SLinCA@Home | это... Что такое SLinCA@Home? (original) (raw)
SLinCA@Home
Тип | Грид, распределенные вычисления, волонтёрские вычисления |
Разработчик | ИМФ НАНУ |
Операционная система | Linux, Windows |
Первый выпуск | 14 сентября 2010 |
Аппаратная платформа | BOINC, SZTAKI Desktop Grid, XtremWeb-HEP, OurGrid |
Состояние | Альфа |
Сайт | dg.imp.kiev.ua |
SLinCA@Home (Scaling Laws in Cluster Aggregation — Масштабно-инвариантные закономерности в агрегации кластеров) — это научно-исследовательский проект, который использует компьютеры, соединенные глобальной сетью Интернет, для исследований в области материаловедения.
Содержание
- 1 Введение
- 2 История
- 3 Текущий статус
- 4 Приложения
- 4.1 Scaling Laws in Cluster Aggregation (SLinCA)
* 4.1.1 Научные результаты
* 4.1.2 Планы на будущее - 4.2 Multiscale Image and Video Processing (MultiScaleIVideoP)
* 4.2.1 Научные результаты
* 4.2.2 Планы на будущее - 4.3 City Population Dynamics and Sustainable Growth (CPDynSG)
* 4.3.1 Научные результаты
* 4.3.2 Планы на будущее - 4.4 Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) в инфраструктуре распределенных вычислений (ИРВ)
* 4.4.1 Научные результаты
* 4.4.2 Планы на будущее
- 4.1 Scaling Laws in Cluster Aggregation (SLinCA)
- 5 Партнеры
- 6 Награды
- 7 См. также
- 8 Примечания
- 9 Ссылки
Введение
SLinCA@Home основан группой научных сотрудников из Института металлофизики им. Г. В. Курдюмова (ИМФ) Национальной академии наук Украины (НАНУ), Киев, Украина. Этот проект использует программное обеспечение Berkeley Open Infrastructure for Network Computing (BOINC), платформу SZTAKI Desktop Grid, и API для распределенных вычислений (DC-API) от SZTAKI. SLinCA@Home включает несколько научных приложений посвященных поиску масштабно-инвариантных закономерностей в экспериментальных данных и результатах компьютерного моделирования.
История
Проект SLinCA@Home ранее был запущен в январе 2009 г. как часть проекта EDGeS Седьмой Рамочной Программы (Seventh Framework Programme — FP7) Европейского Союза (EC) для финансирования научных исследований и технологического развития в Европе. В 2009—2010 он использовал мощности локального «Настольного Грида» (НГ) ИМФ, но с декабря 2010 года использует инфраструктуру распределенных вычислений, которая предоставляется волонтёрами для решения сложных вычислительных задач, связанных с поиском масштабно-инвариантных закономерностей в экспериментально полученых и моделированых научных данных. Сейчас проект управляется группой ученых из ИМФ НАНУ в тесном сотрудничестве с партнерами из IDGF и Distributed Computing team 'Ukraine'. С июня 2010 SLinCA@Home работает в рамках проекта DEGISCO FP7 ЕС.
Текущий статус
Сейчас SLinCA@Home имеет статус альфа-версии, что связано с постепенной модернизацией серверной и клиентской частей.
По неофициальной статистике BOINCstats (по состоянию на 16 марта 2011) более 2000 волонтёров из 39 стран приняли участие в проекте, сделав его вторым по популярности BOINC проектом в Украине (после проекта Magnetism@Home, который сейчас не активен).[1] Около 700 активных пользователей обеспечивают приблизительно 0.5-1.5 TFLOPS[2] вычислительной мощности, которая позволила бы SLinCA@Home попасть в лучшую 20-ку списка TOP500 суперкомпьютеров … по состоянию на июнь 2005 года.[3]
Сейчас, одно приложение (SLinCA) запущено на открытой глобальной инфраструктуре распределенных вычислений (SLinCA@Home), а три других (MultiScaleIVideoP, CPDynSG, LAMMPS over DCI) находятся в стадии тестирования на закрытом локальном Настольном Гриде (НГ) ИМФ.
