new type.
clip_by_global_norm(...): Clips values of multiple tensors by the ratio of the sum of their norms.
clip_by_norm(...): Clips tensor values to a maximum L2-norm.
clip_by_value(...): Clips tensor values to a specified min and max.
complex(...): Converts two real numbers to a complex number.
concat(...): Concatenates tensors along one dimension.
cond(...): Return true_fn()
if the predicate pred
is true else false_fn()
.
constant(...): Creates a constant tensor from a tensor-like object.
control_dependencies(...): Wrapper for Graph.control_dependencies() using the default graph.
conv(...): Computes a N-D convolution given (N+1+batch_dims)-D input
and (N+2)-D filter
tensors.
conv2d_backprop_filter_v2(...): Computes the gradients of convolution with respect to the filter.
conv2d_backprop_input_v2(...): Computes the gradients of convolution with respect to the input.
convert_to_tensor(...): Converts the given value
to a Tensor
.
cos(...): Computes cos of x element-wise.
cosh(...): Computes hyperbolic cosine of x element-wise.
cumsum(...): Compute the cumulative sum of the tensor x
along axis
.
custom_gradient(...): Decorator to define a function with a custom gradient.
device(...): Specifies the device for ops created/executed in this context.
divide(...): Computes Python style division of x
by y
.
dynamic_partition(...): Partitions data
into num_partitions
tensors using indices from partitions
.
dynamic_stitch(...): Interleave the values from the data
tensors into a single tensor.
edit_distance(...): Computes the Levenshtein distance between sequences.
eig(...): Computes the eigen decomposition of a batch of matrices.
eigvals(...): Computes the eigenvalues of one or more matrices.
einsum(...): Tensor contraction over specified indices and outer product.
ensure_shape(...): Updates the shape of a tensor and checks at runtime that the shape holds.
equal(...): Returns the truth value of (x == y) element-wise.
executing_eagerly(...): Checks whether the current thread has eager execution enabled.
exp(...): Computes exponential of x element-wise. \(y = e^x\).
expand_dims(...): Returns a tensor with a length 1 axis inserted at index axis
.
extract_volume_patches(...): Extract patches
from input
and put them in the "depth"
output dimension. 3D extension of extract_image_patches
.
eye(...): Construct an identity matrix, or a batch of matrices.
fftnd(...): ND fast Fourier transform.
fill(...): Creates a tensor filled with a scalar value.
fingerprint(...): Generates fingerprint values.
floor(...): Returns element-wise largest integer not greater than x.
foldl(...): foldl on the list of tensors unpacked from elems
on dimension 0. (deprecated argument values)
foldr(...): foldr on the list of tensors unpacked from elems
on dimension 0. (deprecated argument values)
function(...): Compiles a function into a callable TensorFlow graph. (deprecated arguments) (deprecated arguments) (deprecated arguments)
gather(...): Gather slices from params axis axis
according to indices. (deprecated arguments)
gather_nd(...): Gather slices from params
into a Tensor with shape specified by indices
.
get_current_name_scope(...): Returns current full name scope specified by tf.name_scope(...)s.
get_logger(...): Return TF logger instance.
get_static_value(...): Returns the constant value of the given tensor, if efficiently calculable.
grad_pass_through(...): Creates a grad-pass-through op with the forward behavior provided in f.
gradients(...): Constructs symbolic derivatives of sum of ys
w.r.t. x in xs
.
greater(...): Returns the truth value of (x > y) element-wise.
greater_equal(...): Returns the truth value of (x >= y) element-wise.
group(...): Create an op that groups multiple operations.
guarantee_const(...): Promise to the TF runtime that the input tensor is a constant. (deprecated)
hessians(...): Constructs the Hessian of sum of ys
with respect to x
in xs
.
histogram_fixed_width(...): Return histogram of values.
histogram_fixed_width_bins(...): Bins the given values for use in a histogram.
identity(...): Return a Tensor with the same shape and contents as input.
identity_n(...): Returns a list of tensors with the same shapes and contents as the input
ifftnd(...): ND inverse fast Fourier transform.
import_graph_def(...): Imports the graph from graph_def
into the current default Graph
. (deprecated arguments)
init_scope(...): A context manager that lifts ops out of control-flow scopes and function-building graphs.
inside_function(...): Indicates whether the caller code is executing inside a tf.function.
irfftnd(...): ND inverse real fast Fourier transform.
is_symbolic_tensor(...): Test if tensor
is a symbolic Tensor.
is_tensor(...): Checks whether x
is a TF-native type that can be passed to many TF ops.
less(...): Returns the truth value of (x < y) element-wise.
less_equal(...): Returns the truth value of (x <= y) element-wise.
