Кольцо (математика) | это... Что такое Кольцо (математика)? (original) (raw)

У этого термина существуют и другие значения, см. Кольцо.

В абстрактной алгебре кольцо́ — это один из наиболее часто встречающихся видов алгебраической структуры. Простейшими примерами колец являются алгебры чисел (целых, вещественных, комплексных, …), функций на множестве (всех, непрерывных, гладких, аналитических, …) и матриц. Во всех случаях имеется множество, похожее на множество чисел, в том смысле что его элементы можно складывать и умножать, причём эти операции ведут себя естественным образом. Однако есть и существенные отличия. Уже на примере целых чисел видно, что операция умножения может быть необратимой (операция деления определена не на целых числах, а на рациональных). Это различие ещё более существенно в кольцах функций и матриц: в них существуют элементы, произведение которых равно 0. Например, квадрат матрицы \scriptstyle{ \left( \begin{matrix} 0 && 1 \\ 0 && 0 \end{matrix} \right) } равен 0, так что она в принципе не может иметь обратную. Кроме того, умножение матриц не коммутативно. Алгебры Ли являются важными примерами колец, в которых умножение не ассоциативно и не имеет единицы (тождественного по умножению элемента). Понятие кольца формализует общие свойства всех указанных примеров, позволяя изучать их общими абстрактными методами.

Заметим, что, согласно алгебраической геометрии, любое коммутативное ассоциативное кольцо с единицей можно рассматривать как кольцо функций на некотором пространстве (аффинной схеме), однако соответствующая конструкция весьма нетривиальна, а её результат сложнее, чем может подсказывать элементарная интуиция. Хотя в целом интуитивное представление о кольце как о некотором кольце функций или кольце матриц не слишком сильно искажает истину, необходимо помнить о различиях.

Содержание

Определения

Кольцо — это множество R, на котором заданы две бинарные операции: + и × (называемые сложение и умножение), со следующими свойствами:

  1. \forall a, b \in R \left(a + b = b + a\right)коммутативность сложения;
  2. \forall a, b, c \in R \left(a + (b + c)) = ((a + b) + c\right)ассоциативность сложения;
  3. \exists 0 \in R\; \forall a \in R \left(a + 0 = 0 + a = a\right) — существование нейтрального элемента относительно сложения;
  4. \forall a \in R\; \exists b \in R \left(a + b = b + a = 0\right) — существование противоположного элемента относительно сложения;
  5. \forall a, b, c \in R\; (a \times b) \times c=a \times (b \times c) — ассоциативность умножения (некоторые авторы не требуют выполнения этой аксиомы[1])
  6. \forall a, b, c \in R \left\{\begin{matrix} a \times (b + c) = a \times b + a \times c \\ (b + c) \times a = b \times a + c \times a \end{matrix}\right.  дистрибутивность.

Иными словами, кольцо — это универсальная алгебра \left(R, +, \times \right), такая что алгебра \left(R, + \right)абелева группа, и операция + дистрибутивна слева и справа относительно \times. Кольцо называется ассоциативным, если мультипликативный группоид является полугруппой.

Ассоциативные кольца могут обладать следующими дополнительными свойствами:

Кольца, для которых выполнены два последние свойства, называются целостными (иногда также областями целостности или просто областями, хотя условие коммутативности не всегда считается обязательным).

Иногда под ассоциативным кольцом понимают ассоциативное кольцо с единицей. Но имеются примеры ассоциативных колец без единицы, например — нулевое кольцо, кольцо чётных чисел, или же любой несобственный идеал в кольце. Рассматриваются также неассоциативные кольца без единицы, например лиевские кольца и др.

Связанные определения

Простейшие свойства

Пусть R — кольцо, тогда выполнены следующие свойства:

Примеры

(f+g)(x) = f(x) + g(x),\;x\in M

(f\cdot g)(x) = f(x) \cdot g(x),\;x\in M

Нулевой элемент — функция, тождественно равная 0, единичный — тождественно равная 1. Обратимыми элементами в нём являются нигде не равные 0 функции, делителями нуля — функции, равные 0 на некотором открытом множестве в M. Это кольцо не имеет нильпотентов, так как их нет в \R, а умножение поточечно. Если M компактно, то максимальными идеалами в нём являются множества функций, зануляющихся в данной точке:

\mathfrak{m}_x = \{ f\in C^\infty(M) \vert f(x) = 0 \}

причём максимальные идеалы совпадают с простыми.

A + B = A \Delta B = (A\setminus B ) \cup (B \setminus A)

A \cdot B = A \cap B

Аксиомы кольца легко проверяются. Нулевым элементом является пустое множество, единичным — всё X. Все элементы кольца являются идемпотентами, то есть A\cdot A = A. Любой элемент является своим обратным по сложению: A+A=0. Кольцо подмножеств важно в теории булевых алгебр и теории меры, в частности в построении теории вероятностей.

См. также

Примечания

  1. НЕАССОЦИАТИВНЫЕ КОЛЬЦА И АЛГЕБРЫ

Ссылки