Приложения
Проект SLinCA@Home был создан для поиска неизвестных ранее масштабно-инвариантных закономерностей по результатам экспериментов и моделирования в следующих научных приложениях
Scaling Laws in Cluster Aggregation (SLinCA)
SLinCA
Тип | Грид, распределенные вычисления, волонтёрские вычисления |
---|---|
Разработчик | ИМФ НАНУ |
Написана на | C, C++ |
Операционная система | Linux (32-bit), Windows (32-bit) |
Первый выпуск | 24 июля 2007 |
Аппаратная платформа | BOINC, SZTAKI Desktop Grid, XtremWeb-HEP, OurGrid |
Состояние | Активный |
SLinCA (Scaling Laws in Cluster Aggregation) является первым приложеним портированным на DG инфраструктуру лабораторией физики деформационных процессов ИМФ НАНУ. Ее целью является найти законы масштабной инвариантности в кинетическом сценарии агрегации мономера в кластерах различных видов и в различных научных областях.
Процессы агрегации кластеров исследуются во многих отраслях науки: агрегации дефектов в материаловедении, динамике популяций в биологии, росте и развитии городов в социологии, и т. д. Существующие экспериментальные данные свидетельствуют о наличии иерархической структуры на многих масштабных уровнях. Имеющиеся теории предлагают множество сценариев агрегации кластеров, формирования иерархических структур, и объяснения их масштабно-инвариантных свойств. Для их проверки необходимо использовать мощные вычислительные ресурсы для обработки огромных баз данных экспериментальных результатов. Обычное моделирование одного процесса агрегации кластеров с 106 мономерами занимает приблизительно 1-7 дней на одном современном процессоре, в зависимости от числа шагов в методе Монте-Карло. Выполнение SLinCA в Грид в инфраструктуре распределенных вычислений (ИРВ), позволяет использовать сотни машин с достаточной вычислительной мощностью для моделирования множества сценариев за гораздо более короткие сроки.
Типичные технические параметры для запуска ИРВ-версии приложения SLinCA в глобальной открытой инфраструктуре распределенных вычислений (ИРВ) (SLinCA@Home):
- Текущие условия для 1 задачи на 1 ядро ЦПУ (2.4 GHz): время выполнения ~2-4 часа; ОЗУ<60 Мб; НЖМД<40 Мб.
- Чекпойнтинг: н/д (в процессе тестирования).
- Хронометраж выполнения заданий: нелинейный.
Научные результаты
Предварительные результаты приложения SLinCA были получены на EGEE вычислительных ресурсах тестовых инфраструктур CETA-CIEMAT и XtremWeb-HEP LAL; опубликованы в 2009 в стендовом докладе 4th EDGeS training event and 3rd AlmereGrid Workshop, Алмере, Нидерланды (29-30 Марта, 2009).[4]
Планы на будущее
Текущая версия приложения SLinCA будет обновлена для стабильности чекпоинтов, новой функциональности и поддержки NVIDIA GPU-расчетов для выполнения анализа быстрее (по оценкам от 50 до 200 % быстрее). Дополнительная цель — это миграция на платформу OurGrid для тестирования и демонстрации потенциальных механизмов взаимодействия между мировими сообществами с различными парадигмами распределенных вычислений. SLinCA планируется портировать на платформу OurGrid, ориентированную на поддержку пиринговых настольных гридов, которые, по своей природе, очень отличаются от волонтёрских распределенных вычислений на базе «Настольного Грида» (НГ), как SZTAKI Desktop Grid.