linspace(...): Generates evenly-spaced values in an interval along a given axis.
load_library(...): Loads a TensorFlow plugin.
load_op_library(...): Loads a TensorFlow plugin, containing custom ops and kernels.
logical_and(...): Returns the truth value of x AND y element-wise.
logical_not(...): Returns the truth value of NOT x
element-wise.
logical_or(...): Returns the truth value of x OR y element-wise.
make_ndarray(...): Create a numpy ndarray from a tensor.
make_tensor_proto(...): Create a TensorProto.
map_fn(...): Transforms elems
by applying fn
to each element unstacked on axis 0. (deprecated arguments)
matmul(...): Multiplies matrix a
by matrix b
, producing a
* b
.
matrix_square_root(...): Computes the matrix square root of one or more square matrices:
maximum(...): Returns the max of x and y (i.e. x > y ? x : y) element-wise.
meshgrid(...): Broadcasts parameters for evaluation on an N-D grid.
minimum(...): Returns the min of x and y (i.e. x < y ? x : y) element-wise.
multiply(...): Returns an element-wise x * y.
negative(...): Computes numerical negative value element-wise.
no_gradient(...): Specifies that ops of type op_type
is not differentiable.
no_op(...): Does nothing. Only useful as a placeholder for control edges.
nondifferentiable_batch_function(...): Batches the computation done by the decorated function.
norm(...): Computes the norm of vectors, matrices, and tensors.
not_equal(...): Returns the truth value of (x != y) element-wise.
numpy_function(...): Wraps a python function and uses it as a TensorFlow op.
one_hot(...): Returns a one-hot tensor.
ones(...): Creates a tensor with all elements set to one (1).
ones_like(...): Creates a tensor of all ones that has the same shape as the input.
pad(...): Pads a tensor.
parallel_stack(...): Stacks a list of rank-R
tensors into one rank-(R+1)
tensor in parallel.
pow(...): Computes the power of one value to another.
print(...): Print the specified inputs.
py_function(...): Wraps a python function into a TensorFlow op that executes it eagerly.
ragged_fill_empty_rows_grad(...)
random_index_shuffle(...): Outputs the position of value
in a permutation of [0, ..., max_index].
range(...): Creates a sequence of numbers.
rank(...): Returns the rank of a tensor.
realdiv(...): Returns x / y element-wise for real types.
recompute_grad(...): Defines a function as a recompute-checkpoint for the tape auto-diff.
reduce_all(...): Computes tf.math.logical_and of elements across dimensions of a tensor.
reduce_any(...): Computes tf.math.logical_or of elements across dimensions of a tensor.
reduce_logsumexp(...): Computes log(sum(exp(elements across dimensions of a tensor))).
reduce_max(...): Computes tf.math.maximum of elements across dimensions of a tensor.
reduce_mean(...): Computes the mean of elements across dimensions of a tensor.
reduce_min(...): Computes the tf.math.minimum of elements across dimensions of a tensor.
reduce_prod(...): Computes tf.math.multiply of elements across dimensions of a tensor.
reduce_sum(...): Computes the sum of elements across dimensions of a tensor.
register_tensor_conversion_function(...): Registers a function for converting objects of base_type
to Tensor
.
repeat(...): Repeat elements of input
.
required_space_to_batch_paddings(...): Calculate padding required to make block_shape divide input_shape.
reshape(...): Reshapes a tensor.
reverse(...): Reverses specific dimensions of a tensor.
reverse_sequence(...): Reverses variable length slices.
rfftnd(...): ND fast real Fourier transform.
roll(...): Rolls the elements of a tensor along an axis.
round(...): Rounds the values of a tensor to the nearest integer, element-wise.
saturate_cast(...): Performs a safe saturating cast of value
to dtype
.
scalar_mul(...): Multiplies a scalar times a Tensor
or IndexedSlices
object.
scan(...): scan on the list of tensors unpacked from elems
on dimension 0. (deprecated argument values)
scatter_nd(...): Scatters updates
into a tensor of shape shape
according to indices
.
searchsorted(...): Searches for where a value would go in a sorted sequence.
sequence_mask(...): Returns a mask tensor representing the first N positions of each cell.
shape(...): Returns a tensor containing the shape of the input tensor.
shape_n(...): Returns shape of a list of tensors.
sigmoid(...): Computes sigmoid of x
element-wise.
sign(...): Returns an element-wise indication of the sign of a number.
sin(...): Computes sine of x element-wise.
sinh(...): Computes hyperbolic sine of x element-wise.
size(...): Returns the size of a tensor.
slice(...): Extracts a slice from a tensor.
sort(...): Sorts a tensor.
space_to_batch(...): SpaceToBatch for N-D tensors of type T.
space_to_batch_nd(...): SpaceToBatch for N-D tensors of type T.
split(...): Splits a tensor value
into a list of sub tensors.
sqrt(...): Computes element-wise square root of the input tensor.
square(...): Computes square of x element-wise.
squeeze(...): Removes dimensions of size 1 from the shape of a tensor.
stack(...): Stacks a list of rank-R
tensors into one rank-(R+1)
tensor.
stop_gradient(...): Stops gradient computation.
strided_slice(...): Extracts a strided slice of a tensor (generalized Python array indexing).
subtract(...): Returns x - y element-wise.
switch_case(...): Create a switch/case operation, i.e.
tan(...): Computes tan of x element-wise.
tanh(...): Computes hyperbolic tangent of x
element-wise.
tensor_scatter_nd_add(...): Adds sparse updates
to an existing tensor according to indices
.
tensor_scatter_nd_max(...): Apply a sparse update to a tensor taking the element-wise maximum.
tensor_scatter_nd_sub(...): Subtracts sparse updates
from an existing tensor according to indices
.
tensor_scatter_nd_update(...): Scatter updates
into an existing tensor according to indices
.
tensordot(...): Tensor contraction of a and b along specified axes and outer product.
tile(...): Constructs a tensor by tiling a given tensor.
timestamp(...): Provides the time since epoch in seconds.
transpose(...): Transposes a
, where a
is a Tensor.
truediv(...): Divides x / y elementwise (using Python 3 division operator semantics).
truncatediv(...): Returns x / y element-wise, rounded towards zero.
truncatemod(...): Returns element-wise remainder of division.
tuple(...): Groups tensors together.
type_spec_from_value(...): Returns a tf.TypeSpec that represents the given value
.
unique(...): Finds unique elements in a 1-D tensor.
unique_with_counts(...): Finds unique elements in a 1-D tensor.
unravel_index(...): Converts an array of flat indices into a tuple of coordinate arrays.
unstack(...): Unpacks the given dimension of a rank-R
tensor into rank-(R-1)
tensors.
variable_creator_scope(...): Scope which defines a variable creation function to be used by variable().
vectorized_map(...): Parallel map on the list of tensors unpacked from elems
on dimension 0.
where(...): Returns the indices of non-zero elements, or multiplexes x
and y
.
while_loop(...): Repeat body
while the condition cond
is true. (deprecated argument values)
zeros(...): Creates a tensor with all elements set to zero.
zeros_like(...): Creates a tensor with all elements set to zero.
Other Members | |
---|---|
version | '2.16.1' |
bfloat16 | Instance of tf.dtypes.DType 16-bit bfloat (brain floating point). |
bool | Instance of tf.dtypes.DType Boolean. |
complex128 | Instance of tf.dtypes.DType 128-bit complex. |
complex64 | Instance of tf.dtypes.DType 64-bit complex. |
double | Instance of tf.dtypes.DType 64-bit (double precision) floating-point. |
float16 | Instance of tf.dtypes.DType 16-bit (half precision) floating-point. |
float32 | Instance of tf.dtypes.DType 32-bit (single precision) floating-point. |
float64 | Instance of tf.dtypes.DType 64-bit (double precision) floating-point. |
half | Instance of tf.dtypes.DType 16-bit (half precision) floating-point. |
int16 | Instance of tf.dtypes.DType Signed 16-bit integer. |
int32 | Instance of tf.dtypes.DType Signed 32-bit integer. |
int64 | Instance of tf.dtypes.DType Signed 64-bit integer. |
int8 | Instance of tf.dtypes.DType Signed 8-bit integer. |
newaxis | None |
qint16 | Instance of tf.dtypes.DType Signed quantized 16-bit integer. |
qint32 | Instance of tf.dtypes.DType signed quantized 32-bit integer. |
qint8 | Instance of tf.dtypes.DType Signed quantized 8-bit integer. |
quint16 | Instance of tf.dtypes.DType Unsigned quantized 16-bit integer. |
quint8 | Instance of tf.dtypes.DType Unsigned quantized 8-bit integer. |
resource | Instance of tf.dtypes.DType Handle to a mutable, dynamically allocated resource. |
string | Instance of tf.dtypes.DType Variable-length string, represented as byte array. |
uint16 | Instance of tf.dtypes.DType Unsigned 16-bit (word) integer. |
uint32 | Instance of tf.dtypes.DType Unsigned 32-bit (dword) integer. |
uint64 | Instance of tf.dtypes.DType Unsigned 64-bit (qword) integer. |
uint8 | Instance of tf.dtypes.DType Unsigned 8-bit (byte) integer. |
variant | Instance of tf.dtypes.DType Data of arbitrary type (known at runtime). |