Multiscale Image and Video Processing (MultiScaleIVideoP)
MultiScaleIVideoP
Тип | Грид, распределенные вычисления, волонтёрские вычисления |
---|---|
Разработчик | ИМФ НАНУ (оболочка для среды РВ), Mathworks (библиотеки MATLAB) |
Написана на | C, C++, MATLAB |
Операционная система | Linux (32-bit), Windows (32-bit) |
Первый выпуск | 11 января 2008 |
Аппаратная платформа | MATLAB, BOINC, SZTAKI Desktop Grid, XtremWeb-HEP |
Состояние | Альфа |
Оптическая микроскопия обычно используется для анализа структурных характеристик материалов в узких диапазонах увеличения, небольшой исследуемой области, и в статическом режиме. Однако множество критических процессов, связанных с началом и динамическим распространением разрушения наблюдаются в широком временном диапазоне от 10−3 с до 103 с и на многих масштабних уровнях от 10−6 м (одиночные дефекты) до 10−2 м (связанные сети дефектов). Приложение Multiscale Image and Video Processing (MultiscaleIVideoP) предназначено для обработки записанной эволюции материалов во время механической деформации на испытательной машине. Расчеты включают в себя множество параметров физического процесса (скорость, усилие, увеличение, условия освещения, аппаратные фильтры, и т. д.) и параметров обработки изображения (распределение по размерам, анизотропия, локализации, параметры масштабирования и т. д.). А потому расчеты очень трудоемки и выполняются очень медленно. Вот почему появилась крайняя необходимость использования более мощных вычислительных ресурсов. Выполнение этого приложения в инфраструктуре распределенных вычислений (ИРВ), позволяет использовать сотни машин с достаточной вычислительной мощностью для обработки изображений и видео в более широком диапазоне масштабов и за гораздо более короткие сроки.
Типичные технические параметры для запуска ИРВ-версии приложения MultiScaleIVideoP на закрытом локальном Настольном Гриде (НГ) ИМФ:
- Текущие условия для 1 задачи на 1 ядро ЦПУ (2.4 GHz): время выполнения ~20-30 мин; ОЗУ<200 Мб; НЖМД<500 Мб.
- Чекпойнтинг: н/д (в процессе тестирования).
- Хронометраж выполнения заданий: линейный.
Научные результаты
Предварительные результаты приложения MultiScaleIVideoP были получены на EGEE вычислительных ресурсах тестовых инфраструктур CETA-CIEMAT и XtremWeb-HEP LAL; опубликованы в 2009 в стендовом докладе 4th EDGeS training event and 3rd AlmereGrid Workshop, Алмере, Нидерланды (29-30 Марта, 2009).[5]
В январе, 2011 были получены и опубликованы дальнейшие результаты обработки данных видеонаблюдения в ходе экспериментов с циклическим стесненным нагружением алюминиевой фольги.[6]
Планы на будущее
Текущая версия приложения MultiScaleIVideoP будет обновлена для стабильности чекпоинтов, новой функциональности и поддержки NVIDIA GPU-расчетов для выполнения анализа быстрее (по оценкам от 300 до 600 % быстрее).
City Population Dynamics and Sustainable Growth (CPDynSG)
CPDynSG
Тип | Грид, распределенные вычисления, волонтёрские вычисления |
---|---|
Разработчик | ИМФ НАНУ |
Написана на | C, C++ |
Операционная система | Linux (32-bit), Windows (32-bit) |
Первый выпуск | 14 апреля 2010 |
Аппаратная платформа | BOINC, SZTAKI Desktop Grid |
Состояние | Альфа |
Известно, что рост городов (муниципалитетов, округов и т. д.) объясняется миграцией, слиянием, ростом населения и т. д. Так замечено, что распределение городов по их размерам во многих странах подчиняется степенному закону. Эта зависимость подтверждается данными для популяций в различных городах в период их начальной истории. Население во всех крупных городах растет гораздо быстрее, чем страна в целом за значительный диапазон времени. Однако, как и в городах достигших зрелости, их рост может замедлиться или количество населения может даже снизиться по причинам, не связанным с миграцией в еще большие города. Различные теории дают темпы роста, асимптотики, и распределения таких групп населения. Важной особенностью приложения является сравнение имеющихся теорий с данными наблюдений и прогнозирования сценариев динамики устойчивого роста населения для различных национальных и международных регионов. Приложение City Population Dynamics and Sustainable Growth (CPDynSG) позволяет исследовать связь между огромным объемом экспериментальных данных и найти качественное соответствие между предсказаниями разных моделей и имеющимися историческими данными.
Типичные технические параметры для запуска ИРВ-версии приложения CPDynSG на закрытом локальном Настольном Гриде (НГ) ИМФ инфраструктуры:
- Текущие условия для 1 задачи на 1 ядро ЦПУ (2.4 GHz): время выполнения ~20-30 мин; ОЗУ<20 Мб; НЖМД<50 Мб.
- Чекпойнтинг: н/д (в процессе тестирования).
- Хронометраж выполнения заданий: линейный.
Научные результаты
В июне-сентябре 2010 года были получены результаты в отношении концепции, результатов портирования ИРВ-версии приложения CPDynSG на базе платформы Berkeley Open Infrastructure for Network Computing (BOINC), платформу SZTAKI Desktop Grid, и API для распределенных вычислений (DC-API) от SZTAKI, а также предварительные результаты для распределения размеров городов в нескольких странах Центральной и Восточной Европы. Отмечена характерная изоляция распределения размеров городов в Венгрии, а также jбнаружена очень похожая эволюция распределения по размерам городов в Украине и Польше. Эти результаты были представлены на Cracow Grid Workshop’10 (11-13 октября, 2010) в устном и стендовом [7] докладах. Представленный стенд был отмечен наградой «За лучший стендовый доклад Cracow Grid Workshop’09».
Планы на будущее
Текущая версия приложения CPDynSG будет обновлена для стабильности чекпоинтов, новой функциональности и поддержки NVIDIA GPU-расчетов для выполнения анализа быстрее (по оценкам от 50 до 200 % быстрее).
Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) в инфраструктуре распределенных вычислений (ИРВ)
LAMMPS в ИРП
Тип | Грид, распределенные вычисления, волонтёрские вычисления |
---|---|
Разработчик | ИМФ НАНУ (оболочка для среды РВ), Sandia National Laboratories (LAMMPS itself) |
Написана на | C, C++ |
Операционная система | Linux (32-bit), Windows (32-bit) |
Первый выпуск | 4 июня 2010 |
Аппаратная платформа | BOINC, SZTAKI Desktop Grid |
Состояние | Альфа |
Поиск новых наноразмерных функциональных устройств стал настоящим «Эльдорадо» современной науки и он стимулирует «Золотую лихорадку» в современном материаловедении. Но контролируемое производство наноразмерных функциональных устройств требует тщательного выбора и настройки критических параметров (элементов, потенциалов взаимодействия, режимов внешнего воздействия, температуры, и т. д.) атомной самоорганизации в разрабатываемых моделях и структурах для наномасштабных функциональных устройств. Вот почему молекулярно-динамическое моделирование процессов нанопроизводства с декомпозицией физических параметров и перебором параметров методом «грубой силы» является весьма перспективным. Для этой цели был выбран очень популярный некоммерческий пакет с открытым кодом LAMMPS «Large-scale Atomic/Molecular Massively Parallel Simulator» (LAMMPS) от Sandia National Laboratories как кандидат для портирования в инфраструктуру распределенных вычислений (ИРВ) на основе платформы Berkeley Open Infrastructure for Network Computing (BOINC), SZTAKI Desktop Grid, и API для распределенных вычислений (DC-API) от SZTAKI. Как правило, для такого моделирования нанообъектов со многими параметрами требуется чрезвычайно много вычислительных ресурсов. Типичное моделирование исследуемых наноструктур для одной конфигурации физических параметров — например, для моделирования физических процессов в течение 1-10 пикосекунд металлических монокристаллов (Al, Cu, Mo, итд.) с 107 атомов — требуется приблизительно 1-7 дней на одном современном ЦПУ. Выполнение LAMMPS в Грид в инфраструктуре распределенных вычислений (ИРВ) позволяет использовать сотни машин одновременно и получить огромное количество вычислительных ресурсов для проведения моделирования в широком диапазоне физических параметров (конфигураций) и в гораздо более короткие сроки.
Типичные технические параметры для запуска ИРВ-версии приложения MultiScaleIVideoP на закрытом локальном Настольном Гриде (НГ) ИМФ:
- Текущие условия для 1 задачи на 1 ядро ЦПУ (2.4 GHz): время выполнения ~2-48 часов; ОЗУ<500 Мб; НЖМД<1 Гб.
- Чекпойнтинг: н/д (в процессе тестирования).
- Хронометраж выполнения заданий: линейный.
Научные результаты
В сентябре-октябре 2010 полученные предварительные результаты были представлены в устной презентации на Международной Конференции «Наноструктурные материалы-2010», Киев, Украина [8]
Планы на будущее
Текущаяя версия LAMMPS с применением ИРП приложения будет обновлена для стабильности чекпоинтов, новой функциональности и поддержки NVIDIA GPU-расчетов для выполнения анализа быстрее (по оценкам от 300 до 500 % быстрее).
Партнеры
SLinCA@Home сотрудничает с
- партнерами в проектах FP7 ЕС:
- сообществами волонтёров, участвующих в распределенных вычислениях:
- профессиональными сообществами экспертов в области распределенных вычислений:
Награды
Партнер IDGF Юрий Гордиенко c дипломом за лучший постер на CGW’10.
- 2009 — «За лучший стендовый доклад Cracow Grid Workshop’09», Краков, Польша (12-14 Октября, 2009) — отчет об идее и и результатах портирования приложения MultiScaleIVideoP с MATLAB-библиотеками для инфраструктуры распределенных вычислений (ИРВ) на основе BOINC SZTAKI Desktop Grid платформ, и XtremWeb-HEP платформы, где применимость интеграции MATLAB объектов и кодов для распределенных вычислений демонстрируется на примере обработки изображений и видео в области материаловедения и микроскопии.[9]
- 2010 — «За лучший стендовый доклад Cracow Grid Workshop’10», Краков, Польша (11-13 Октября, 2010) — отчет о концепции и результатах портирования CPDynSG приложений для инфраструктуры распределенных вычислений (ИРВ) на основе BOINC SZTAKI Desktop Grid платформ, со сравнительным анализом имеющихся теорий с экспериментальными наблюдениями, а также типичными сценариями динамики роста населения для различных стран Центральной и Восточной Европы.[7]
См. также
Примечания
- ↑ «BOINCstats project statistics», <http://boincstats.com/stats/project_graph.php?pr=SLinCA>. Проверено 16 марта 2011.
- ↑ SLinCA@Home Server Status
- ↑ «Comparison with TOP500 supercomputers», June, 2005, <http://www.top500.org/list/2005/06/500>. Проверено 16 марта 2011.
- ↑ O. Gatsenko; O. Baskova, and Y. Gordienko Kinetics of Defect Aggregation in Materials Science Simulated in Desktop Grid Computing Environment Installed in Ordinary Material Science Lab. Proceedings of 3rd AlmereGrid Workshop (March, 2009). Проверено 16 марта 2011.
- ↑ O. Baskova; O. Gatsenko, and Y. Gordienko Porting Multiparametric MATLAB Application for Image and Video Processing to Desktop Grid for High-Performance Distributed Computing. Proceedings of 3rd AlmereGrid Workshop (March, 2009). Проверено 16 марта 2011.
- ↑ O. Baskova; O. Gatsenko, O. Lodygensky, G. Fedak, and Y. Gordienko Statistical Properties of Deformed Single-Crystal Surface under Real-Time Video Monitoring and Processing in the Desktop Grid Distributed Computing Environment 306-309. Key Engineering Materials (January, 2011). Архивировано из первоисточника 26 июля 2012. Проверено 16 марта 2011.
- ↑ 1 2 O. Gatsenko; O. Baskova, and Y. Gordienko Simulation of City Population Dynamics and Sustainable Growth in Desktop Grid Distributed Computing Infrastructure. Proceedings of Cracow Grid Workshop'10 (February, 2011). Проверено 16 марта 2011.
- ↑ O. Baskova; O. Gatsenko, O. Gontareva, E. Zasimchuk, and Y. Gordienko Scale-Invariant Aggregation Kinetics of Nanoscale Defects of Crystalline Structure(рус. Масштабно-инвариантная кинетика агрегации наноразмерных дефектов кристаллического строения). Online Proceedings of «Nanostructured materials-2010» (19-22 October, 2011). Архивировано из первоисточника 26 июля 2012. Проверено 16 марта 2011.
- ↑ O. Baskova; O. Gatsenko, and Y. Gordienko Scaling-up MATLAB Application in Desktop Grid for High-Performance Distributed Computing - Example of Image and Video Processing. Proceedings of Cracow Grid Workshop'09 255-263 (February, 2010). Архивировано из первоисточника 26 июля 2012. Проверено 16 марта 2011.
Ссылки
- Volunteer@Home.com — Все о волонтёрских вычислениях(англ.)
- Платформа BOINC
- Платформа XtremWeb-HEP
- Платформа SZTAKI
- Платформа OurGrid
- Статистика проектов BOINC
- Проект SLinCA@Home
- Статистика SLinCA@Home
- Проект EDGeS
- Проект DEGISCO
- IDGF
Проекты добровольных вычислений | |
---|---|
Астрономия | Albert@Home • Asteroids@home • Constellation • Cosmology@home • Einstein@Home • MilkyWay@home • Orbit@home • PlanetQuest • SETI@home • theSkyNet POGS |
Биология имедицина | Biochemical Library • Cels@Home • CommunityTSC • Correlizer • Docking@Home • DrugDiscovery@Home • DNA@Home • evo@home • evolution@home • FightAIDS@Home • FightMalaria@Home • Folding@home • GPUGrid • Lattice Project • Malariacontrol.net • Neurona@Home • NRG • Poem@Home • Predictor@home • Proteins@Home • QMC@Home • RALPH@Home • RNA World • Rosetta@home • SIMAP@home • SimOne@home • Superlink@Technion • United Devices Cancer Research Project • Volpex@UH • Wildlife@Home |
Когнитивные | Artificial Intelligence System • MindModeling@Home |
Климат | APS@Home • BBC Climate Change Experiment • ClimatePrediction.net • Seasonal Attribution Project • Quake Catcher Network - Seismic Monitoring • Virtual Prairie |
Математика | ABC@home • AQUA@home • Chess960@home • Collatz Conjecture • distributed.net • Enigma@Home • EulerNet • GIMPS • NFSNET • NQueens Project • NumberFields@Home • OProject@Home • PiHex • PrimeGrid • Ramsey@Home • Rectilinear Crossing Number • SAT@home • SHA-1 Collision Search Graz • SubsetSum@Home • RainbowCrack • Seventeen or Bust • SZTAKI Desktop Grid • WEP-M+2 Project • Wieferich@Home • VGTU@Home |
Физико-технические | BRaTS@Home • CuboidSimulation • eOn • Hydrogen@Home • Leiden Classical • LHC@home • Magnetism@home • µFluids@home • Muon1 DPAD • NanoHive@Home • SLinCA@Home • Solar@Home • Spinhenge@home • QuantumFIRE |
Многоцелевые | AlmereGrid • CAS@Home • EDGeS@Home • Ibercivis • Optima@home • World Community Grid • Yoyo@home |
Прочие | Africa@HOME • BURP • DepSpid • DIMES • Ideologias@Home • FreeHAL@home • Gerasim@Home • Pirates@Home • RenderFarm@Home • RND@home • Surveill@Home • YAFU |
Утилиты | BOINC (Account Manager • Manager • client-server technology • Credit System • Wrapper • WUProp) |